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ABSTRACT
Lock-free shared data structures implement distributed ob-
jects without the use of mutual exclusion, thus providing
robustness and reliability. We present a new lock-free im-
plementation of singly-linked lists. We prove that the worst-
case amortized cost of the operations on our linked lists is
linear in the length of the list plus the contention, which
is better than in previous lock-free implementations of this
data structure. Our implementation uses backlinks that are
set when a node is deleted so that concurrent operations
visiting the deleted node can recover. To avoid performance
problems that would arise from traversing long chains of
backlink pointers, we introduce flag bits, which indicate that
a deletion of the next node is underway. We then give a lock-
free implementation of a skip list dictionary data structure
that uses the new linked list algorithms to implement in-
dividual levels. Our algorithms use the single-word C&S
synchronization primitive.

Categories and Subject Descriptors
E.1 [Data]: Data Structures—Distributed Data Struc-

tures; D.1.3 [Software]: Programming Techniques—Con-
current Programming ; F.2.2 [Theory of Computation]:
Analysis of Algorithms and Problem Complexity

General Terms
Algorithms, Performance, Design, Reliability, Theory

Keywords
distributed, fault-tolerant, lock-free, linked list, skip list,

efficient, analysis, amortized analysis.

1. INTRODUCTION
A common way to implement shared data structures in

distributed systems is to use mutual exclusion locks. How-
ever, this approach has a major weakness: when one pro-
cess holds a lock, no other processes can modify the locked
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part. Thus, a delay of one process can cause performance
degradation and priority inversion. When halting failures
can occur, this becomes particularly important, because the
entire system can stop making progress if one process fails.
By contrast, an implementation of a shared-memory object
is lock-free (or non-blocking) if a finite number of steps taken
by any process guarantees the completion of some operation.
If an implementation is lock-free, delays or failures of indi-
vidual processes do not block the progress of other processes
in the system. Lock-free data structures also have the po-
tential to have better performance, because several processes
are allowed to modify a data structure at the same time.

Herlihy [4, 5] introduced the first universal construc-
tions for designing lock-free data structures using the Com-
pare&Swap (C&S) synchronization primitive. Others fol-
lowed, but they suffer from several flaws, such as inefficiency,
low parallelism, excessive copying, and generally high over-
head, which often make them impractical. To achieve ade-
quate performance, original algorithms, specific to a partic-
ular data structure, are usually required.

Implementing linked lists efficiently is very important,
as they act as building blocks for many other data struc-
tures. We present a new lock-free implementation of a sorted
singly-linked list, which handles all dictionary operations
with a better average complexity than any prior implemen-
tation. Most recent implementations of lock-free linked lists
[3, 8] were evaluated only by doing experimental testing. We
believe that there exists a certain lack of theoretical devel-
opment in this area, and our work addresses this problem. A
skip list [12] is a dictionary data structure, that provides ran-
domized algorithms for searches, insertions, and deletions
that run in O(log n) expected time, where n is the number
of elements in the skip-list. The expectation is taken over
random choices made by the algorithms. We also give a lock-
free implementation of a skip list that is based on using our
linked list algorithms to maintain each level of the skip list.
Recently, other lock-free skip list designs have been given
independently of this work [2, 14, 15].

Our model is an asynchronous shared-memory distributed
system of several processes, where an arbitrary number of
process halting failures are allowed. Our algorithms use
atomic single-word C&S synchronization primitives. The
implementations that we present are linearizable [6].

Lock-free implementations allow individual operations to
take arbitrarily many steps, so one generally cannot evaluate
their worst-case cost. It is natural to analyze the average
cost of operations instead, because this evaluates the per-
formance of the system as a whole. To calculate the average



cost of operations in our linked list implementation, we use
an amortized analysis that relies on a fairly complex tech-
nique of billing part of the cost of each operation S to con-
current operations that slow S down by modifying the data
structure. The amortized cost of an operation S, denoted
t̂(S), is equal to the actual cost of S plus the total cost billed
to S from other operations minus the total cost billed from S

to other operations. We measure the cost of operations as a
function of the size of the list and the contention. The point
contention at time T is the number of processes running
concurrently at T . We define the contention of operation S,
denoted c(S), to be the maximum point contention during
the execution of S. We prove that t̂(S) ∈ O(n(S) + c(S)),
where n(S) is the number of elements in the list when S is
invoked and c(S) is the contention of S. The O(n(S)) term
comes from the cost of traversing the list, while the over-
head that comes from concurrency is bounded by O(c(S)).
It then follows that for any execution E, the average cost of
an operation in E is

t̄E ∈ O

„
P

S∈E
(n(S) + c(S))

mE

«

= O(n̄E + c̄E),

where the sum is taken over all operations S invoked during
E, mE is the total number of these operations. The values
n̄E and c̄E are the average number of elements in the list dur-
ing E and the average operation contention during E, which

are defined as follows: n̄E =
P

S∈E
n(S)

mE
; c̄E =

P

S∈E
c(S)

mE
.

The rest of the paper is organized as follows. In Section 2
we discuss related work. We give our implementation of
lock-free linked lists, including a sketch of the proof of cor-
rectness and analysis, in Section 3. We briefly present our
implementation of lock-free skip lists in Section 4.

2. RELATED WORK
The first implementation designed for lock-free linked lists

was presented by Valois [17]. The main idea of his approach
was to maintain auxiliary nodes in between normal nodes
of the list in order to resolve the problems that arise be-
cause of interference between concurrent operations. Also,
each node in his list had a backlink pointer which was set to
point to the predecessor when the node was deleted. These
backlinks were then used to backtrack through the list when
there was interference from a concurrent deletion. (A simi-
lar idea was used in an earlier, lock-based implementation of
linked lists by Pugh [11].) Another lock-free implementation
of linked lists was given by Harris [3]. His main idea was to
mark a node before deleting it in order to prevent concur-
rent operations from changing its right pointer. We look at
this implementation in detail in Section 3.1. Harris’s algo-
rithms are simpler than Valois’s and his experimental results
show that generally they also perform better. Yet another
implementation of a lock-free linked list was proposed by
Michael [8]. He used Harris’s design to implement the un-
derlying data structure, but his algorithms, unlike Harris’s,
were compatible with efficient memory management tech-
niques, such as IBM freelists [7, 16] and the safe memory
reclamation method [9].

