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Abstract. There has been interest recently in skyline queries, also called Pareto
queries, on relational databases. Relational query languages do not support search
for “best” tuples, beyond the order by statement. The proposed skyline operator
allows one to query for best tuples with respect to any number of attributes as
preferences. In this work, we explore what the skyline means, and why skyline
queries are useful, particularly for expressing preference. We describe the theoretical
aspects and possible optimizations of an efficiant algorithm for computing skyline
queries presented in [6].

1 Introduction and Motivation

Often one would like to query a relational database in search of a “best”
match, or tuples that best match one’s preferences. Relational query lan-
guages provide only limited support for this: the min and max aggregation
operators, which act over a single column; and the ability to order tuples
with respect to their attribute values. In SQL, this is done with the order

by clause. This is sufficient when one’s preference is synonymous with the val-
ues of one of the attributes, but is far from sufficient when one’s preferences
are more complex, involving more of the attributes.

Consider a table of restaurant guide information, as in Figure 1. Column
S stands for service, F for food, and D for decor. Each is scored from 1 to
30, with 30 as the best. We are interested in choosing a restaurant from the
guide, and we are looking for a best choice, or best choices from which to
choose. Ideally, we would like the choice to be the best for service, food, and
decor, and be the lowest priced. However, there is no restaurant that is better
than all others on every criterion individually, as is usually the case in real
life, and in real data. No one restaurant “trumps” all others. For instance,
Summer Moon is best on food, but Zakopane is best on service.

While there is no one best restaurant with respect to our criteria, we want
at least to eliminate from consideration those restaurants which are worse on
all criteria than some other. Thus, the Briar Patch BBQ should be eliminated
because the Fenton & Pickle is better on all our criteria and is thus a better
choice. The Brearton Grill is in turn eliminated because Zakopane is better
than it on all criteria. Meanwhile the Fenton & Pickle is worse on every
criterion than every other (remaining) restaurant, except on price, where it



restaurant S F D price

Summer Moon 21 25 19 47.50
Zakopane 24 20 21 56.00
Brearton Grill 15 18 20 62.00
Yamanote 22 22 17 51.50
Fenton & Pickle 16 14 10 17.50
Briar Patch BBQ 14 13 3 22.50

Fig. 1. Example restaurant guide table, GoodEats.

is the best. So it stays in consideration. This would result in the choices in
Figure 2.

restaurant S F D price

Summer Moon 21 25 19 47.50
Zakopane 24 20 21 56.00
Yamanote 22 22 17 51.50
Fenton & Pickle 16 14 10 17.50

Fig. 2. Restaurants in the skyline.

In [3], a new relational operator is proposed which they name the sky-
line operator. They propose an extension to SQL with a skyline of clause
as counterpart to this operator that would allow the easy expression of the
restaurant query we imagined above. In [9] and elsewhere, this is called the
Pareto operator. Indeed, the notion of Pareto optimality with respect to mul-
tiple parameters is equivalent to that of choosing the non-dominated tuples,
designated as the skyline.

select . . . from . . . where . . .

group by . . . having . . .

skyline of a[1] [min | max | diff], . . . , a[n][min | max | diff]

Fig. 3. A proposed skyline operator for SQL.

The skyline of clause is shown in Figure 3. Syntactically, it is similar
to an order by clause. The columns a1, . . . , an are the attributes that our
preferences range over. They must be of domains that have a natural total
ordering, as integers, floats, and dates. The directives min and max specify
whether we prefer low or high values, respectively. The directive diff says
that we are interested in retaining best choices with respect to every distinct
value of that attribute. Let max be the default directive if none is stated. The



skyline query in Figure 4 over the table GoodEats in Figure 1 expresses what
we had in mind above for choosing “best” restaurants, and would result in
the answer set in Figure 2.

select * from GoodEats
skyline of S max, F max, D max, price min

Fig. 4. Skyline query to choose restaurants.

