EECS 4314

Advanced Software Engineering

Topic 13:
Software Performance Engineering
Zhen Ming (Jack) Jiang

Acknowledgement

Adam Porter
Ahmed Hassan
Daniel Menace
David Lilja
Derek Foo
Dharmesh Thakkar
James Holtman
Mark Syer
Murry Woodside
Peter Chen

Raj Jain

Tomas Kalibera
Vahid Garousi

Software Performance Matters

© | NETFLIX o

S
4 Microsoft* /

(£0.0ffice 365 (

What is Software Performance?

“A performance quality requirement defines a metric that
states the amount of work an application must perform in

a given time, and/or deadlines that must be met for

correct operation’.

- lan Gordon, Essential Software Architecture

Performance Metrics (1)

m Response time

—a measure of how responsive an application or
subsystem 1is to a client request.

m Throughput

— the number of units of work that can be handled
per unit of time (e.g., requests/second, calls/day,
hits/hour, etc.)

m Resource utilization

— the cost of the project in terms of system resources.
The primary resources are CPU, memory, disk I/O
and network.

Performance Metrics (2)
m Availability

— the probability that a system 1s 1 a functional
condition

m Reliability

— the probability that a system 1s 1n an error-free
condition

m Scalability

— an application’s ability to handle additional workload,
without adversely affecting performance, by adding
resources like CPU, memory and disk

Common Goals of
Performance Evaluation (1)

Evaluating
Design Alternatives
Should my application
service implement the push
or pull mechanism to
communicate with my
clients?

Comparing System
Implementations
m Does my application service
yield better performance than
my competitors?

Benchmarking

Common Goals of
Performance Evaluation (2)

Performance Debugging Performance Tuning

m Which part of the system m What are the configuration
slows down the overall values that I should set to
executions? yield optimal performance?

Common Goals of
Performance Evaluation (3)

Performance Prediction Capacity Planning
m How would the system look m What kind of hardware
like if the number of users (types and number of
increase by 20%? machines) or component

setup would give me the
what-if analysis best bang for my buck?

Common Goals of
Performance Evaluation (4)

Performance Requirements Operational Profiling

m How can I determine the m What is the expected usage
appropriate Service Level once the system 1s deployed
Agreement (SLA) policies in the field?

for my service? L
Y workload characterization

Performance Evaluation v.s.
Software Performance Engineering

m “Contrary to common belief, performance
evaluation is an art. Like a work of art,
successful evaluation cannot be produced
mechanically.”

THE ART OF
COMPUTER
SYSTEMS
PERFORMANCE
ANALYSIS

Techniques for
xperimental Design,
Measurement, Simulation,

- Raj Jain, 1991

m “/Software Performance Engineering] | PuonuaSowmos
Utterly demystifies the job (no longer the — wmwwsuusms
art) of performance engineering’” SR s‘i:

- Connie U. Smith and Lloyd G. Williams, 2001

When should we start assessing
the system performance?

“It is common sense that & need to develop the

application first bEfK @%nng the performance.”

- Senior Developer A

Many performance optimizations are related to the
system architecture. Parts or even the whole system
might be re-implemented due to bad performance!

We should start performance
analysis as soon as possible!

Originated by Smith et al.

To validate the system performance

as early as possible (even at the

requirements or design phase)
“Performance By Design”

PERFORMANCE SOLUTIONS

A PracTICAL GUIDE TO CREATING
RESPONSIVE, SCALABLE SOFTWARE

Software Performance Engineering

Definition: Software Performance Engineering (SPE)
represents the entire collection of software engineering
activities and related analyses used throughout the
software development cycle, which are directed to
meeting performance requirements.

- Woodside et al., FOSE 2007

SPE Activities

Performance : Operational
: Scenarios :
Requirements Profile
Performance Analyze Early-cycle
Test Design Performance Models
Product Architecture and Design Software
(measurements and mid/late models: evaluate, diagnose) Development
- Life-cycle
Performance Performance
Testing Anti-pattern Detection Total
Product evolve/maintain/migrate AS yslten}
(Late-cycle Performance Models: nalysis
evaluate alternatives)

[Woodside et al., FOSE 2007]

Three General Approaches of
Software Performance Engineering

Measurement

sually applies late in
he development cycle
hen the system is
implemented

=
] &

Analytical Modeling

Usually applies early in the
development cycle to
evaluate the design or
architecture of the system

ntigaf

Can be used both during
the carly and the late
development cycles

Three General Approaches of
Software Performance Engineering

i

AL <%
3 % A
Measurement Analytical Modeling mulatied
Approaches

Characteristic | Analytical | Measurement| Simulation
Flexibility High Low High
Cost Low High Medium
Believability Low High Medium
Accuracy Low High Medium

Three General Approaches of

Software Performance Engineerina

o “ AL
Measurement

sually applies late in
he development cycle
hen the system is
implemented

— &>

R | &

| -
e

T, A

l -

Analytical Modeling

Usually applies early in the
development cycle to
evaluate the design or
architecture of the system

ulatim’