Our linked lists are built combining the techniques of
marking nodes [3] and using backlink pointers [11, 17],
and also new ideas, such as the flag bits described in Sec-
tion 3.1, which are introduced to improve the worst-case per-
formance. We show that for any execution E, the average

cost of an operation in the execution is O(n̄E + c̄E), where
n̄E and c̄E were defined in the introduction. To compare,
the average cost per operation in Valois’s implementation
can be Ω(mE), where mE is the total number of operations
invoked during E. This is possible even when n̄E and c̄E are
O(1) [17]. It is not hard to see that n̄E + c̄E ≤ mE (because
mE includes both completed operations and operations that
are currently in progress), and the difference can be quite
significant. As we show in Section 3.1, the average cost
of operations in Harris’s implementation can be Ω(n̄E c̄E),
which is also strictly worse than in our implementation.

Pugh’s skip list data structure, originally designed for
sequential accesses [12], is a natural candidate for concur-
rent dictionary implementations, since it has good expected
performance without requiring any explicit, centralized bal-
ancing. Lock-based concurrent implementations have been
given by Pugh [11] and by Lotan and Shavit [13]. Valois
claimed that his lock-free linked list can easily be used to
obtain a lock-free skip lists [17], but it is not clear how: for
example, a process traversing his linked list must maintain
a collection of pointers called a cursor, and it is difficult to
do so when one descends through the levels of a skip list.

Sundell and Tsigas recently gave the first lock-free imple-
mentation of a skip list [14]. Their implementation supports
the Insert, Update and DeleteMin operations. They
later extended it to implement the full range of dictionary
operations [15]. Another recent implementation of lock-free
skip lists using single-word C&S’s was presented by Fraser
[2]. Although both of these designs were done independently
of ours and of each other, there are some similarities between
the three resulting skip list algorithms. All use the marking
technique [3] to implement deletions on the individual levels
of the skip list. Fraser’s algorithms use Harris’s design style
where an operation restarts if it detects interference from
a concurrent operation. Sundell and Tsigas’s design allows
processes to overcome the interference in some cases by us-
ing backlink pointers [11, 17]. Our design employs backlink
pointers and flag bits in order to ensure that processes can
always recover efficiently from such interference. All im-
plementations use helping (in different ways) to complete
deletions that could block the progress of other operations.
Sundell and Tsigas incorporate a reference counting scheme
to handle memory management.

Fraser gives other skip list designs that use more powerful
primitives, such as multi-word C&S and software transac-
tional memory [2]. Experimental results on lock-free linked
lists [3, 8] and skip lists [2, 14, 15] suggest that they can be
a practical alternative to lock-based implementations.

3. LINKED LISTS
We now present our singly-linked list implementation.

Our algorithms use the C&S primitive, which atomically
executes the following code.
C&S (Word* address, Word old val, Word new val) : Word
1 value = ∗address
2 if (value == old val)
3 ∗address = new val
4 return value

3.1 Linked List Design
The basic problem in designing a lock-free linked list is

that when a process is deleting a node X by performing a
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Figure 1: Harris’s two-step deletion of a node.
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Figure 2: Three-step deletion of a node used in our implementation.

C&S on X’s predecessor, there must be a guarantee that
X’s right pointer is not changed by a concurrent operation.
Otherwise, incorrect executions can be constructed (see [17]
or [3]). One of the ways to deal with this issue was given
by Harris [3]. Our linked list implementation uses a simi-
lar technique, so we will look at Harris’s implementation in
more detail.

Harris replaced the right pointer of each node with a com-
posite field, which we will call a successor field. The succes-
sor field consists of a right pointer and a mark bit. 1 When
a process needs to change the right pointer of a node, it ap-
plies a C&S’s to the successor field of that node. A mark
bit acts as a toggle that is used to control when the right
pointer of the node can be changed. Normally, the mark bit
is 0. To delete a node B, a process uses two C&S’s: the
first marks B’s successor field by setting its mark bit to 1,
and the second removes B from the list, as illustrated in
Figure 1, where marked successor fields are crossed. A node
is logically deleted after the first step, and physically deleted
after the second step. All of the C&S’s performed by the
algorithms modify only unmarked successor fields. There-
fore, once the successor field of a node is marked, it never
changes.

Harris’s approach, however, has certain performance-
related problems. Consider two processes P1 and P2 per-
forming concurrent operations: P1 attempts to insert a new
node after node X, and P2 attempts to delete node X. Sup-
pose that, just before P1 is about to execute a C&S, P2

marks node X, and so P1’s C&S fails. When this happens,
Harris’s algorithms require P1 to restart from the beginning
of the list, which can lead to poor performance. Consider
an execution E in a system of q processes. First insert n

keys into the list. Then make one process Pq repeatedly
delete the last node of the list, while the rest of the processes
P1, . . . , Pq−1 attempt to insert new nodes at the end of the
list. In each round of the execution, Pq marks a node right
after processes P1, . . . , Pq−1 have located the correct inser-
tion position, but before any of them perform a C&S. Each
time P1, . . . , Pq−1 attempt to insert the keys at the end of the
list, they have to search through the whole list to locate the
appropriate insertion position, and therefore the total work

1In many modern architectures, a 32-bit word that stores a
pointer has two unused bits. One of those can be used to
store the mark bit and the other can be used to store the
flag bit that we introduce later.

done by the system is Ω(q · (n+(n−1)+ . . .+1)) = Ω(qn2).
If we make n > q, then the average cost of an operation in
this execution is Ω(qn) = Ω(n̄E c̄E). (The variables n̄E and
c̄E were defined in the introduction.)

