|
TarzaNN
TarzaNN neural network simulator
|
#include <NetworkFactory.h>
Public Member Functions | |
| NetworkFactory (Network *nn) | |
| ~NetworkFactory (void) | |
| void | createLayer (float weight, int dirs, int scales, QString layerName, int layerType) |
| Create network layer. | |
| void | tmpltInputFeaturePlane (QString *fpName, QString *fileName, QString *taskFileName, float min_activation, float max_activation, bool scale, bool visible, bool isST) |
| Construct input feature planes. | |
| void | tmpltInputLearningFeaturePlane (QString *fpName, QString *fileName, QString *taskFileName, float min_activation, float max_activation, bool scale, bool visible, bool isST, int levels) |
| void | tmpltInputScales (QString *fpName, QString *inputBaseName, int w, int h, int scales, int neuronType, float nParam1, float nParam2, float wta_theta, float min_activation, float max_activation, bool scale, bool visible, bool isWTA) |
| Construct scaled input feature planes. | |
| void | tmpltLGN (QString *fpName, QString *inputBaseName, int w, int h, int scales, int neuronType, float nParam1, float nParam2, float wta_theta, float min_activation, float max_activation, bool scale, bool visible, bool isWTA) |
| Construct LGN feature planes - i.e. center-surround at the given number of scales. | |
| void | tmpltV1Edges (QString *fpName, QString *inputBaseName, int w, int h, int scales, int angles, int neuronType, float nParam1, float nParam2, float wta_theta, float min_activation, float max_activation, bool scale, bool visible, bool isWTA) |
| Construct V1 edge feature planes - i.e. edge detectors at the given number of scales and orientations. | |
| void | tmpltV2EndStopped (QString *fpName, QString *inputBaseName, int w, int h, int scales, int angles, int neuronType, float nParam1, float nParam2, float wta_theta, float min_activation, float max_activation, bool scale, bool visible, bool isWTA) |
| Construct V2 end stopped feature planes - use filters 3x the size of the edge detectors, at 90 degrees. | |
| void | tmpltV2Circle (QString *fpName, QString *inputBaseName, int w, int h, int scales, int angles, int neuronType, float nParam1, float nParam2, float wta_theta, float min_activation, float max_activation, bool scale, bool visible, bool isWTA) |
| Construct V2 cicles feature planes - use 4 filters 3x the size of the edge detectors. | |
| void | tmpltV2Plus (QString *fpName, QString *inputBaseName, int w, int h, int scales, int neuronType, float nParam1, float nParam2, float wta_theta, float min_activation, float max_activation, bool scale, bool visible, bool isWTA) |
| Construct V2 PLUS detector. | |
| void | tmpltV2X (QString *fpName, QString *inputBaseName, int w, int h, int scales, int neuronType, float nParam1, float nParam2, float wta_theta, float min_activation, float max_activation, bool scale, bool visible, bool isWTA) |
| Construct V2 X detector. | |
| void | tmpltMultiInputFeaturePlane (QString *fpName, QString *fileName, QString *taskFileName, float min_activation, float max_activation, bool scale, bool visible, bool isWTA) |
| Construct motion input feature plane. | |
| void | tmpltV1Motion (QString *fpName, QString *inputBaseName, int w, int h, int scales, int angles, int neuronType, float nParam1, float nParam2, float wta_theta, float min_activation, float max_activation, bool scale, bool visible, bool isWTA) |
| Construct V1 motion feature planes - i.e. edge detectors at the given number of scales and directions. | |
| void | tmpltMT_T (QString *fpName, QString *inputBaseName, int w, int h, int scales, int angles, int neuronType, float nParam1, float nParam2, float wta_theta, float min_activation, float max_activation, bool scale, bool visible, bool isWTA) |
| Construct MT motion translation feature planes. | |
| void | tmpltMT_R (QString *fpName, QString *inputBaseName, int w, int h, int scales, int angles, int neuronType, float nParam1, float nParam2, float wta_theta, float min_activation, float max_activation, bool scale, bool visible, bool isWTA) |
| Construct MT motion rotation feature planes. | |
| void | tmpltMST_T (QString *fpName, QString *inputBaseName, int w, int h, int scales, int angles, int neuronType, float nParam1, float nParam2, float wta_theta, float min_activation, float max_activation, bool scale, bool visible, bool isWTA) |
| Construct MST motion translation feature planes. | |
| void | tmpltMST_R (QString *fpName, QString *inputBaseName, int w, int h, int scales, int angles, int neuronType, float nParam1, float nParam2, float wta_theta, float min_activation, float max_activation, bool scale, bool visible, bool isWTA) |
| Construct MST motion rotation feature planes. | |
| void | tmpltSTSOMLayer (QString *fpName, QString *inputBaseName, int w, int h, int scales, int angles, int neuronType, float nParam1, float nParam2, float wta_theta, float min_activation, float max_activation, bool scale, bool visible, bool isWTA, bool learning) |
| Construct ST SOM FPs. | |
Provides the infrastructure for a C++ network generator, to replace the XSLT
The intent is two fold
Uses the Factory design pattern
| NetworkFactory::NetworkFactory | ( | Network * | nn | ) |
| NetworkFactory::~NetworkFactory | ( | void | ) |
| void NetworkFactory::createLayer | ( | float | weight, |
| int | dirs, | ||
| int | scales, | ||
| QString | layerName, | ||
| int | layerType | ||
| ) |
Create network layer.