Can be used both during
the carly and the late
development cycles

|—I—l

Convergence of the approaches

Books, Journals and Conferences

JCMG =i

Computer Measurement Group sm ICSE 201 3 *

ACM SIGMETRICS [SanErancisco
1Y il i
= 5201 s

special interest group on perfoarmance evaluation
MEASURING TOWEEX
COMPUTER PERFORMANCE

A practitioner’s guide
DAVID J. LILJA

WALEY PROFESSIONAL COMPUTING

THE ART OF
COMPUTER

SYSTEMS

PERFORMANCE “f‘ﬂ#r m::m :.:".@.'!.L" o The Performance of
ANALYSIS)8 ﬁ'” Open Source Applications

Technigues for
Experimental Design,
Measurement, Simulation,
and Modeling

,;_‘-nﬂ \ia

LETRET

Roadmap

m Measurement
— Workload Characterization
— Performance Monitoring
— Experimental Design
— Performance Analysis and Visualization

® Simulation
m Analytical Modeling
— Single Queue
— Queuing Networks (QN)
— Layered Queuing Networks (LQN)
— PCM and Other Models

m Performance Anti-patterns

Performance Evaluation
- Measurement

Measurement-based
Performance Evaluation

Minimum # of experiments, testing, benchmarking,
Maximum amount of information capacity planning, etc.

Experimental Performance Performance

Workload Design Measurement Analysis

operational light-weight performance
profile monitoring and data recording

Operational Profiling
(Workload Characterization)

An operational profile, also called a workload,
1s the expected workload of the system under
test once 1t 1s operational 1n the field.

The process of extracting the expected
workload 1s called operational profiling or
workload characterization.

Workload Characterization Techniques

m Past data
— Average/Minimum/Maximum request rates
— Markov Chain

m Extrapolation
— Alpha/Beta usage data
— Interview from domain experts

m Workload characterization surveys

— M. Calzarossa and G. Serazzi. Workload characterization: a
survey. In Proceedings of the IEEE.1993.

— S. Elnaffar and P. Martin. Characterizing Computer Systems'
Workloads. Technical Report. School of Computing, Queen's
University. 2002.

192.168.8.
192.168.8.
192.168.8.
192.168.8.
192.168.8.
192.168.8.

Workload Characterization Techniques

- Markov Chain

[22/Apr/26814:808:32:25 -08480]
[22/Apr/20814:80:32:25 -08400]
[22/Apr/20814:80:32:25 -08400]
[22/Apr/20814:80:32:25 -08400]
[22/Apr/20814:80:32:25 -08400]
[22/Apr/20814:80:32:25 -08400]
[22/Apr/20814:80:32:25 -08400]
[22/Apr/20814:80:32:25 -08400]
[22/Apr/20814:80:32:25 -08400]
[22/Apr/20814:80:32:25 -08400]
[22/Apr/20814:080:32:29 -0400]
[22/Apr/20814:080:32:29 -0400]
[22/Apr/20814:080:32:29 -0400]
[22/Apr/20814:080:32:29 -0400]
[22/Apr/20814:080:32:29 -0400]
[22/Apr/20814:080:32:29 -0400]
[22/Apr/20814:080:32:29 -0400]

[22/Apr/20814:80:32:31 -0400]
[22/Apr/20814:80:32:31 -0400]
[22/Apr/20814:80:32:31 -0400]

[22/Apr/20814:80:32:35 -0400]
[22/Apr/26814:80:32:35 -0480]
[22/Apr/20814:80:32:35 -0400]
[22/Apr/20814:80:32:35 -0400]
[22/Apr/20814:80:32:35 -0400]
[22/Apr/20814:80:32:35 -0400]
[22/Apr/20814:080:32:36 -0400]
[22/Apr/20814:080:32:36 -0400]
[22/Apr/20814:080:32:36 -0400]
[22/Apr/2014:080:32:41 -0400]

“"GET
“"GET
“"GET
“"GET
“"GET
“"GET
“"GET
“"GET
“"GET
“"GET
“"GET
“"GET
“"GET
“"GET
“"GET
“"GET
“"GET
“"GET
“"GET
“"GET
“"GET
“"GET
“"GET
“"GET
“"GET
“"GET
“"GET
“"GET
“"GET
“"GET