Our implementation achieves better worst-case perfor-
mance by making processes recover from failures instead of
restarting. We augment each node of our data structure
with an additional pointer field called backlink. When a
node X gets deleted, its backlink is set to X’s predecessor.
If some process P then fails a C&S because X is marked,
P follows X’s backlink to X’s predecessor. If the predeces-
sor is also marked, P follows the predecessor’s backlink, and
so on, until it reaches an unmarked node U . Then P re-
sumes its operation from U rather than from the beginning
of the list. The sequence of backlinks that P traverses before
reaching U is called a chain of backlinks. The introduction
of backlinks alone, however, does not guarantee the desired
operation complexity. The problem is that long chains of
backlinks can be traversed by the same process many times.
This happens when these chains grow towards the right, i.e.
when backlink pointers are set to marked nodes, and thus
nodes are linked to the right end of the chains. We eliminate
this possibility by introducing flag bits.

The flag bit can be thought of as a warning that a dele-
tion of the next node is in progress. Like the mark bit, the
flag bit is part of the successor field, and is initially set to 0.
When a node is flagged (i.e. when its flag bit is set to 1), its
successor field is fixed and cannot be marked or otherwise
changed until the flag is removed. Also, a marked node can
never get flagged, and therefore no node can be both flagged
and marked. Before marking a node B, a process flags the
predecessor node A, thus ensuring that when B’s backlink is
set to point to A, it will not be pointing to a marked node.
Figure 2 illustrates how deletions are performed in our data
structure. Shaded boxes denote flagged successor fields, and
crossed boxes denote marked successor fields. The deletion
of node B consists of three steps. (1) Flagging the predeces-
sor node A by applying C&S to its successor field (Figure 2,
Step 1). (2) Setting B’s backlink to point to its predecessor
A and then marking B by applying C&S to its successor
field (Figure 2, Step 2). (3) Performing a physical deletion
of node B and removing A’s flag by applying C&S to A’s
successor field (Figure 2, Step 3).

To preserve the lock-freedom property, we allow processes
to help one another with deletions. For example, if a process



Search (Key k) : Node
// Searches for a node with the supplied key.
1 (curr node , next node) = SearchFrom(k, head)
2 if (curr node.key == k)
3 return curr node
4 else

5 return NO_SUCH_KEY

SearchFrom (Key k, Node *curr node) : (Node, Node)
// Finds two consecutive nodes n1 and n2
// such that n1.key ≤ k < n2.key.
1 next node = curr node.right
2 while (next node.key ≤ k)

// Ensure that either next node is unmarked,
// or both curr node and next node are
// marked and curr node was marked earlier.

3 while (next node.mark == 1 and

(curr node.mark == 0 or

curr node.right 6= next node))
4 if (curr node.right == next node)
5 HelpMarked(curr node, next node)
6 next node = curr node.right
7 if (next node.key ≤ k)
8 curr node = next node
9 next node = curr node.right

10 return (curr node, next node)

HelpMarked (Node *prev node, Node *del node)
// Attempts to physically delete the marked
// node del node and unflag prev node.
1 next node = del node.right
2 c&s(prev node.succ, (del node , 0, 1) , ( next node , 0, 0) )

Figure 3: Search, SearchFrom, and HelpMarked.

cannot complete its operation because of a flagged node, it
will try to complete the corresponding deletion, thus remov-
ing the flag, and then continue with its own operation.

3.2 Algorithms
The nodes in our linked list are ordered by their keys,

and for simplicity our data structure does not allow users
to insert duplicate keys. Each node has the following fields:
key, element, backlink, and successor. The successor field is
denoted succ in our pseudocode, and it is composed of three
parts: a right pointer, a mark bit, and a flag bit. So, for
each node n, n.succ = (n.right, n.mark, n.flag). The head
node and the tail node of the list contain dummy keys −∞

and +∞, and are referenced by the shared variables head

and tail respectively. The pseudocode for our algorithms is
shown in Figures 3 to 5. The routines Search, Insert, and
Delete implement the corresponding dictionary operations.

The SearchFrom routine is used to perform searches in
our data structure. It traverses the list starting from the
specified node, and returns pointers to two nodes n1 and
n2, that satisfy the following condition at some time dur-
ing the execution of SearchFrom: n1.right = n2 and
n1.key ≤ k < n2.key. SearchFrom also deletes any
marked nodes that it sees by calling the HelpMarked rou-
tine (line 5). We could also write a SearchFrom2 routine,
identical to the SearchFrom, except that “≤” in lines 2
and 7 would be replaced with “<”. In our pseudocode, we

Delete (Key k) : Node
// Attempts to delete a node with the supplied key.
1 (prev node , del node) = SearchFrom(k − ε, head)
2 if (del node .key 6= k) // k is not found in the list.
3 return NO_SUCH_KEY

4 (prev node , result ) = TryFlag(prev node, del node)
5 if (prev node 6= null)
6 HelpFlagged(prev node, del node)
7 if ( result == false)
8 return NO_SUCH_KEY

9 return del node

HelpFlagged (Node *prev node, Node *del node)
// Attempts to mark and physically delete node del node,
// which is the successor of the flagged node prev node.
1 del node . backlink = prev node
2 if (del node .mark == 0)
3 TryMark(del node)
4 HelpMarked(prev node, del node)

TryMark (Node del node)
// Attempts to mark the node del node.
1 repeat

2 next node = del node.right
3 result = c&s(del node.succ, (next node , 0, 0) ,

(next node , 1, 0) )
4 if ( result == (∗, 0, 1)) // failure due to flagging
5 HelpFlagged(del node, result.right )
6 until (del node .mark == 1)

Figure 4: Delete, HelpFlagged, and TryMark.

use SearchFrom(k − ε, n) to denote SearchFrom2(k, n).
The two nodes that SearchFrom(k − ε, head) returns sat-
isfy n1.key < k ≤ n2.key (and n1.right = n2).