Skyline queries are not outside the expressive power of current SQL. The
query in Figure 5 shows how we can write an arbitrary skyline query in
present SQL. The ci’s are attributes of OurTable that we are interested to
retain in our query, but are not skyline criteria. The si are the attributes that
are our skyline criteria to be maximized, and would appear in skyline of

as si max. (Without loss of generality, let us only consider max and not min.)
The di are the attributes that are the skyline criteria to differ, and would
appear in skyline of as di diff.

select c1, . . . , ck, s1, . . . , sm, d1, . . . , dn

from OurTable
except
select D.c1, . . . , D.ck, D.s1, . . . , D.sm, D.d1, . . . , D.dn

from OurTable T, OurTable D
where D.s1 ≤ T.s1 and . . . D.sm ≤ T.sm and

(D.s1 < T.s1 or . . . D.sm < T.sm)and

D.d1 = T.d1 and . . . D.dn = T.dn

Fig. 5. SQL for generating the skyline set.

Certainly it would be cumbersome to need to write skyline-like queries in
this way. The skyline clause is a useful syntactic addition. More important
than ease of expression, however, is the expense of evaluation. The query in
Figure 5 can be quite expensive. It involves a self-join over a table, and this
join is a θ-join, not an equality-join. The self-join effectively computes the
tuples that are trumped—or dominated—by other tuples. The tuples that
remain, that were never trumped, are then the skyline tuples. It is known
that the size of the skyline tends to be small, with certain provisos, with
respect to the size of the table [7]. Thus, the intermediate result-set before
the except can be enormous.

No current query optimizer would be able to do much with the query
in Figure 5 to improve performance. If we want to support skyline queries,
it is necessary to develop an efficient algorithm for computing skyline. And
if we want the skyline operator as part of SQL, this algorithm must be



easy to integrate in relational query plans, be well-behaved in a relational
context, work in all cases (without special provisions in place), and be easily
accommodated by the query optimizer.

Recent years have brought new interest in expressing preference queries in
the context of relational databases and the World Wide Web. Two competing
approaches have emerged so far. In the first approach [1,8], preferences are
expressed by means of preference (utility) functions. The second approach
uses logical formulas [4,9] and, in particular, the skyline operator [3,12],
described in the previous section. Skyline computation is similar to the max-
imal vector problem studied in [2,10,11]. These consider algorithmic solutions
to the problem and address the issue of skyline size. None of these works
addresses the problem in a database context, however. In [7], we address the
question of skyline query cardinality more concretely.

In this paper, we explore what the skyline means, and why skyline queries
are useful, particularly for expressing preference. We describe a well-behaved,
efficient algorithm for computing skyline queries. Our algorithm improves on
exisiting approaches in efficiency, pipelinabilty of output (of the skyline tu-
ples), stability of run-time performance, and being applicable in any context.

2 Skyline versus Ranking

The skyline of a relation in essence represents the best tuples of the relation,
the Pareto optimal “solutions”, with respect to the skyline criteria. Another
way to find “best” tuples is to score each tuple with respect to one’s prefer-
ences, and then choose those tuples with the best score (ranking). The latter
could be done efficiently in a relational setting. In one table scan, one can
score the tuples and collect the best scoring tuples.

How is skyline related to ranking then? It is known that the skyline repre-
sents the closure over the maximum scoring tuples of the relation with respect
to all monotone scoring functions. For example, in choosing a restaurant as
in the example in Section 1, say that one values service quality twice as much
as food quality, and food quality twice as much as decor, those restaurants
that are best with respect to this “weighting” will appear in the skyline. Fur-
thermore, the skyline is the least-upper-bound closure over the maximums of
the monotone scoring functions [3].

This means that the skyline can be used instead of ranking, or it can be
used in conjunction with ranking. First, since the best tuples with respect to
any (monotone) scoring are in the skyline, one only needs effectively to query
the skyline with one’s preference queries, and not the original table itself.
The skyline is (usually) significantly smaller than the table itself [7], so this
would be much more efficient if one had many preference queries to try over
the same dataset. Second, as defining one’s preferences in a preference query
can be quite difficult, while expressing a skyline query is relatively easy, users
may find skyline queries beneficial. The skyline over-answers with respect to



the users’ intent in a way, since it includes the best tuples with respect to any
preferences. So there will be some choices (tuples) among the skyline that are
not of interest to the user. However, every best choice with respect to the
user’s implicit preferences shows up too.