/dsbrowse . jsp?browsetype=actor&browse cateqory=&browse actor=ANTHOHY%:28
fdsbrowse . jsp?browsetype=category&browse_category=11&browse_actor=&brou
/dslogin.jsp?username=useri1&password=password HTTP/1.1" 288 2539 16
fdsbrowse . jsp?browsetype=actord&browse cateqory=&browse actor=WILLIAM%:28
fdsbrowse . jsp?browsetype=category&browse_category=15&browse_actor=&brou
fdsbrowse . jsp?browsetype=actor&browse category=&browse_actor=HILARY%2 86
fdsbrowse . jsp?browsetype=cateqory&browse_category=6&browse_actor=&brows
fdsbrowse . jsp?browsetype=title&browse_category=&browse_actor=&browse_ti
fdspurchase.jsp?confirmpurchase=yes&customerid=5261&item=646&quan=3&ite
fdspurchase. jsp?confirmpurchase=yes&customerid=41&item=45448&quan=1&item
/dslogin.jsp?username=user3614&password=password HTTP/1.1" 288 728 6
fdsbrowse . jsp?browsetype=title&browse_category=&browse_actor=&browse_ti
fdsbrowse . jsp?browsetype=actor&browse category=&browse_actor=ELLEN%Z BGA
fdsbrowse . jsp?browsetype=cateqory&browse_category=9&browse_actor=&brows
fdsbrowse . jsp?browsetype=actor&browse category=&browse_actor=ANGEL IHA%2
fdsbrowse . jsp?browsetype=actor&browse category=&browse_actor=JULIA%Z2BTA
fdspurchase.jsp?confirmpurchase=yes&customerid=3614&item=4717&quan=2&it
fdslogin.jsp?username=user13337&password=password HTTP/A1.1" 288 1968 9
fdsbrowse . jsp?browsetype=title&browse_category=&browse_actor=&browse_ti
fdspurchase.jsp?confirmpurchase=yes&customerid=13337&item=322&quan=2&it
fdslogin.jsp?username=userS414&password=password HTTP/1.1" 288 2579 18
/dsbrowse . jsp?browsetype=actor&browse category=&browse_actor=GRACE%Z2 BBR
fdspurchase.jsp?confirmpurchase=yes&customerid=5414&item=198&quan=3&ite
Fdsnewcustomer . jsp?firstname=RHUS(S5&1lastname=EBFM]DBVHM&address1=289823
fdsbrowse . jsp?browsetype=title&browse_category=&browse_actor=&browse_ti
fdspurchase.jsp?confirmpurchase=yes&customerid=20001&itemn=7868&quan=3&i
fdslogin.jsp?username=user13¥13&password=password HTTP/1.1" 288 729 6
fdsbrowse . jsp?browsetype=cateqory&browse_category=9&browse_actor=&brows
fdspurchase.jsp?confirmpurchase=yes&customerid=13713&item=493&quan=3&it
Fdsloqin.jsp?username=user9811&password=password HTTP/A1.1" 288 728 6

web access logs for the past few months

Workload Characterization Techniques
- Markov Chain

192.168.0.1 - [22/Apr/2014:00:32:25 -0400] "GET
/dsbrowse.jsp?browsetype=title&browse category=&browse actor=&bro
wse title=HOLY%20AUTUMNG&Ilimit num=8&customerid=41
HTTP/1.1" 200 4073 10

192.168.0.1 - [22/Apr/2014:00:32:25 -0400] "GET
/dspurchase.jsp?confirmpurchase=yes&customerid=596 1 &item=646&qua
n=3&item=2551&quan=1&item=45&quan=3 &i1tem=9700&quan=2&item
=1566&quan=3&1tem=4509&quan=3 &item=5940&quan=2 HTTP/1.1"
200 3049 177

192.168.0.1 - [22/Apr/2014:00:32:25 -0400] "GET
/dspurchase.jsp?confirmpurchase=yes&customerid=41&item=4544&quan
=1 &1tem=6970&quan=3 &item=5237&quan=2&item=650&quan=1&item
=2449&quan=1 HTTP/1.1" 200 2515 113

Web Access Logs

Workload Characterization Techniques
- Markov Chain

192.168.0.1 - [22/Apr/2014:00:32:25 -0400] "GET
/dsbrowse.jsp?browsetype=title&browse category=&browse actor=&bro
wse title=HOLY %20AUTUMNG&Ilimit num=8&customerid=41
HTTP/1.1" 200 4073 10

192.168.0.1 - [22/Apr/2014:00:32:25 -0400] "GET
/dspurchase.jsp?confirmpurchase=yes&customerid=5961&item=646&qu
an=3&item=2551&quan=1&item=45&quan=3 &item=9700&quan=2&item
=1566&quan=3&1tem=4509&quan=3 &item=5940&quan=2 HTTP/1.1"
2003049 177

192.168.0.1 - [22/Apr/2014:00:32:25 -0400] "GET
/dspurchase.jsp?confirmpurchase=yes&customerid=41&item=4544&qua
n=1&1tem=6970&quan=3&item=5237&quan=2&item=650&quan=1&ite
m=2449&quan=1 HTTP/1.1" 200 2515 113

For customer 41: browse -> purchase

Workload Characterization Techniques
- Markov Chain

Experimental Design

m Suppose a system has 5 user configuration parameters.
Three out of five parameters have 2 possible values and the
other two loarameters have 3 possible values. Hence, there
are 23 X 3 72 possible configurations to test.

m Apache webserver has 172 user configuration arameters
(158 binary options). This system has 1.8 X 10°> possible
configurations to test!

