TarzaNN
TarzaNN neural network simulator
Public Member Functions
NetworkFactory Class Reference

#include <NetworkFactory.h>

List of all members.

Public Member Functions

 NetworkFactory (Network *nn)
 ~NetworkFactory (void)
void createLayer (float weight, int dirs, int scales, QString layerName, int layerType)
 Create network layer.
void tmpltInputFeaturePlane (QString *fpName, QString *fileName, QString *taskFileName, float min_activation, float max_activation, bool scale, bool visible, bool isST)
 Construct input feature planes.
void tmpltInputLearningFeaturePlane (QString *fpName, QString *fileName, QString *taskFileName, float min_activation, float max_activation, bool scale, bool visible, bool isST, int levels)
void tmpltInputScales (QString *fpName, QString *inputBaseName, int w, int h, int scales, int neuronType, float nParam1, float nParam2, float wta_theta, float min_activation, float max_activation, bool scale, bool visible, bool isWTA)
 Construct scaled input feature planes.
void tmpltLGN (QString *fpName, QString *inputBaseName, int w, int h, int scales, int neuronType, float nParam1, float nParam2, float wta_theta, float min_activation, float max_activation, bool scale, bool visible, bool isWTA)
 Construct LGN feature planes - i.e. center-surround at the given number of scales.
void tmpltV1Edges (QString *fpName, QString *inputBaseName, int w, int h, int scales, int angles, int neuronType, float nParam1, float nParam2, float wta_theta, float min_activation, float max_activation, bool scale, bool visible, bool isWTA)
 Construct V1 edge feature planes - i.e. edge detectors at the given number of scales and orientations.
void tmpltV2EndStopped (QString *fpName, QString *inputBaseName, int w, int h, int scales, int angles, int neuronType, float nParam1, float nParam2, float wta_theta, float min_activation, float max_activation, bool scale, bool visible, bool isWTA)
 Construct V2 end stopped feature planes - use filters 3x the size of the edge detectors, at 90 degrees.
void tmpltV2Circle (QString *fpName, QString *inputBaseName, int w, int h, int scales, int angles, int neuronType, float nParam1, float nParam2, float wta_theta, float min_activation, float max_activation, bool scale, bool visible, bool isWTA)
 Construct V2 cicles feature planes - use 4 filters 3x the size of the edge detectors.
void tmpltV2Plus (QString *fpName, QString *inputBaseName, int w, int h, int scales, int neuronType, float nParam1, float nParam2, float wta_theta, float min_activation, float max_activation, bool scale, bool visible, bool isWTA)
 Construct V2 PLUS detector.
void tmpltV2X (QString *fpName, QString *inputBaseName, int w, int h, int scales, int neuronType, float nParam1, float nParam2, float wta_theta, float min_activation, float max_activation, bool scale, bool visible, bool isWTA)
 Construct V2 X detector.
void tmpltMultiInputFeaturePlane (QString *fpName, QString *fileName, QString *taskFileName, float min_activation, float max_activation, bool scale, bool visible, bool isWTA)
 Construct motion input feature plane.
void tmpltV1Motion (QString *fpName, QString *inputBaseName, int w, int h, int scales, int angles, int neuronType, float nParam1, float nParam2, float wta_theta, float min_activation, float max_activation, bool scale, bool visible, bool isWTA)
 Construct V1 motion feature planes - i.e. edge detectors at the given number of scales and directions.
void tmpltMT_T (QString *fpName, QString *inputBaseName, int w, int h, int scales, int angles, int neuronType, float nParam1, float nParam2, float wta_theta, float min_activation, float max_activation, bool scale, bool visible, bool isWTA)
 Construct MT motion translation feature planes.
void tmpltMT_R (QString *fpName, QString *inputBaseName, int w, int h, int scales, int angles, int neuronType, float nParam1, float nParam2, float wta_theta, float min_activation, float max_activation, bool scale, bool visible, bool isWTA)
 Construct MT motion rotation feature planes.
void tmpltMST_T (QString *fpName, QString *inputBaseName, int w, int h, int scales, int angles, int neuronType, float nParam1, float nParam2, float wta_theta, float min_activation, float max_activation, bool scale, bool visible, bool isWTA)
 Construct MST motion translation feature planes.
void tmpltMST_R (QString *fpName, QString *inputBaseName, int w, int h, int scales, int angles, int neuronType, float nParam1, float nParam2, float wta_theta, float min_activation, float max_activation, bool scale, bool visible, bool isWTA)
 Construct MST motion rotation feature planes.
void tmpltSTSOMLayer (QString *fpName, QString *inputBaseName, int w, int h, int scales, int angles, int neuronType, float nParam1, float nParam2, float wta_theta, float min_activation, float max_activation, bool scale, bool visible, bool isWTA, bool learning)
 Construct ST SOM FPs.