The Search(k) routine simply uses SearchFrom to find
the node with key k in the list, if it exists. The Insert

routine starts by calling SearchFrom to find where to in-
sert the new key. Then it verifies that the new key is not a
duplicate, creates a new node, and enters the loop in lines
5–22, from which it can exit only if it successfully inserts the
new node or another process inserts a node with the same
key (lines 20–22). In each iteration of the loop, it attempts
to insert the new node between prev node and next node by
performing a C&S in line 11. If the C&S fails, Insert de-
tects the reason, recovers from the failure, and enters the
next iteration. The reason for the failure can only be the
change of prev node’s successor field. There are several pos-
sible ways in which this successor field can change: it can
get redirected to another node, flagged, marked, or any two
of the above, except that it cannot be both marked and
flagged. If prev node got flagged, it means that another pro-
cess was performing a deletion of the successor node. In this
case Insert calls the HelpFlagged routine (lines 15-16),
which helps to complete that deletion and remove the flag
from prev node. If prev node got marked, Insert traverses
the backlinks until it finds an unmarked node and then sets
prev node to point to it (lines 17-18). In any case, in line
19 Insert invokes SearchFrom starting from prev node to
find the correct location for the insertion in the updated list,
and updates its prev node and next node pointers. Then In-

sert enters the next iteration of the loop.



TryFlag (Node *prev node, Node *target node) : (Node, Boolean)
// Attempts to flag the predecessor of target node. Prev node is the last node known to be the predecessor.
1 while (true)
2 if (prev node.succ == (target node , 0, 1) ) // Predecessor is already flagged. Report
3 return (prev node, false) // the failure, return a pointer to prev node.
4 result = c&s(prev node.succ, (target node , 0, 0) , ( target node , 0, 1) ) // Flagging attempt
5 if ( result == (target node , 0, 0) ) // Successful flagging. Report the success,
6 return (prev node, true) // return a pointer to prev node.
7 if ( result == (target node , 0, 1) ) // Failure due to flagging by a concurrent operation.
8 return (prev node, false) // Report the failure, return a pointer to prev node.
9 while (prev node.mark == 1) // Possibly a failure due to marking. Traverse

10 prev node = prev node.backlink // a chain of backlinks to reach an unmarked node.
11 (prev node , del node) = SearchFrom(target node.key − ε, prev node)
12 if (del node 6= target node) // target node got deleted.
13 return (null, false) // Report the failure, return no pointer.

Insert (Key k, Element e) : Node
// Attempts to insert a new node with the supplied key.
1 (prev node , next node) = SearchFrom(k, head) // prev node.key ≤ k < next node.key

2 if (prev node.key == k)
3 return DUPLICATE_KEY

4 newNode = new Node(key = k, element = e)
5 while (true)
6 prev succ = prev node.succ
7 if (prev succ . flag == 1) // If the predecessor is flagged, help
8 HelpFlagged(prev node, prev succ.right) // the corresponding deletion to complete.
9 else

10 newNode.succ = (next node, 0, 0)
11 result = c&s(prev node.succ, (next node , 0, 0) , (newNode, 0, 0)) // Insertion attempt.
12 if ( result == (next node, 0, 0)) // Successful insertion.
13 return newNode
14 else // Failure.
15 if ( result == (∗, 0, 1)) // Failure due to flagging.
16 HelpFlagged(prev node, result.right) // Help complete the corresponding deletion.
17 while (prev node.mark == 1) // Possibly a failure due to marking. Traverse a
18 prev node = prev node.back link // chain of backlinks to reach an unmarked node.
19 (prev node , next node) = SearchFrom(k, prev node) // prev node.key ≤ k < next node.key

20 if (prev node.key == k)
21 free newNode
22 return DUPLICATE_KEY

Figure 5: TryFlagand Insert.

The Delete routine performs a three-step deletion of the
node, as discussed in Section 3.1. Delete starts by calling
SearchFrom, and then calls TryFlag to perform the first
deletion step (flagging the predecessor). TryFlag repeat-
edly attempts to flag del node’s predecessor, until the flag is
placed or del node gets deleted. TryFlag returns two val-
ues: a node pointer prev node and a boolean result value.
There can be three ways the TryFlag routine can return.
If TryFlag itself flags del node’s predecessor, it returns a
pointer to the predecessor and result = true. If TryFlag

detects that another process flagged del node’s predecessor
(which means that another process is performing a dele-
tion of del node), it returns a pointer to the predecessor
and result = false. If TryFlag detects that del node got
deleted from the list, it returns null and result = false. If
prev node returned by TryFlag is not null, Delete pro-
ceeds by calling the HelpFlagged routine, which performs
the second and the third deletion steps by calling TryMark

and HelpMarked. If TryFlag also returned result =

true, Delete returns a pointer to the deleted node in line 9
(i.e. reports success). If result = false, it means that either
del node got deleted, or another process flagged del node’s
predecessor (and is going to report success). In this case
Delete returns NO_SUCH_KEY.

3.3 Correctness
We will now present a sketch of the proof of correctness.

The complete proof is available in [1]. We first prove several
invariants. To state these invariants we classify the nodes
into three categories as follows.

Def 1. A node is regular if it is was inserted into the
list, and it is unmarked.

Def 2. A node is logically deleted if it is marked and
has a regular node linked to it, i.e. n is logically deleted if
n.mark = 1 and there exists a regular node m such that
m.right = n.