The goal of a proper experimental design 1s
to obtain the maximum information with
the minimum number of experiments.

Experimental Design Terminologies

m The outcome of an experiment 1s called the response
variable.

— E.g., throughput and response time for the tasks.
m Each vanable that affects the response variable and has
several alternatives 1s called a factor.

— E.g., to measure the performance of a workstation, there are
five factors: CPU type, memory size, number of disk drives
and workload.

m The values that a factor can have are called levels.
— E.g., Memory size has 3 levels: 2 GB, 6 GB and 12 GB

m Repetition of all or some experiments 1s called replication.

m [nteraction effects: Two factors A and B are said to
interact if the effect of one depends on the other.

Initialize all factors F[i], R Start, F[j
=1

(1 «<=i<=n)to their
initial level

Ad-hoc Approach

Start with min value
of F[ij

Was F[i] experimented with
in initialization process?

[teratively going through each
(discrete and continuous) e

factors and 1dentity factors | =iz
which impact performance for

by two

" more goupe of combined /’L-\ i
an three-tired e-commerce -
2EN reacne

system. —

es A
// // “xx,\\
Has max number of
-~ ~levels (4) been reached?
——————~ i>n? ~ - 7
T “_,//
Yes
¥
STOP

[Sopitkamol et al., WOSP 2005]

Covering Array

m A t-way covering array for a given input space model 1s a set of
configurations 1n which each valid combination of factor-values
for every combination of t factors appears at least once.

m Suppose a system has 5 user configuration parameters. Three out
of five parameters have 2 possible values (0, 1) and the other
two parameters have 3 possible values (0, 1, 2). There are total
23 x 32 = 72 possible configurations to test.

A 2-way covering arra
C))

—_—= = = O = O O O g
S © = © = —~ o © ~ K-
S O == O = OO
DD D = = O O = O N
N — D O N = = O O e

Covering Array and CIT

m There are many other kinds of covering array
like: variable-strength covering array, test case-
aware covering array, etc.

m Combinatorial Interaction Testing (CIT) models
a system under test as a set of factors, each of
which takes 1ts values from a particular domain.
CIT generates a sample that meets the specific
coverage criteria (e.g., 3-way coverage).

m Many commercial and free tools:
http://pairwise.org/tools.asp

[Yilmaz et al., IEEE Computer 2014]

http://pairwise.org/tools.asp

Performance Measurement

m Types of performance data

m Performance Monitoring
— Agent-less Monitoring

— Agent-based Monitoring
m Measurement-based frameworks

m Performance measurement 1ssues

Performance Data

m System and application resource usage metrics
— CPU, memory, network, etc.
m Application performance metrics

— Response time, throughput, # of requests submitted
and # of requests completed, etc.

m Application specific metrics

— # of concurrent connections to the database, rate of
database transactions, # of garbage collections

m Some of these data can be obtained directly, while
others need to be derived (e.g., from logs).

Performance Monitor

m Monitors and records the system behavior
over time
m Needs to be light-weight

— Imposing as little performance overhead as
possible

m Two types of performance monitoring
approaches

— Agent-less monitoring

— Agent-based monitoring

Agent-less Monitoring Examples

E Windows Task M
File ©Options %iew Help

| .ﬁ.pplications | Processes Networking.

CPU Usage CPU Usage Histary

PF Usage Page File Usage Hiskory

Takals Phesical Mermary (k)

Handles 15796 Total 523276
Threads 585 Available 147196
Processes 52 Syskem Cache 251812
Commit Charge (k) kernel Memary (k)

Tatal 340832 Tatal 46270
Lirnit 1277758 Paged 33624
Peak 379916 Monpaged 12452

lProcesses: 52 CPU Usage: 100% Commit Charge: 332M | 1247M

Task Manager

AN Java i g & g Console
Connection Window Help
LY. I—
[Overview | Memory Threads Classes VM Summary MBeans } ==
Time Range: |_All 3!

:JZL“"’T“T s
- -
- -

0.0 Mb 10
12:40 12:50 13:00 13:10 13:20 13:30

Used: 10.5 Mb Committed: 99.2 Mb Max: 1.9 Cb

WHIHHIIIII.illII.IJIIIIlHu MR , 3= e

12:40 12:50 13:00 13:10 13:20 13:30
Live: 19 Peak: 24 Total: 765

Classes CPU Usage
2,000 3.0%
2.5%
2.0%
1,500 L2
— o 13 Lo%
f
0.5%
CPU Usage
0.0%
1,000 0.2%

12:40 12:50 13:00 13:10 13:20 13:30
Loaded: 1,353 Unloaded: 0 Total: 1,353

12:40 12:50 13:00 13:10 13:20 13:30
€PU Usage: 0.0%

JConsole

PerfMon (Windows), sysstat (Linux), top

=1 x]