| void NetworkFactory::tmpltInputFeaturePlane | ( | QString * | fpName, |
| QString * | fileName, | ||
| QString * | taskFileName, | ||
| float | min_activation, | ||
| float | max_activation, | ||
| bool | scale, | ||
| bool | visible, | ||
| bool | isST | ||
| ) |
Construct input feature planes.
| void NetworkFactory::tmpltInputLearningFeaturePlane | ( | QString * | fpName, |
| QString * | fileName, | ||
| QString * | taskFileName, | ||
| float | min_activation, | ||
| float | max_activation, | ||
| bool | scale, | ||
| bool | visible, | ||
| bool | isST, | ||
| int | levels | ||
| ) |
| void NetworkFactory::tmpltInputScales | ( | QString * | fpName, |
| QString * | inputBaseName, | ||
| int | w, | ||
| int | h, | ||
| int | scales, | ||
| int | neuronType, | ||
| float | nParam1, | ||
| float | nParam2, | ||
| float | wta_theta, | ||
| float | min_activation, | ||
| float | max_activation, | ||
| bool | scale, | ||
| bool | visible, | ||
| bool | isWTA | ||
| ) |
Construct scaled input feature planes.
| void NetworkFactory::tmpltLGN | ( | QString * | fpName, |
| QString * | inputBaseName, | ||
| int | w, | ||
| int | h, | ||
| int | scales, | ||
| int | neuronType, | ||
| float | nParam1, | ||
| float | nParam2, | ||
| float | wta_theta, | ||
| float | min_activation, | ||
| float | max_activation, | ||
| bool | scale, | ||
| bool | visible, | ||
| bool | isWTA | ||
| ) |
Construct LGN feature planes - i.e. center-surround at the given number of scales.
| void NetworkFactory::tmpltMST_R | ( | QString * | fpName, |
| QString * | inputBaseName, | ||
| int | w, | ||
| int | h, | ||
| int | scales, | ||
| int | angles, | ||
| int | neuronType, | ||
| float | nParam1, | ||
| float | nParam2, | ||
| float | wta_theta, | ||
| float | min_activation, | ||
| float | max_activation, | ||
| bool | scale, | ||
| bool | visible, | ||
| bool | isWTA | ||
| ) |
Construct MST motion rotation feature planes.
| void NetworkFactory::tmpltMST_T | ( | QString * | fpName, |
| QString * | inputBaseName, | ||
| int | w, | ||
| int | h, | ||
| int | scales, | ||
| int | angles, | ||
| int | neuronType, | ||
| float | nParam1, | ||
| float | nParam2, | ||
| float | wta_theta, | ||
| float | min_activation, | ||
| float | max_activation, | ||
| bool | scale, | ||
| bool | visible, | ||
| bool | isWTA | ||
| ) |
Construct MST motion translation feature planes.
| void NetworkFactory::tmpltMT_R | ( | QString * | fpName, |
| QString * | inputBaseName, | ||
| int | w, | ||
| int | h, | ||
| int | scales, | ||
| int | angles, | ||
| int | neuronType, | ||
| float | nParam1, | ||
| float | nParam2, | ||
| float | wta_theta, | ||
| float | min_activation, | ||
| float | max_activation, | ||
| bool | scale, | ||
| bool | visible, | ||
| bool | isWTA | ||
| ) |
Construct MT motion rotation feature planes.
| void NetworkFactory::tmpltMT_T | ( | QString * | fpName, |
| QString * | inputBaseName, | ||
| int | w, | ||
| int | h, | ||
| int | scales, | ||
| int | angles, | ||
| int | neuronType, | ||
| float | nParam1, | ||
| float | nParam2, | ||
| float | wta_theta, | ||
| float | min_activation, | ||
| float | max_activation, | ||
| bool | scale, | ||
| bool | visible, | ||
| bool | isWTA | ||
| ) |
Construct MT motion translation feature planes.