Def 3. A node is physically deleted if it is marked and
there is no regular node linked to it.

At any time, each node that was ever inserted into the
list fits into exactly one of these three categories. We prove
that the following invariants apply to all regular, logically
deleted, and physically deleted nodes of the list.

Inv 1. Keys are strictly sorted: for any two nodes n1,
n2, if n1.right = n2, then n1.key < n2.key.

Inv 2. The union of regular and logically deleted nodes
forms a linked list structure, i.e. if n is a regular or a logically
deleted node and n 6= head, then there is exactly one regular
or logically deleted node m such that m.right = n. Node
m is called n’s predecessor. If n 6= tail, then node n.right

is regular or logically deleted, and it is called n’s successor.
The head node has no predecessor, and the tail node has no
successor.

Inv 3. For any logically deleted node, its predecessor is
flagged (and unmarked), and its successor is not marked, i.e.
if n is logically deleted, and m is a node of the list such that
m is not physically deleted and m.right = n, then m.succ =
(n, 0, 1) and (n.right).mark = 0.

Inv 4. For any logically deleted node, its backlink is
pointing to its predecessor, i.e if n is logically deleted, and
m is a node of the list such that m is not physically deleted
and m.right = n, then n.backlink = m.

Inv 5. No node can be both marked and flagged at the
same time.

It follows from Inv 3, that if two marked nodes are adja-
cent, then at least one of them is physically deleted.

The proof of the invariants goes as follows. Inv 5 is triv-
ial. Inv 1–3 are proved by induction on the number of suc-
cessful C&S’s. This proof is lengthy, but fairly straight-
forward. After this we use the proved invariants to show
that once a node’s backlink is set, it never changes. This
fact is used to prove Inv 4 by induction on the number
of successful C&S’s. We then prove two important prop-
erties of our algorithms. First, we show that deletions in
our data structure work as intended, i.e. they are performed
in three steps: first flagging the predecessor, then mark-
ing the node, and finally physically deleting the node. The
second proposition states SearchFrom postconditions: if
SearchFrom(k, n) returns (n1, n2) and if n.key ≤ k, then
(1) n1.key ≤ k < n2.key, (2) there exists a time during
the execution of SearchFrom when n1.right = n2, and
(3) if n is unmarked at some time T ′ before SearchFrom

is invoked, then there exists time T between T ′ and the
moment SearchFrom returns, when n1 is unmarked and
n1.right = n2.

Finally, we use all these facts to prove the correctness of
our implementation. At any time, we say that the set of
elements currently stored in the dictionary is the set of the
elements contained in the regular nodes, and we show that
all operations can be linearized so that their return values
are consistent with this definition. Specifically,

• The searches are linearized at time T specified by post-
condition (3) of the SearchFrom routine they invoke.
If the search is successful, the node it returns is a reg-
ular node at time T ; if the search is unsuccessful there
are no regular nodes with key k in the list at T .

• Each successful insertion is linearized when it success-
fully performs a C&S (line 11 in the Insert routine)
that inserts the node created in line 4. Each unsuc-
cessful insertion is linearized at time T when the third
postcondition holds for the last SearchFrom routine
it invokes (line 1 or 19 in Insert routine). At that
time there is a regular node with the same key in the
list.

• We linearize a successful deletion when the node
it returns becomes marked (and therefore logically
deleted). Unsuccessful deletions are linearized as fol-
lows. If the SearchFrom called by Delete in line 2
found no node with key k, linearize the deletion at the
time T specified by postcondition (3) for that Search-

From. If the TryFlag called by Delete returned in
line 3, 8, or 13 (which means that another process was
executing a concurrent deletion of the same node, and
performed at least the first step of the deletion — flag-
ging the predecessor), then we linearize the deletion
immediately after del node gets marked. Note that
lines 5–6 of Delete ensure that del node gets marked
(and then physically deleted) before Delete returns
in line 8, so this linearization is valid. Also note that
the concurrent deletion that flagged del node’s prede-
cessor reports success when it returns.

3.4 Performance Analysis
Here we present a sketch of the amortized analysis of our

linked list data structure. We start by explaining our billing
scheme, first giving a general intuition behind it, and then
defining it formally using the mapping β in Def 4. We then
explain how we use this billing scheme to prove the bound
on the amortized cost of operations. The full version of our
amortized analysis is available in [1].

It is not hard to show that in order to calculate the cost of
our algorithms, it is only essential to calculate the number
of C&S attempts, the number of backlink pointer traversals
(line 10 in TryFlag and line 18 in Insert), and the num-
ber of next node and curr node pointer updates by searches
(lines 6 and 8 in SearchFrom respectively). Counting these
steps gives an accurate picture of the required time (up to
a constant factor), and therefore we ignore other steps in
our amortized analysis. When, later on, we talk about steps
taken by the processes, we mean one of these essential steps.

We classify the (essential) steps of each operation S into
three categories: successful C&S’s, necessary steps, and ex-
tra steps. The necessary steps are the (non-C&S) steps that
S normally has to perform in order to complete (e.g. in order
to complete a search for key k, S has to traverse all nodes
with keys smaller than k). Intuitively, the necessary steps
are the steps that an operation needs to perform even if it is
executing on a sequential linked list. By contrast, the extra
steps are the steps that S has to take because of interference
from other operations (e.g. when S fails a C&S because of
a change performed by a concurrent operation). The cost
of the necessary steps of S is called the necessary cost of S,
and the cost of the extra steps of S is called the extra cost
of S. In our analysis, we show that the necessary cost of S

is always O(n(S)) (n(S) and c(S) were defined in the intro-
duction), and we use a mapping to bill all of the extra cost
of S to successful C&S’s that are part of operations con-
current with S. We say that a C&S is part of operation S

if it is successful, and it logically belongs to that operation.