@ SuperbomainjxphaseftiehSphereY AGENT_JDBCSAMPLE B °|v (] |
| CECC s e ok D

Triage Map " Metric Browser \

PR R TS —— .
. . v R e et 1 iy ~ 2 &’SuperDomam'
@ custom etric Hast (Virtual

APPLICATION DA HROARD .
. N a E}"ﬁ xphase

&l WebSphere
o MY BEENT12345 1+

-4

B Investigator Introscope Workstal

Workstation Ecit Manager Properties Miswer Help

Querview \ Resources \\ Traces \ Errars \Search \Locatlon Map " Metric: Count \ SOA Dependency Map \

Metrics under this branch: 95

u

L S Ty v

@ Java Wersion
) Launch Time
o C . @ ProcessiD |

= - “ bl Pailce [& vitual Maching
=BG st stats

o - [@ Buid ana R

L]
-z Processer ST e Rt Percent of Tatal
[Utiizsti T % 48,42
% Frortends Frontencs 10 1053
B o¢ Heap o 10 1053
B sviesinus || |zerviets 7 737

- [Boytes Total < |
JAn 2, 3014 1:2512 AW ST

App Dynamics CA Willy

Dell FogLight, New Relic

A Framework for Measurement-

|

I

based Performance Modeling

Test Test Environment Test Test Test Model
. . . . > . > .. +. > Performance
Enumeration Reduction Setup Execution Transition Analysis Building Model
A | A A
I : : |
- | I :
I : - |
: L D | .
I : I

— Control Flow

Performance |- - —.
Data

— - — -9 Data Flow

Capacity Planning

[Thakkar et al., WOSP 2008]

Talos
- Mozilla Performance Regression Testing Framework

Source Talos load Graph
Change Harness Uploa Server

Regression

Detection

Regression
Notice Email

[Talbert et al., http://aosabook.org/en/posa/talos.html]

http://aosabook.org/en/posa/talos.html
http://aosabook.org/en/posa/talos.html

Skoll — A Distributed Continuous
Quality Assurance (DCQA) Infrastructure

Server(s)
d

..... E
’.I \A‘,
< | > /I ™ >1 . g \#‘
‘ client kit 3 ta%reglster =] =
~1 L, | SRR,

Performance Regression Testing
under different configurations

[Memon et al., ICSE 2004]

Measurement Bias

m Measurement bias 1s hard to avoid and
unpredictable.

m Example 1: How come the same application
today runs faster compared with yesterday?

m Example 2: Why the response time 1s very
different when running the same binary under
different user accounts?

m Example 3: Why the code optimization only
works on my computer?

* Repeated measurement
* Randomize experiment setup

[Mvtkowicz et al., ASPLOS 2010]

Evaluate 2010

Workshop on Experimental Evaluation of Software and Systems in Computer Science

Co-located with SPLASH'10 in Reno/Tahoe, Nevada, October 17-21, 2010.

Collaboratory Important Dates Keynote Panel Organizing Committee Background Join us on: LK

Ed share | IIEITED

News

* See vou on Monday. October 18, 1n Reno!
» Now open: Evaluate Collaboratorv (a collaborative web site for workshop participants and the broader community)
o Check out. update. and comment on the position statements (account required)
¢ Browse or contribute to the Experimental Evaluation Bibliographv
o Check out the Evaluate 2010 schedule, list of participants. location. lunch and dinner options. and more
» Kevnote: Cliff Click
* Panel: Experimental evaluation in different areas of computer science. The panelists are leaders i evaluation methodologies in their respective

Call for Position Statements

We call ourselves ‘computer scientists’. but are we scientists? If we are scientists. then we must practice the scientific method. This includes a solid ez

In the last few vears. researchers have identified disturbing flaws in the way that experiments are performed in computer science. For example. in the
As hardware and software grow more complex. this problem just gets worse.

This workshop brings together experts from different areas of computer science to discuss. explore. and attempt to identify the principles of sound ex
The workshop will consist of discussion sessions, which focus on themes such as data collection. data analysis. and reproducibility. with the goal to a

» What are the issues that are preventing proper experimental evaluation?

* How can we resolve these 1ssues?

» We need more research m evaluation methodology. What should that research be?

» We need better tools to do sound expermmental evaluation. How do we encourage investment i such tools?

» What are the principles and best practices that people are using i the different areas of computer science?

* How does the computer science curriculum need to be changed to prepare the next generation of computer scientists?