While in [3], they observe this relation of skyline with monotone scoring
functions, they did not offer proof nor did they discuss linear scoring func-
tions, to which much work restricts focus. Let us investigate this more closely,
and more formally, then, for the following reasons:

• to relate skyline to preference queries, and to illustrate that expressing
preferences by scoring is more difficult than one might initially expect;

• to rectify some common misconceptions regarding scoring for the pur-
poses of preference queries, and regarding the claim for skyline; and

• to demonstrate a useful property of monotone scoring that we can exploit
for an efficient algorithm to compute the skyline.

Let attributes a1, . . . , ak of schema R be the skyline criteria, without loss
of generality, with respect to “max”. Let the domains of the ai’s be real,
without loss of generality. Let R be a relation of schema R, and so represents
a given instance.

Definition 1. Define a monotone scoring function S with respect to R as a
function that takes as its input domain tuples of R, and maps them onto the
range of reals. S is composed of k monotone increasing functions, f1, . . . , fk.
For any tuple t ∈ R, S(t) =

∑
k

i=1
fi(t[ai]).

Lemma 1. Any tuple that has the best score over R with respect to any
monotone scoring function S with respect to R must be in the skyline.1

It is more difficult to show that every tuple of the skyline is the best score
of some monotone scoring. Most restrict attention to linear weightings when
considering scoring, though, so let us consider this first.

Definition 2. Define a positive, linear scoring function, W , as any function
over a table R’s tuples of the form W (t) =

∑
k

i=1
wit[ai], in which the wi’s

are positive, real constants.

As we insist that the wi’s are positive, the class of the positive, linear scoring
functions is a proper sub-class of the monotone scoring functions. Commonly
in preference query work, as in [8], the focus is restricted to linear scoring.
It is not true, however, that every skyline tuple is the best with respect to
some positive, linear scoring.

Theorem 1. It is possible for a skyline tuple to exist on R such that, for
every positive, linear scoring function, the tuple does not have the maximum
score with respect to the function over table R.

1 Proofs of all lemmas and theorems can be found in [5].



Consider R = ((4, 1), (2, 2), (1, 4)). All three tuples are in the skyline
(skyline of a1, a2). Linear scorings that choose (4,1) and (1,4) are obvious,
but there is no positive, linear scoring that scores (2,2) best. Note that (2,2)
is an interesting choice. Tuples (4,1) and (1,4) represent in a way outliers.
They make the skyline because each has an attribute with an extrema value.
Whereas (2,2) represents a balance between the attributes (and hence, pref-
erences). For example, if we are conducting a house hunt, a1 may represent
the number of bathrooms, and a2, the number of bedrooms. Neither a house
with four bathrooms and one bedroom, nor one with one bathroom and four
bedrooms, seem very appealing, whereas a 2bth/2bdrm house might.

Theorem 2. The skyline contains all, and only, tuples yielding maximum
values of monotone scoring functions.

While there exists a monotone scoring function that chooses—assigns the
highest score to—any given skyline tuple, it does not mean anyone would
ever find this function. In particular, this is because, in many cases, any
such function is a contrivance based upon that skyline’s values. The user is
searching for “best” tuples and has not seen them yet. Thus, it is unlikely
anyone would discover a tuple like (2,2) above with any preference query.
Yet, the 2bth/2bdrm house might be exactly what we wanted.

For the algorithm for skyline computation we are to develop, we can
exploit our observations on the monotone scoring functions. Let us define
the dominance relation, “�”, as follows: for tuples any r, t ∈ R, r � t iff
r[ai] ≤ t[ai], for all i ∈ 1, . . . , k. Further define that r ≺ t iff r � t and
r[ai] < t[ai], for some i ∈ 1, . . . , k.

Theorem 3. Any total order of the tuples of R with respect to any monotone
scoring function (ordered from highest to lowest score) is a topological sort
with respect to the skyline dominance partial relation (“�”).

Consider the total ordering on R provided by the basic SQL order by

as in the query in Figure 6. This total order is a topological sort with respect
to dominance.

select * from R
order by a1 desc, . . . , ak desc;

Fig. 6. An order by query that produces a total monotone order.

The following proposition is fairly obvious and it is used to build a better
skyline algorithm.

Theorem 4. Any nested sort of R over the skyline attributes (sorting in
descending order on each), as in the query in Figure 6, is a topological sort
with respect to the dominance partial order.



