TarzaNN
TarzaNN neural network simulator
Public Member Functions | Protected Member Functions | Protected Attributes | Friends
BPLearningFeaturePlane Class Reference

Backpropagation learning fp. More...

#include <BPLearningFeaturePlane.h>

Inheritance diagram for BPLearningFeaturePlane:
LearningFeaturePlane FeaturePlane FeaturePlaneAbstract Observer Viewable

List of all members.

Public Member Functions

 ~BPLearningFeaturePlane ()
void read (QDataStream *inStream, QProgressDialog *progress, int *index)
void save (QDataStream *outStream, QProgressDialog *progress, int *index)
bool isLearning ()

Protected Member Functions

 BPLearningFeaturePlane (Network *net, int l, QString *name, int w, int h, int angles, int speeds, int alpha, int speed, bool isWTA, bool visible, Neuron *neuron, NotifyStrategyAbstract *notify, bool learning)
void applyGatingControl ()
void run ()
void step ()
void updateWeights (Matrix *errorMatrix)
void computeActivations ()
float nonlinearity (Matrix *totalActivation, OutputImage *workOutput)

Protected Attributes

Matrixactivations
MatrixdesiredOutcome
MatrixerrorMatrix
vector< Matrix * > backErrorMatrix
bool learning
float ita

Friends

class GatingUnits
class FeaturePlaneFactory

Detailed Description

Backpropagation learning fp.


Constructor & Destructor Documentation

BPLearningFeaturePlane::~BPLearningFeaturePlane ( )
BPLearningFeaturePlane::BPLearningFeaturePlane ( Network net,
int  l,
QString *  name,
int  w,
int  h,
int  angles,
int  speeds,
int  alpha,
int  speed,
bool  isWTA,
bool  visible,
Neuron neuron,
NotifyStrategyAbstract notify,
bool  learning 
) [protected]

Constructor

Parameters:
net- network, this FP will be added to the end of the list of feature planes
l- layer index
name- name of the feature plane
w- width
h- height
angles- number of discrete angles (e.g. speeds, orientations)
speeds- number of speeds (e.g. speed bands, scale bands)
alpha- alpha
speed- speed of this fp
isWTA- participates in Selective Tuning
visible- should the FP be presented in the UI
neuron- neuron strategy (what is the output nonlinearity, or the ODE that defines response)
notify- notification strategy (deprecated, on the way out)
learning- are weights adjustable through learning?

TODO - for now "OUTPUT" is the classifier


Member Function Documentation

void BPLearningFeaturePlane::applyGatingControl ( ) [protected]

Apply gating, propagate selection to inputs

Reimplemented from FeaturePlane.

void BPLearningFeaturePlane::computeActivations ( ) [protected, virtual]

Reimplemented from FeaturePlane.

bool BPLearningFeaturePlane::isLearning ( )
float BPLearningFeaturePlane::nonlinearity ( Matrix totalActivation,
OutputImage workOutput 
) [protected]
void BPLearningFeaturePlane::read ( QDataStream *  inStream,
QProgressDialog *  progress,
int *  index 
) [virtual]

Implements LearningFeaturePlane.

void BPLearningFeaturePlane::run ( ) [protected, virtual]

Reimplemented from FeaturePlane.

void BPLearningFeaturePlane::save ( QDataStream *  outStream,
QProgressDialog *  progress,
int *  index 
) [virtual]

Implements LearningFeaturePlane.

void BPLearningFeaturePlane::step ( ) [protected, virtual]

Do one computation step - compute activations, and FP output

Reimplemented from FeaturePlane.

void BPLearningFeaturePlane::updateWeights ( Matrix errorMatrix) [protected]

Friends And Related Function Documentation

friend class FeaturePlaneFactory [friend]

Reimplemented from LearningFeaturePlane.

friend class GatingUnits [friend]

Reimplemented from LearningFeaturePlane.


Member Data Documentation

Reimplemented from LearningFeaturePlane.

Reimplemented from LearningFeaturePlane.

Reimplemented from LearningFeaturePlane.

Reimplemented from LearningFeaturePlane.

float BPLearningFeaturePlane::ita [protected]

Reimplemented from LearningFeaturePlane.

Reimplemented from LearningFeaturePlane.


The documentation for this class was generated from the following files:
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Defines