Performance Analysis

m Statistical analysis
— Descriptive statistics
— Hypothesis testing

— Regression analysis
m Performance visualization
m Performance debugging

— Profiling

— Instrumentation

Comparing Two Alternatives

m Paired observations

— E.g., there are six scenarios ran on two versions of the system.
The response time are: {(5.4, 19.1), (16.6, 3.5), (0.6, 3.4), (1.4,
2.5), (0.6, 3.6), (7.3, 1.7)}

— Paired student-t test

m Unpaired observations

— E.g., the browsing scenarios were ran 10 times on Release A and
11 times on Release B

— Unpaired student-t test

m Student-t tests assume that the two datasets are normally
distributed. Otherwise, we need to use non-parametric tests
— Wilcoxon signed-rank test for paired observations
— Mann-Whitney U test for the unpaired observations

Comparing More than
Two Alternatives

m For comparing more than two alternatives, we will
use ANOVA (Analysis of variance)

— E.g., There are 6 different measurements under 6
different software configurations.

m ANOVA also assumes the datasets are normally
distributed. Otherwise, we need to use non-
parametric tests (e.g., Kruskal-Wallis H test)

Statistical significance v.s.
Performance impact

mThe new design’s performance may be
statistically faster than the old version. However,
it’s only 0.001 seconds faster and will take a
long time to implement. Is 1t worth the effort?

Effect Sizes =—

—Trivial (Cohen’s D <0.2)
Small (0.2 <Cohen’s D <0.5)
Medium 1 0.5 < Cohen’s D <0.8

—Large 0.8 <Cohen’s D

Cliff’s 6 -> Non-parametric alternative

Regression-based Analysis

m Can we find an empirical model which predicts
the application CPU utilization as a function of the
workload? For example,

CPU = by + by X # of browsing + b, X # of searching

m Then we can conduct various what-if analysis?

— (Field Assessment) What 1f the field workload is A,
would the existing setup be able to handle that load?

— (Capacity Planning) What kind of machine (CPU
power) should we pick based on the project

workload for next 3 years?
Are input variables linearly independent of each other?
If they are highly correlated, keep only one of them in the model

Performance Visualization

=3

5000000

4000000

000 3000000

G000

4000

2000

Line Plots

L=

L=

a 2
- =
=
= [=1
2
=
b=
o -
= g
e 9
'q'—
=
=
_
o - b
o= " L=
T T T T T
1]] 10 15 20
=
=
o =]
(-]
B I)
T
i &
F |
= =
o4
= L by se JnuunJLl =
T T T T T
1] A 10 14 0

Metrics plots from vmstats

[

[—

[Holtman, 2006]

Histogram Plots

Trans123: # = 11663 (0.00 - 117.79,

1800 2300
L L

500
1

1]
L

0o 02 04 06 OB 10 1.2

Infaryel=0 0200

Trans066: # = 3812 (0.00 - 33.24)

600 00

200 4o
|

o
L

00 1.0 2.0 30

8-
Intary sl =0 2500

Trans168: # = 2358 (0.00 - 47.99)

1 |

= I
= |
8 |
- |
= |
R |
|

= X

r T 1
0o 05 10 15
oar
Irtarvsl=1 0500

Trans030: # = 9294 {0.00 - 119.14)

400 BOO

200

Intarvel =0 0600

Trans040: # = 3677 (0.00 — 134.68)

100 200 300 400

o

ol]
Iniarvel=1. 1000

Trans045: # = 1357 (0.00 - 57.73)

= Nl 1
=2 4
= 1 I
T I |
R || O
. I |
2 |] 1
b | |
T I i
= - T X
1] I I
i 5 0 15
111
Inarvel =0 5000

Trans056: # = 7927 {0.00 - 64.75)

1500

500

00 02 04 D6 OB

nierval =0 0200

Trans158: # = 3635 (0.00 - 91.63)

a00

am

a 1

T 1 1 1 1 711
0.0 02 04 06

n3s
Il =0, 000

Trans009: # = 1684 (0.01 - 110.24)

200

a 50 100

118
Inieral =0, 1000

Trans128: # = 4084 (0.00 - 9.43)

b
2l

I
2l

I I T 1
0Dods 001 0015 0020

om
il 0 D005

Trans093: #= 2619 (0.00 - 53.90)
B -
™

150 250
| [

o)
1

[+
L
n

00 a5 10 15 20

osT
Iriatvale 0. 0500

Trans055: #= 1598 (0.00 - 13.7§)

11
11
Bl v
11
44 1
11!
|
10
a [
T T T T 1
000 002 004 OO068 008
00
Iriarvai D 00G0

[Holtman, 2006]

Response time (sec)

Scatter Plot

Response Time Over Time (in sec)

B Previous Test
B Current Test

2000

Start time (in sec)

[Jiang et al., ICSM 2009]

Response Time

20

15

10

Hexbin Plot

[] [® @
........ a @
T I 000G OGBSI o s
I R NN NN L LN LN N
-2 0000000000000 00 ¢ o
() Y Y T

10 Thousands
-o000

13579

Thousands

13579

Hundreds

13579

Tens

00000
13579

Ones

13579

I I I I
5 10 15 20

Time of Day

[Holtman, 2006]

Box-Plot

||||||||||||||||||

||||||||||||

P —-—--

-

aull | asuodsay

19 20

9 10 11 12 13 14 15 16 17 18

8

Black = Median, Red = Mean, Width ~ # of Samples

Width of the box is proportional to the square root
of the number of samples for that transact