As we read the tuples output by the query in Figure 6 one by one, it is
only possible that the current tuple is dominated by one of the tuples that
came before it (if, in fact, it is dominated). It is impossible that the current
tuple is dominated by any tuple to follow it in the stream. Thus, the very
first tuple must belong to the skyline; no tuple precedes it. The second tuple
might be dominated, but only by first tuple, if at all. And so forth.

The last observation provides us the basis for an algorithm to compute
skyline (the details of the algorithm, called SFS, are presented in [6]). First,
we sort our table as with the query in Figure 6. In a relational engine, an
external sort routine can be called for this. Buffer pool space is then allocated
as a window in which skyline tuples are to be placed as found. A cursor
pass over the sorted tuples is then commenced. The current tuple is checked
against the tuples cached in the window. If the current tuple is dominated by
any of the window tuples, it is safe to discard it. It cannot be a skyline tuple.
(We have established that the current tuple cannot dominate any of the tuples
in the window.) Otherwise, the current tuple is incomparable with each of
the window tuples. Thus, it is a skyline tuple itself. Note that it was sufficient
that we compared the current tuple with just the window tuples, and not all
tuples that preceded it. This is because if any preceding tuples were discarded,
it can only be because another tuple already in the window dominated it.
Since dominance is transitive, then comparing against the window tuples is
sufficient. In the case that the current tuple was not dominated, if there is
space left in the window, it is added to the window. Note that we can also
place the tuple on the output stream simultaneously, as we know that it is
skyline. The algorithm fetches the next tuple from the stream and repeats.

3 Optimizations

Reduction Factor

A key to efficiency for any skyline algorithm is to eliminate tuples that are
not skyline as quickly as possible. In the ideal, every eliminated tuple would
only be involved in a single comparison, which shows it to be dominated.
In the worst case, a tuple that is eventually eliminated is compared against
every other tuple with which it is incomparable (with respect to dominance)
before it is finally compared against a tuple that dominates it. In cases that
SFS is destined to make multiple passes, how large the run of the second
pass will be depends on how efficient the window was during the first pass at
eliminating tuples.

For SFS only skyline tuples are kept in the window. One might think
on first glance that any skyline tuple ought to be good at eliminating other
tuples, that it will likely dominate many others in the table. This is not
necessarily true, however. Recall the definition of a skyline tuple: a tuple
that is not dominated by any other. So while some skyline tuples are great
dominators, there are possibly others that dominate no other tuples.



Let us formalize this some, for sake of discussion. Define a function over
the domain of tuples in R with respect to R called the dominance number,
dn. This function maps a tuple to the number of tuples in R that it properly
dominates (“≺”). So, given that R has n tuples, dn(t) can range from 0 to
n − 1. If tuple t is in the window for the complete first pass, at least dn(t)
tuples will be eliminated. Of course, dn’s are not additive: window tuples will
dominate some of the same tuples in common. However, this provides us with
a good heuristic: We want to maximize the cumulative dn of the tuples in
the window. This will tend to maximize the algorithm’s reduction factor.

Once the window is filled on a pass for SFS, the cumulative dn is fixed
for the rest of the pass. Our only available strategy is to fill the window
initially with tuples with high dn’s. This is completely dependent upon the
sort order of the tuples established before we commence the filtering passes.
Let us analyze what happens currently. We employ a sort as with the query
in Figure 6, a nested sort over the skyline attributes. The very first tuple t1
(which must be skyline) has the maximum a1 value with respect to R. Say
that t1[a1] = 100. Then t1[a2] is the maximum with respect to all tuples in R

that have a1 = 100. This is probably high. And so forth for a3, ..., ak. Thus, t1
with high probability has a high dn. Now consider ti such that ti[a1] = 100,
but ti+1[a1] < 100. So ti is the last of the “a1 = 100” group. Its a2 value is
the lowest of the “a1 = 100” group, and so forth. With high probability, ti’s
dn is low. However, if ti is skyline (and it well could be), it is added to the
window.

So SFS using a nested sort for its input tends to flood the window with
skyline tuples with low dn’s, on average, which is the opposite of what we
want. In Section 2, we observed that we can use any monotone scoring func-
tion for sorting as input to SFS. It might be tempting, if we could know
tuples’ dn’s, to sort on dn. The dn function is, of course, monotone with
respect to dominance. However, it would be prohibitively expensive to cal-
culate tuples’ dn’s. Next best then would be to approximate the dn’s, which
we can do.