Detailed Description

Provides the infrastructure for a C++ network generator, to replace the XSLT

The intent is two fold

Uses the Factory design pattern


Constructor & Destructor Documentation

NetworkFactory::NetworkFactory ( Network nn)
NetworkFactory::~NetworkFactory ( void  )

Member Function Documentation

void NetworkFactory::createLayer ( float  weight,
int  dirs,
int  scales,
QString  layerName,
int  layerType 
)

Create network layer.

void NetworkFactory::tmpltInputFeaturePlane ( QString *  fpName,
QString *  fileName,
QString *  taskFileName,
float  min_activation,
float  max_activation,
bool  scale,
bool  visible,
bool  isST 
)

Construct input feature planes.

void NetworkFactory::tmpltInputLearningFeaturePlane ( QString *  fpName,
QString *  fileName,
QString *  taskFileName,
float  min_activation,
float  max_activation,
bool  scale,
bool  visible,
bool  isST,
int  levels 
)
void NetworkFactory::tmpltInputScales ( QString *  fpName,
QString *  inputBaseName,
int  w,
int  h,
int  scales,
int  neuronType,
float  nParam1,
float  nParam2,
float  wta_theta,
float  min_activation,
float  max_activation,
bool  scale,
bool  visible,
bool  isWTA 
)

Construct scaled input feature planes.

void NetworkFactory::tmpltLGN ( QString *  fpName,
QString *  inputBaseName,
int  w,
int  h,
int  scales,
int  neuronType,
float  nParam1,
float  nParam2,
float  wta_theta,
float  min_activation,
float  max_activation,
bool  scale,
bool  visible,
bool  isWTA 
)

Construct LGN feature planes - i.e. center-surround at the given number of scales.

void NetworkFactory::tmpltMST_R ( QString *  fpName,
QString *  inputBaseName,
int  w,
int  h,
int  scales,
int  angles,
int  neuronType,
float  nParam1,
float  nParam2,
float  wta_theta,
float  min_activation,
float  max_activation,
bool  scale,
bool  visible,
bool  isWTA 
)

Construct MST motion rotation feature planes.

void NetworkFactory::tmpltMST_T ( QString *  fpName,
QString *  inputBaseName,
int  w,
int  h,
int  scales,
int  angles,
int  neuronType,
float  nParam1,
float  nParam2,
float  wta_theta,
float  min_activation,
float  max_activation,
bool  scale,
bool  visible,
bool  isWTA 
)

Construct MST motion translation feature planes.

void NetworkFactory::tmpltMT_R ( QString *  fpName,
QString *  inputBaseName,
int  w,
int  h,
int  scales,
int  angles,
int  neuronType,
float  nParam1,
float  nParam2,
float  wta_theta,
float  min_activation,
float  max_activation,
bool  scale,
bool  visible,
bool  isWTA 
)

Construct MT motion rotation feature planes.

void NetworkFactory::tmpltMT_T ( QString *  fpName,
QString *  inputBaseName,
int  w,
int  h,
int  scales,
int  angles,
int  neuronType,
float  nParam1,
float  nParam2,
float  wta_theta,
float  min_activation,
float  max_activation,
bool  scale,
bool  visible,
bool  isWTA 
)

Construct MT motion translation feature planes.

void NetworkFactory::tmpltMultiInputFeaturePlane ( QString *  fpName,
QString *  fileName,
QString *  taskFileName,
float  min_activation,
float  max_activation,
bool  scale,
bool  visible,
bool  isWTA 
)

Construct motion input feature plane.

void NetworkFactory::tmpltSTSOMLayer ( QString *  fpName,
QString *  inputBaseName,
int  w,
int  h,
int  scales,
int  angles,
int  neuronType,
float  nParam1,
float  nParam2,
float  wta_theta,
float  min_activation,
float  max_activation,
bool  scale,
bool  visible,
bool  isWTA,
bool  learning 
)

Construct ST SOM FPs.

void NetworkFactory::tmpltV1Edges ( QString *  fpName,
QString *  inputBaseName,
int  w,
int  h,
int  scales,
int  angles,
int  neuronType,
float  nParam1,
float  nParam2,
float  wta_theta,
float  min_activation,
float  max_activation,
bool  scale,
bool  visible,
bool  isWTA 
)

Construct V1 edge feature planes - i.e. edge detectors at the given number of scales and orientations.

void NetworkFactory::tmpltV1Motion ( QString *  fpName,
QString *  inputBaseName,
int  w,
int  h,
int  scales,
int  angles,
int  neuronType,
float  nParam1,
float  nParam2,
float  wta_theta,
float  min_activation,
float  max_activation,
bool  scale,
bool  visible,
bool  isWTA 
)

Construct V1 motion feature planes - i.e. edge detectors at the given number of scales and directions.

void NetworkFactory::tmpltV2Circle ( QString *  fpName,
QString *  inputBaseName,
int  w,
int  h,
int  scales,
int  angles,
int  neuronType,
float  nParam1,
float  nParam2,
float  wta_theta,
float  min_activation,
float  max_activation,
bool  scale,
bool  visible,
bool  isWTA 
)

Construct V2 cicles feature planes - use 4 filters 3x the size of the edge detectors.

void NetworkFactory::tmpltV2EndStopped ( QString *  fpName,
QString *  inputBaseName,
int  w,
int  h,
int  scales,
int  angles,
int  neuronType,
float  nParam1,
float  nParam2,
float  wta_theta,
float  min_activation,
float  max_activation,
bool  scale,
bool  visible,
bool  isWTA 
)

Construct V2 end stopped feature planes - use filters 3x the size of the edge detectors, at 90 degrees.

void NetworkFactory::tmpltV2Plus ( QString *  fpName,
QString *  inputBaseName,
int  w,
int  h,
int  scales,
int  neuronType,
float  nParam1,
float  nParam2,
float  wta_theta,
float  min_activation,
float  max_activation,
bool  scale,
bool  visible,
bool  isWTA 
)

Construct V2 PLUS detector.

void NetworkFactory::tmpltV2X ( QString *  fpName,
QString *  inputBaseName,
int  w,
int  h,
int  scales,
int  neuronType,
float  nParam1,
float  nParam2,
float  wta_theta,
float  min_activation,
float  max_activation,
bool  scale,
bool  visible,
bool  isWTA 
)

Construct V2 X detector.


The documentation for this class was generated from the following files:
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Defines