Transaction

10n type
[Holtman, 2006]

Violin Plot

— pud

L xopuIn|
- uo Al
— qpibsy
— doj

— JB0[q
— Jpue
— el
1w

- orpne3adw
L oeael
— ap

- ssof

| ssaidwioo

_ _
u =
S S
p—]

—

W1} UOIINOAXA PAZI[BULION

0.95 —

[Georges et al., OOPSLA 2007]

Response Time (sSec)

Bean Plot

Response Time Distribution

B Previous Test
B Current Test

[Tiang et al., ICSM 2009]

Response time

Control Charts

—— Baseline LCL,UCL —— Baseline LCL,UCL
---- Baseline CL ---- Baseline CL «
X Target E X Target
= X X
X = X
¥ w X
c X X X
x X x XX o XX X
X X X X x % — X % % X X XX 36X,
'..‘..‘..‘..‘.){"..‘..‘.‘..‘..‘.T.“){"“‘T.‘.R.‘._‘..‘..‘.‘)_(._.._..‘.RT.“xxx"_.._.i._.xx‘.‘_.‘.T.T @ . X x Xooox X x X
x X X X X X x XX X X X o __x.)(._.)(__--x_)s__________--_____x)(__)(_x_ ________ X__.
XX Xy x XX XX "y o X XN XXX x X XXy
X " A b AN A X
X
Time Time

(a) Normal operation

(b) Out-of-control

[Neuven et al., APSEC 2011]

Gantt Chart

CPU 60 |
20 20
IO Channel : |
30 10 5 15
Network ' ' - 1 '
| | | |

0% 20% 40% 60% 80% 100%

Utilization

Shows the relative duration of a
number of (Boolean) conditions

[Tain, 1991]

Instrumentation

m Source code level instrumentation
— Ad-hoc manual instrumentation,
— Automated instrumentation (e.g., AspectJ), and

— Performance instrumentation framework (e.g., the
Application Response Time API)

m Binary instrumentation framework
— Dynlnst (http://www.dyninst.org/),
— PIN (http://www.dyninst.org/)
— Valgrind (http://valgrind.org/)
m Java Bytecode instrumentation framework

— Ernst’s ASE 05 tutorial on “Learning from executions:
Dynamic analysis for software engineering and program
understanding”
(http://pag.csail.mit.edu/~mernst/pubs/dynamic-tutorial-
ase2005-abstract.html)

http://www.dyninst.org/
http://www.dyninst.org/
http://www.dyninst.org/
http://www.dyninst.org/
http://valgrind.org/
http://valgrind.org/
http://pag.csail.mit.edu/~mernst/pubs/dynamic-tutorial-ase2005-abstract.html
http://pag.csail.mit.edu/~mernst/pubs/dynamic-tutorial-ase2005-abstract.html
http://pag.csail.mit.edu/~mernst/pubs/dynamic-tutorial-ase2005-abstract.html
http://pag.csail.mit.edu/~mernst/pubs/dynamic-tutorial-ase2005-abstract.html
http://pag.csail.mit.edu/~mernst/pubs/dynamic-tutorial-ase2005-abstract.html
http://pag.csail.mit.edu/~mernst/pubs/dynamic-tutorial-ase2005-abstract.html
http://pag.csail.mit.edu/~mernst/pubs/dynamic-tutorial-ase2005-abstract.html
http://pag.csail.mit.edu/~mernst/pubs/dynamic-tutorial-ase2005-abstract.html

Profiling

m Profilers can help developers locate “hot” methods

— Methods which consume the most amount of resources
(e.g., CPU)

— Methods which take the longest
— Methods which are called frequently

m Examples of profilers:
— Windows events: xperf
— Java applications: xprof, hprof, JProfiler, Y ourKit
— .net applications: YourKit

— Dump analysis: DebugDiag (Windows dumps), Eclipse
Memory Analyzer (Java heap dumps)

— Linux events: SystemTap/Dtrace, lttng

JProfiler

&3 JProfiler [Iclasslib class file viewer] - 10| x|

Session Edit Profiler Help

2% Q ik £ O

Thread selection: | All thread groups -

T 4

- 716818 ms- 1 inv. org.ajtjclasslib browser BrowserDetailPane. showPane

CPLU views 5.6% - 42114 ms - 1 inv. org.gjtjclasslib browser detail AtributeDetailPane. show
65.6% - 48104 ms- 1 inv. arg.gjtjclasslib browser.detail attributes. CodedtributeDetailP ane . show
g‘% i $ A5.5% - 48079 ms- 1 inv. org.gjtjclasslib brovwser.detail attributes. CodeAttributeByte CodeDetailPane. show
— = ﬂ, A6.6% - 41562 ms- 1 inv. getCachedByte CodeDocument
MErTory vigws = & a6.6% - 41562 ms- 1 inv. createByteCodeDocument