| void NetworkFactory::tmpltMultiInputFeaturePlane | ( | QString * | fpName, |
| QString * | fileName, | ||
| QString * | taskFileName, | ||
| float | min_activation, | ||
| float | max_activation, | ||
| bool | scale, | ||
| bool | visible, | ||
| bool | isWTA | ||
| ) |
Construct motion input feature plane.
| void NetworkFactory::tmpltSTSOMLayer | ( | QString * | fpName, |
| QString * | inputBaseName, | ||
| int | w, | ||
| int | h, | ||
| int | scales, | ||
| int | angles, | ||
| int | neuronType, | ||
| float | nParam1, | ||
| float | nParam2, | ||
| float | wta_theta, | ||
| float | min_activation, | ||
| float | max_activation, | ||
| bool | scale, | ||
| bool | visible, | ||
| bool | isWTA, | ||
| bool | learning | ||
| ) |
Construct ST SOM FPs.
| void NetworkFactory::tmpltV1Edges | ( | QString * | fpName, |
| QString * | inputBaseName, | ||
| int | w, | ||
| int | h, | ||
| int | scales, | ||
| int | angles, | ||
| int | neuronType, | ||
| float | nParam1, | ||
| float | nParam2, | ||
| float | wta_theta, | ||
| float | min_activation, | ||
| float | max_activation, | ||
| bool | scale, | ||
| bool | visible, | ||
| bool | isWTA | ||
| ) |
Construct V1 edge feature planes - i.e. edge detectors at the given number of scales and orientations.
| void NetworkFactory::tmpltV1Motion | ( | QString * | fpName, |
| QString * | inputBaseName, | ||
| int | w, | ||
| int | h, | ||
| int | scales, | ||
| int | angles, | ||
| int | neuronType, | ||
| float | nParam1, | ||
| float | nParam2, | ||
| float | wta_theta, | ||
| float | min_activation, | ||
| float | max_activation, | ||
| bool | scale, | ||
| bool | visible, | ||
| bool | isWTA | ||
| ) |
Construct V1 motion feature planes - i.e. edge detectors at the given number of scales and directions.
| void NetworkFactory::tmpltV2Circle | ( | QString * | fpName, |
| QString * | inputBaseName, | ||
| int | w, | ||
| int | h, | ||
| int | scales, | ||
| int | angles, | ||
| int | neuronType, | ||
| float | nParam1, | ||
| float | nParam2, | ||
| float | wta_theta, | ||
| float | min_activation, | ||
| float | max_activation, | ||
| bool | scale, | ||
| bool | visible, | ||
| bool | isWTA | ||
| ) |
Construct V2 cicles feature planes - use 4 filters 3x the size of the edge detectors.
| void NetworkFactory::tmpltV2EndStopped | ( | QString * | fpName, |
| QString * | inputBaseName, | ||
| int | w, | ||
| int | h, | ||
| int | scales, | ||
| int | angles, | ||
| int | neuronType, | ||
| float | nParam1, | ||
| float | nParam2, | ||
| float | wta_theta, | ||
| float | min_activation, | ||
| float | max_activation, | ||
| bool | scale, | ||
| bool | visible, | ||
| bool | isWTA | ||
| ) |
Construct V2 end stopped feature planes - use filters 3x the size of the edge detectors, at 90 degrees.
| void NetworkFactory::tmpltV2Plus | ( | QString * | fpName, |
| QString * | inputBaseName, | ||
| int | w, | ||
| int | h, | ||
| int | scales, | ||
| int | neuronType, | ||
| float | nParam1, | ||
| float | nParam2, | ||
| float | wta_theta, | ||
| float | min_activation, | ||
| float | max_activation, | ||
| bool | scale, | ||
| bool | visible, | ||
| bool | isWTA | ||
| ) |
Construct V2 PLUS detector.
| void NetworkFactory::tmpltV2X | ( | QString * | fpName, |
| QString * | inputBaseName, | ||
| int | w, | ||
| int | h, | ||
| int | scales, | ||
| int | neuronType, | ||
| float | nParam1, | ||
| float | nParam2, | ||
| float | wta_theta, | ||
| float | min_activation, | ||
| float | max_activation, | ||
| bool | scale, | ||
| bool | visible, | ||
| bool | isWTA | ||
| ) |
Construct V2 X detector.
1.7.5.1