TarzaNN
TarzaNN neural network simulator
Public Member Functions | Protected Attributes
Dataset Class Reference

#include <Dataset.h>

Inheritance diagram for Dataset:
Caucasian_Dataset COIL100_Dataset Faces_Dataset Greeble_Dataset NORB_Dataset Rooz_Dataset Rooz_Dataset2 Rooz_Dataset5 Rooz_DatasetOR2 SOM_Dataset SOM_GeomDataset VanRullen_Dataset

List of all members.

Public Member Functions

 Dataset (char *basefilename)
virtual ~Dataset ()
virtual OutputImagegetImage (int index, OutputImage **list, int LorR=0)=0
virtual MatrixgetDesiredOutcome (int index)=0
virtual int getRandomIndex ()
void setMaxTestSteps (int mTS)
 Max number of manipulations during testing.
int getMaxTestSteps ()
 Max number of manipulations during testing.
void setMaxSteps (int mS)
 How many images to generate based on the same stimulus.
void setInvarianceLevel (int levels)
 How many images to generate based on the same stimulus.
int getInvarianceLevel ()
int getMaxSteps ()
 How many images to generate based on the same stimulus.
bool isSameAsLast ()

Protected Attributes

int count
int maxTestSteps
 Max number of manipulations during testing.
int maxSteps
 How many images to generate based on the same stimulus.
int currentStep
 counter [0-maxSteps)
bool sameAsLast
 Is same category as last stimulus.
int invarianceLevel
 Level of learning layer - determines level of invariance.

Detailed Description

Superclass for learning datasets. A dataset provides images and the associated desired network output for supervised learning.


Constructor & Destructor Documentation

Dataset::Dataset ( char *  basefilename)

Constructor. Base file name for input images

Dataset::~Dataset ( ) [virtual]

Member Function Documentation

virtual Matrix* Dataset::getDesiredOutcome ( int  index) [pure virtual]
virtual OutputImage* Dataset::getImage ( int  index,
OutputImage **  list,
int  LorR = 0 
) [pure virtual]
int Dataset::getInvarianceLevel ( ) [inline]
int Dataset::getMaxSteps ( ) [inline]

How many images to generate based on the same stimulus.

int Dataset::getMaxTestSteps ( ) [inline]

Max number of manipulations during testing.

int Dataset::getRandomIndex ( ) [virtual]

Get random index within legal range [0, count)

Reimplemented in Caucasian_Dataset, COIL100_Dataset, SOM_GeomDataset, and SOM_Dataset.

bool Dataset::isSameAsLast ( ) [inline]
void Dataset::setInvarianceLevel ( int  levels) [inline]

How many images to generate based on the same stimulus.

void Dataset::setMaxSteps ( int  mS) [inline]

How many images to generate based on the same stimulus.

void Dataset::setMaxTestSteps ( int  mTS) [inline]

Max number of manipulations during testing.


Member Data Documentation

int Dataset::count [protected]
int Dataset::currentStep [protected]

counter [0-maxSteps)

int Dataset::invarianceLevel [protected]

Level of learning layer - determines level of invariance.

int Dataset::maxSteps [protected]

How many images to generate based on the same stimulus.

int Dataset::maxTestSteps [protected]

Max number of manipulations during testing.

bool Dataset::sameAsLast [protected]

Is same category as last stimulus.


The documentation for this class was generated from the following files:
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Defines