TarzaNN
TarzaNN neural network simulator
|
#include <Dataset.h>
Public Member Functions | |
Dataset (char *basefilename) | |
virtual | ~Dataset () |
virtual OutputImage * | getImage (int index, OutputImage **list, int LorR=0)=0 |
virtual Matrix * | getDesiredOutcome (int index)=0 |
virtual int | getRandomIndex () |
void | setMaxTestSteps (int mTS) |
Max number of manipulations during testing. | |
int | getMaxTestSteps () |
Max number of manipulations during testing. | |
void | setMaxSteps (int mS) |
How many images to generate based on the same stimulus. | |
void | setInvarianceLevel (int levels) |
How many images to generate based on the same stimulus. | |
int | getInvarianceLevel () |
int | getMaxSteps () |
How many images to generate based on the same stimulus. | |
bool | isSameAsLast () |
Protected Attributes | |
int | count |
int | maxTestSteps |
Max number of manipulations during testing. | |
int | maxSteps |
How many images to generate based on the same stimulus. | |
int | currentStep |
counter [0-maxSteps) | |
bool | sameAsLast |
Is same category as last stimulus. | |
int | invarianceLevel |
Level of learning layer - determines level of invariance. |
Superclass for learning datasets. A dataset provides images and the associated desired network output for supervised learning.
Dataset::Dataset | ( | char * | basefilename | ) |
Constructor. Base file name for input images
Dataset::~Dataset | ( | ) | [virtual] |
virtual Matrix* Dataset::getDesiredOutcome | ( | int | index | ) | [pure virtual] |
Get category for specific image
Implemented in NORB_Dataset, Caucasian_Dataset, COIL100_Dataset, SOM_GeomDataset, Greeble_Dataset, SOM_Dataset, Faces_Dataset, Rooz_Dataset, Rooz_DatasetOR2, VanRullen_Dataset, Rooz_Dataset5, and Rooz_Dataset2.
virtual OutputImage* Dataset::getImage | ( | int | index, |
OutputImage ** | list, | ||
int | LorR = 0 |
||
) | [pure virtual] |
Get specific image, Left or Right is 0 or 1
Implemented in NORB_Dataset, Caucasian_Dataset, COIL100_Dataset, SOM_GeomDataset, Greeble_Dataset, SOM_Dataset, Faces_Dataset, Rooz_Dataset, Rooz_DatasetOR2, VanRullen_Dataset, Rooz_Dataset5, and Rooz_Dataset2.
int Dataset::getInvarianceLevel | ( | ) | [inline] |
int Dataset::getMaxSteps | ( | ) | [inline] |
How many images to generate based on the same stimulus.
int Dataset::getMaxTestSteps | ( | ) | [inline] |
Max number of manipulations during testing.
int Dataset::getRandomIndex | ( | ) | [virtual] |
Get random index within legal range [0, count)
Reimplemented in Caucasian_Dataset, COIL100_Dataset, SOM_GeomDataset, and SOM_Dataset.
bool Dataset::isSameAsLast | ( | ) | [inline] |
void Dataset::setInvarianceLevel | ( | int | levels | ) | [inline] |
How many images to generate based on the same stimulus.
void Dataset::setMaxSteps | ( | int | mS | ) | [inline] |
How many images to generate based on the same stimulus.
void Dataset::setMaxTestSteps | ( | int | mTS | ) | [inline] |
Max number of manipulations during testing.
int Dataset::count [protected] |
int Dataset::currentStep [protected] |
counter [0-maxSteps)
int Dataset::invarianceLevel [protected] |
Level of learning layer - determines level of invariance.
int Dataset::maxSteps [protected] |
How many images to generate based on the same stimulus.
int Dataset::maxTestSteps [protected] |
Max number of manipulations during testing.
bool Dataset::sameAsLast [protected] |
Is same category as last stimulus.