Specifically, each successful C&S that inserts a new node is
part of the corresponding successful insertion, and success-
ful C&S’s that flag, mark, and physically delete nodes are
part of the corresponding successful deletions. A (success-
ful) C&S that is part of a given operation is not necessarily
performed by the process that is executing this operation,
because processes help one another with deletions.

We define the amortized cost of a successful
C&S C, denoted t̂(C), to be (actual cost of C) +
(total cost billed to C). Note that the first term is 1.
We define the amortized cost of S, denoted t̂(S), to be
(actual cost of S) − (total cost billed from S to successful
C&S’s)+(total cost billed to successful C&S’s that are part
of S). The second term is the extra cost of S, so

t̂(S) = ((necessary cost of S) + (extra cost of S) +

(cost of successful C&S’s performed by S)) −

(extra cost of S) + (total cost billed to

successful C&S’s that are part of S)

= (necessary cost of S) + (cost of successful

C&S’s performed by S) + (total cost billed to

successful C&S’s that are part of S)

= (necessary cost of S) + (amortized cost of

successful C&S’s that are part of S).

We prove that the first term is O(n(S)) and that, for any
C&S C that is part of operation S, the total cost billed to
C is O(c(S)). Since at most three C&S’s can be part of
any given operation, we conclude that the second term is
O(c(S)). Therefore, t̂(S) = O(n(S) + c(S)). Note that here
the O(n(S)) term comes purely from the cost of the steps
that even a sequential algorithm needs to perform, while
the overhead that comes from concurrency is limited by an
additive term of O(c(S)). We now describe all of the steps
outlined above in more detail.

To define our billing scheme formally, we introduce a map-
ping function β, given below. This mapping also formally
defines the set of the extra steps and the set of the necessary
steps for every operation. Function β will map successful
C&S’s to themselves. All other steps mapped to themselves
are necessary steps. The remaining steps are extra steps.
The logic behind the design of this mapping function is that
each extra step is mapped to the successful C&S that per-
formed the change that causes this extra step to be taken.
For example, the step of traversing node n that was inserted
after S was invoked is mapped to the C&S that inserted n.
To make it easier to define β, we categorize C&S’s performed
by our algorithms into four types: (1) insertion C&S (line
11 in Insert), (2) flagging C&S (line 4 in TryFlag), (3)
marking C&S (line 3 in TryMark), and (4) physical dele-
tion C&S (line 2 in HelpMarked).

Def 4. Let Q be the set of essential steps in the entire
execution E. Function β maps Q to itself. If some operation
S performs step s ∈ Q, β maps this step either to itself,
or to a successful C&S that is part of another operation as
described below.

• C&S’s: Suppose a C&S C on the successor field of
node n was executed. If C is successful, then we map
it to itself. If C fails, and it is not of the fourth type, we
map it to the C&S that last modified n.succ. If C is of
the fourth type and it fails, we map it to the C&S that

physically deleted the node that C was trying to delete.
(We show that such a C&S had to be performed.)

• Backlink traversals: A backlink pointer traversal
from node n to node m is mapped to the C&S that
marked node n.

• Next node pointer updates: Suppose the update
changes next node from m to m′. If m is physically
deleted before the update, we map the update to the
C&S that physically deleted m. (Note that even though
this C&S could be performed by HelpMarked called
from this SearchFrom routine in line 5, it is part of
another operation.) Otherwise we map the update to
the C&S that inserted m′.

• Curr node pointer updates: Suppose the update sets
curr node pointer to node n. If n was inserted into the
list after operation S was invoked, then the update is
mapped to the C&S that inserted n. Otherwise, the
update is mapped to itself.

To prove our bound on the amortized cost of operations,
we need to show that the amortized cost of each C&S that is
part of an operation S, is O(c(S)). This is the most impor-
tant and the most technical part of our amortized analysis.
Below we briefly describe this proof.

There are four types of steps that Def 4 bills to successful
C&S’s. For each of them we prove that if a step of that type
performed by operation S′ is mapped by β to a (successful)
C&S C, then (1) no other steps of the same type performed
by S′ are mapped to C, and (2) C was performed during the
execution of S′. It then follows that no more than c(S) steps
of each type can be mapped to C, where S is the operation
C is part of. Proving (1) and (2) for next node updates is
fairly straightforward. For curr node pointer updates, we
first show that no operation can set curr node pointer (in
line 8 of a SearchFrom) to a given node more than once,
and then (1) and (2) follow. For backlink traversals, we show
that if operation S traverses a backlink from node n, then
n got marked during S, and S never traversed a backlink
from n before, which leads to (1) and (2). In this part of
the proof we rely on the fact that chains of backlinks never
grow towards the right (see Section 3.1). For unsuccessful
C&S’s, we prove two lemmas. The first one states that if C′

is an unsuccessful C&S of type four on the successor field
of node n performed by operation S′, then there exists a
time T during S′ when n.succ was such that C′ would have
succeeded, and S′ performed no C&S’s on n.succ between
T and C′. The second lemma states a similar, but slightly
weaker claim for the C&S’s of the first three types. Using
these two lemmas, we show that (1) and (2) hold for unsuc-
cessful C&S’s as well.

Since no more than c(S) steps of each type can be mapped
by β to a successful C&S that is part of S, it follows that
the amortized cost of a successful C&S is O(c(S)). Since
at most three successful C&S’s can be part of S, it follows
that the amortized cost of successful C&S’s that are part
of S is O(c(S)). To prove that the amortized cost of S is
O(n(S)+c(S)) we now only need to show that the total cost
of the steps of S that are not mapped by β to the successful
C&S’s (i.e. the necessary cost of S) is O(n(S)).