Instead of a tuple’s dn, we can estimate the probability that a given tuple
dominates an arbitrary tuple. For this, we need a model of our data. Let us
make the following assumptions. First, each skyline attribute’s domain is over
the reals between 0 and 1, non-inclusive. Second, the values of an attribute
in R are uniformally distributed. Lastly, the values of the skyline attributes
over the tuples of R are pair-wise independent. So given a tuple t and a ran-
domly chosen r ∈ R, what is the probability that t[ai] > r[ai]? It is the value
t[ai] itself, due to our uniform distribution assumption (and due to that t[ai]
is normalized between 0 and 1). Then the probability that r ≺ t, given t is
∏k

i=1
t[ai] by our independence assumption. We can compute this for each tu-

ple just from the tuple itself. Is this probability a monotone scoring function?
It is easy to show that it is monotone. However, it is not formally a monotone
scoring function as we defined this in Section 2; the definition only allowed



addition of the monotone functions applied over the skyline attributes. De-
fine the monotone scoring function E then as E(t) =

∑k

i=1
ln(t[ai]+ 1). This

clearly results in the same order as ordering by the probability. Interestingly,
this is an entropy measure, so let us call this monotone scoring function E

entropy scoring.

Our first assumption can always be met by normalizing the data. Rela-
tional systems usually keep statistics on tables, so it should be possible to do
this without accessing the data. The second assumption of uniform distribu-
tion of values is often wrong. However, we are not interested in the actual
dominance probability of tuples, but in a relative ordering with respect to
that probability. Other distributions would not effect this relative ordering
much, so E would remain a good ordering heuristic in these cases. The last
assumption of independence too is likely to be wrong. Even in cases where
independence is badly violated, E should remain a good heuristic, as again,
the relative ordering would not be greatly effected. Regardless of the assump-
tions, E is always a monotone scoring function over R, and we can always
safely use it with SFS.

Projection

For SFS, a tuple is added to the window only if it is in the skyline.
Therefore, the tuple at the same time can be pushed to the output. So it is
not necessary to keep the actual tuple in the window. All we need is that we
can check subsequent tuples for whether they are dominated by this tuple.
For this, we only need the tuple’s skyline attributes. Real data will have many
attributes in addition to the attributes we are using as skyline criteria. Also,
attributes suitable as skyline conditions are comparables, as integer, float,
and date. These tend to be small, storage-wise. A tuple’s other attributes
will likely include character data and be relatively large, storage-wise. So
projecting out the non-skyline attributes of tuples when we add them to
the window can be a great benefit. Significantly more skyline tuples will fit
into the same size window. Likewise, there is no need to ever keep duplicate
(projected) tuples in the window. So we can do duplicate elimination, which
also makes better use of the window space.

Dimensional Reduction

Another optimization available to SFS is due again to the fact that we
first sort the table. Recall the nested sort that results from the query in
Figure 6. Now consider the table that results from the query in Figure 7. It
has precisely the same skyline as table R. We choose the maximum ak for
each “a1, . . . , ak−1” group. Clearly, any tuple in the group but with a non-
maximum ak cannot belong to the skyline. Of course, we can only apply this
reduction once. (Implemented internally, other attributes of R besides the
ai’s could be preserved during the “group by” computation.)

This optimization is useful in cases when the number of distinct values
for each of the attributes a1, . . . , ak−1 appearing in R is small, so that the
number of groups is much smaller than the number of tuples. If one attribute



select a1, . . . , ak−1, max(ak) as ak from R
group by a1, . . . , ak−1;
order by a1 desc, . . . , ak−1 desc;

Fig. 7. An order by query that produces a total monotone order.

has many distinct values, we can make this one our “ak”. In such a case, we
are applying SFS to the result of the query in Figure 7, which can be a much
smaller input table.

4 Conclusions

We believe that the skyline operator offers a good start to providing the
functionality of preference queries in relational databases, and would be easy
for users to employ. We believe that our SFS algorithm for skyline offers a
good start to incorporating the skyline operator into relational engines, and
hence, into the relational repertoire, effectively and efficiently.
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