First, note that the only steps of S that are not mapped
to the successful C&S’s are the curr node pointer updates



in line 8 of SearchFrom routines called by S. Further-
more, by the definition of β such an update is mapped to
itself (and not to a successful C&S) only if the node n to
which the curr node pointer is set to by this update is in-
serted before the invocation of S. It is also not hard to show
that n must be unmarked at some moment during the exe-
cution of S, which means that n is a regular node when S

is invoked (since nodes never get unmarked). Also, as men-
tioned above, no operation can set the curr node pointer
(in line 8 of a SearchFrom routine) to a given node more
than once. Consequently, the total number of steps of S

that are not mapped to the successful C&S’s cannot be
greater than the number of regular nodes when S is invoked,
i.e. n(S). This concludes our amortized analysis, yielding
t̂(S) = O(n(S)) + O(c(S)) (where the O(n(S)) term comes
from the necessary cost of S, and the O(c(S)) term comes
from the concurrency overhead).

4. SKIP LISTS
In this section we briefly discuss our lock-free implemen-

tation of a skip list data structure and give a sketch of the
proof of correctness. The algorithms and the complete proof
of correctness are available in [1].

A skip list [12] is a sequential dictionary data structure, in
which searches, insertions, and deletions have an expected
cost of O(log(n)) (and worst-case cost of O(n)), where n

is the number of elements in the dictionary. The expecta-
tion is taken over the random numbers generated inside the
algorithms. Our lock-free skip list architecture has some
differences from Pugh’s original design to make it easier to
reuse our linked list algorithms. As shown in Figure 6, we
represent each key by a tower of nodes. A tower that has
H nodes in it is said to have height H . The height of each
tower is chosen randomly by coin flips. The bottom node of
a tower is called the root node, and it acts as a representa-
tive of the whole tower. The head tower and the tail tower
store dummy keys −∞ and +∞ respectively. Horizontally,
the nodes of the skip list are arranged in levels: the root
nodes are on level one, the nodes immediately above them
are on level two, and so on. Nodes of the same level form a
singly-linked list, sorted according to their keys.

In the original skip list design [12], Pugh uses a single
node with an array of H forward pointers to represent a
tower of height H . The difference between our architecture
and Pugh’s architecture is not very significant, but it makes
it easier to explain our algorithms in terms of the linked
list algorithms already described. For convenience, we use
the same terminology when we compare our skip list imple-
mentation with others [2, 15], even though they use Pugh’s
architecture.

Other recent lock-free skip list designs [2, 15] implement
individual levels using linked list algorithms that can exhibit
bad worst-case behaviour, as described in Section 3.1. (Fur-
thermore, although Sundell and Tsigas incorporate back-
links in their implementation, a backlink is not guaranteed
to be set when it is needed, and their backlink is useful on
a given level only if the tower it is pointing to is sufficiently
high.) Because of the randomization used by the algorithm,
it is unclear whether an adversary could exploit the worst-
case behaviour on individual levels to force the skip list as a
whole to experience bad worst-case behaviour. Our design
was driven by an effort to ensure that individual levels of
the skip list have good worst-case complexity by using our

new linked list algorithms, so that a tight analysis of the av-
erage expected complexity of the skip list operations would
be feasible. However, new difficulties arise when attempting
to do this, as explained in more detail below. Thus, the
problem of proving a good upper bound on the complexity
of a lock-free skip list implementation remains open.

In our data structure, a node Q that is not a node of the
head or tail tower has the following fields: key, backlink,
succ, down, and tower root. The first three fields are the
same as in our lock-free linked lists, down is a pointer to the
node one level lower than Q (or null if Q is a root node),
and tower root is a pointer to the root node of Q’s tower. If
Q is a root node, it also has an element field. Nodes of the
head tower do not have elements, backlinks or tower root
pointers, but each of them has an up pointer, pointing to
the node above. The top node of the head tower has its up
pointer set to itself. Nodes of the tail tower contain only the
key +∞. A pointer to the bottom node of the head tower
is referred to by a shared variable head.

We now give a high-level overview of our algorithms. An
insertion builds the tower from bottom to top, i.e. first it
inserts the root node, then, if necessary, the node at level
two, and so on. An insertion is linearized when the root
node is inserted, since after that moment, all the searches
are able to find the key. A deletion first deletes the root
node of the tower, and then deletes the rest of the nodes
of the tower from top to bottom. A deletion is linearized
when the root node gets marked. A tower whose root node
is marked is called superfluous; all the nodes of such a tower
are called superfluous as well.

Regardless of whether deletions delete the towers from top
to bottom, or from bottom to top, superfluous nodes can still
exist, because while a process P is constructing a tower Q,
Q’s root node can get marked by another process, and P

can add a new node to Q before it notices the marking. It is
possible to solve this problem by marking uninserted nodes if
Harris’s design is used to implement individual levels of the
skip list [2], but with our design this is not feasible because
of flags.

The searches in our skip list help deletions by physically
deleting superfluous nodes they encounter in order to avoid
traversing superfluous towers. Our decision to implement
searches this way was motivated by the observation that
if searches traverse superfluous towers without physically
deleting or marking their nodes, it is possible to construct
an execution E where the average cost of operations would
be Ω(mE) by forcing operations to repeatedly traverse a
chain of backlinks of length Ω(mE) on the lowest level of
the skip list (mE was defined in the Introduction). Sun-
dell and Tsigas [15] use a different method to deal with this
problem: their searches can enter superfluous towers via un-
marked nodes, but if a search detects a marked node in a
tower it is traversing, it marks all the nodes of this tower.
Subsequent searches physically delete these marked nodes if
they encounter them (assuming the main Delete operation
has not already done so), thus making numerous traversals
of the same chain of backlinks impossible.

Even though searches in our implementation delete super-
fluous nodes whenever they encounter them, and therefore
they cannot be forced so to traverse the same chain of back-
links repeatedly, there exist scenarios when an operation can
be forced to traverse backlinks of the nodes that were deleted
before the operation started (something that never happens
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Figure 6: Lock-free skip list design.

in our linked list implementation). These scenarios can only
be constructed by a very careful scheduling of processes tai-
lored for a given distribution of the heights of the towers.
Their existence, however, makes our correctness proofs quite
complicated, but more importantly, it is not clear what ef-
fect they may have on the worst-case performance of our
implementation.

The pseudocode for the skip list algorithms is available
in [1], and here we describe them only briefly. Each level
of the skip list can be viewed as a linked list. Therefore,
the routines that we use to operate on the individual lev-
els are similar to our linked list routines. The three ma-
jor routines that implement the dictionary operations are
Search SL, Insert SL, and Delete SL. The Search SL

routine calls SearchToLevel SL to determine if there is
a root node (and hence, a tower) with key k in the list.
SearchToLevel SL(k, v) is used to locate the nodes on
level v with keys closest to k. It traverses levels starting from
the top one, and each time it reaches a key larger than k,
it goes down one level. To traverse individual levels, it uses
the SearchRight routine, which is similar to the Search-

From in our linked list algorithms. The only difference is
that SearchRight deletes the superfluous nodes along its
way, performing all three deletion steps if necessary, whereas
SearchFrom physically deletes only those nodes that are
already logically deleted.

The Insert SL routine determines the height of the tower
it needs to insert by flipping a coin, and enters a loop where
it inserts the nodes of the tower one by one from bottom
to top. If a concurrent process inserts a root node with
the same key, Insert SL reports failure and returns. Each
complete iteration of the loop increases the height of the new
tower by one. Insert SL exits from that loop if it finishes
the construction of the new tower, or if the construction of
a new tower gets interrupted by a deletion: if Insert SL

notices that the root node got marked, it exits reporting
success. The Delete SL routine first deletes the root node
of the tower with the supplied key k, making the rest of

the nodes in the tower superfluous. It then calls Search-

ToLevel SL for k, which deletes these superfluous nodes
(from top to bottom).

We now briefly sketch the proof of correctness. The first
part of the proof is similar to the correctness proof for
the linked lists. We show that Inv 1–5 (see Section 3.3)
hold for each level of our skip list, and that nodes never
change levels. We also show that deletions of individual
nodes are performed in three steps (flag, mark, physical
deletion), and that the same postconditions that hold for
SearchFrom hold for SearchRight as well. These post-
conditions guarantee that if SearchRight starts from a
node n that is not superfluous at time T ′, then the node
m it ends in is not marked at T ′. However, m may be
superfluous at T ′, but we show that this can happen only
if SearchRight enters m by traversing backlinks, and in
this case m.key < n.key. The fact that SearchRight may
traverse superfluous nodes leads to the fact that Search-

ToLevel SL may enter marked nodes when it descends
from one level to the next (although scenarios where this
happens are fairly contrived). This is why an operation
can traverse backlinks of the nodes that were deleted be-
fore the operation started. As mentioned earlier, this is an
obstacle to applying the same kind of performance analy-
sis to skip lists, as we used for linked lists. After proving
some weaker postconditions for SearchToLevel SL and
Insert SL, we then show that our skip list has the correct
vertical structure within each tower, i.e. the nodes on differ-
ent levels that contain the same key form a linked list. Then
we prove the stronger SearchToLevel SL(k, v) postcon-
ditions: we show that the node n it ends in is unmarked,
and, if n.key = k, n is also not superfluous (at some time
during the search).

Finally, we say that the set of elements currently stored in
the dictionary is the set of the elements of the regular root
nodes, and we show that all operations can be linearized
consistently with this definition. We prove that our im-
plementation is lock-free by showing that the only way a



process’s operation can be delayed indefinitely is if other
processes continually perform successful C&S’s.

We also investigate the distribution of the heights of the
towers in our skip list. We call a tower full if its insertion
has finished without an interruption; otherwise we say that
a tower is incomplete. A non-deleted tower can be incom-
plete only if its insertion or its deletion is in progress, so the
number of incomplete towers at any time is bounded by the
point contention. The distribution of the heights of the full
towers may be a little different from the heights distribu-
tion in a sequential skip list, because higher towers are more
likely to be incomplete. However, we believe this would not
affect the expected running time significantly.

5. CONCLUSION
We have presented new algorithms implementing lock-free

linked lists. We proved that the average cost of operations
on our linked lists is linear in the length of the list plus
the contention, for any possible sequence of operations and
any possible scheduling. To perform our analysis we used
a billing technique that might be applicable to other dis-
tributed data structures. We showed that our linked list
algorithms can be used in a fairly modular way as the basis
for a lock-free implementation of skip lists.

We have not explicitly incorporated a memory manage-
ment technique, but a possible approach is to use Valois’s
reference counting method [10, 17], which is applicable to
both our linked lists and our skip lists, because there are no
cycles among the physically deleted nodes.

There are a number of directions for future work in this
area. It remains an open problem to get a good bound on the
average expected complexity of lock-free implementations of
a skip list (or, more generally, a dictionary data structure).
We think the implementation given here and the amortized
analysis technique may be useful in doing this. However
some difficulties remain. For example, an adversary might
choose to delete all of the tall towers that are used to tra-
verse the skip list quickly. Although an oblivious adversary
(who cannot see the outcomes of coin flips) cannot directly
know the heights of the towers, in a distributed application
it might indirectly get some information about them by see-
ing how many steps are required to do searches. It might
be more realistic to separate the two roles of the adversary:
choosing the operations and choosing the schedule.

On a more general note, it would be interesting to de-
velop a usable and practical alternative to the worst-case
amortized analysis, which can be overly pessimistic, in the
context of lock-free data structures. A feasible way of doing
an amortized analysis that bounds the average complexity
over possible schedules would be of great interest.
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