= $ A6.E% - 41562 ms- 1 inv. arg.ojtjclasslib browser detail attributes Byte CodeDocument. <init=
= & A6.E% - 41561 ms- 1 inv. setupDocument
= $ 35.8% - 26264 ms- 5251 inv. addinstructionToDocument
Threads views = @ 24 6% - 18026 ms- 187453 inv. appendString
0O 24.5%-17930 ms- 15757 inv. javax.swing textAbstractDocument.insetString
0O 0.0%-8ms- 15753 inv. javax.swing text.AbstractDocument getlenath
& 10.2% - TA06 ms - 8241 inv. addOpeodeSpecificinfo
& 0.6% - 470 ms - 5251 inv. addOffsetReference
& 0.2% - 137 ms- 5251 inv. getPaddedyvalue
0O 01% - 55 ms- 5251 inv. java.lang. StringBuffar. =init=
O 0.0%- 22 ms- 5251 inv. java.lang.StringBuffer toString
@ 0.0%-12ms- 52591 inv. org.ajtjclasslib.bytecode Ahstractinstruction.getOpcodeverbose
i O 0.0%-8ms- 45251 inv. java.lang.StringBuffer.append
@ O 0.0%- 0ms- 5251 inv. arg.gjtjclasslib bytecode Ahstractinstruction. getOffset
= $ 2008% - 15063 ms- 1 inv. createCpoodeCounterDocument
ﬂ, 0.3%-183ms-1inv. org.ojtjclasslibio ByteCodeReader readByteCode
O 0.0%- 32 ms - 4242 inv. java.util lterator hasiext

i)

Wi telemetry views

HEHEH

[

[4]

M 00%-9me- Timny cunmice | anncherfEinnClaccl nader lnadclacs

‘]
Invocation tree | Hot spots

hnlicensed copy for evaluation purposes, 9 days remaining 16:19 |£E Frozen -

How JProfiler works

m Monitors the JVM activities via the JVM Tool
Interface (JVMTI) to trap one or more of the
following event types: __ |

— Lifecycle of classes, -

— Lifecycle of threads, JPrOfller
— Lifecycle of objects,

— Garbage collection events, etc.

m System overhead v.s. the details of system behavior

— The more the types of monitored events, the higher the
total number of events collected by the profiler, the
slower the system 1s (higher overhead)

— To reduce overhead:
e the profiler is recommended to run under sampling mode, and
* select only the “needed” types of events to monitor

http://resources.ej-technologies.com/jprofiler/help/doc/index.html

http://resources.ej-technologies.com/jprofiler/help/doc/index.html
http://resources.ej-technologies.com/jprofiler/help/doc/index.html
http://resources.ej-technologies.com/jprofiler/help/doc/index.html
http://resources.ej-technologies.com/jprofiler/help/doc/index.html
http://resources.ej-technologies.com/jprofiler/help/doc/index.html

Evaluating the Accuracy of Java Profilers

m This paper shows that four commonly-used Java
profilers (xprof, hprof, jprofile, and yourkit) often
disagree on the 1dentity of the hot methods.

m The results of profilers disagree because

— They are run under the “sampling” mode

— The samples are not randomly selected
* They are all “yield point-based” profilers

» The “observer effect” of profilers => Using a different
profiler can lead to differences in the compiled code
(dynamic optimizations by the JVM) and subsequently
differently placed yield points

[Mvtkowicz et al., PLDI 2010]

Performance Evaluation
- Simulation

Simulation

m A simulation model can be used

— when during the design stage or even some
components are not available; or

— when 1t 1s much cheaper and faster than
measurement-based approach (Simulating an 8-
hour experiment is much faster than running the
experiment for 8 hours.)

m However, the simulation models

— usually take longer to develop than the analytical
models, and

— are not as convincing to practitioners as the
measurement-based models

Evaluating the Performance Impact
of Software Design Changes

-

o2 T g o)
£
7N g};"

userl8] | cero) blog[4] blog(2]
{ (a) World View Layer

dsk

W_care
(b) Component Lay Physical La
por 1ysical Layer

Developed usmg ‘the OMNetT++ framework
[Foo et al., MESOCA 2011]

Simulation

m Used extensively in computer networking. It 1s also
gaining popularity in SPE, especially when it 1s used to
solve performance models.

m Popular simulation frameworks
— NS2 network simulator: http://isi.edu/nsnam/ns/

— OMNeT++ network simulation framework:
http://www.omnetpp.org/ OMNeT++

— OPNet: http://www.riverbed.com/products/performance-

management-control/opnet.html opN Er

Making Networks and Applications Perform™

http://isi.edu/nsnam/ns/
http://isi.edu/nsnam/ns/
http://www.omnetpp.org/
http://www.omnetpp.org/
http://www.riverbed.com/products/performance-management-control/opnet.html
http://www.riverbed.com/products/performance-management-control/opnet.html
http://www.riverbed.com/products/performance-management-control/opnet.html
http://www.riverbed.com/products/performance-management-control/opnet.html
http://www.riverbed.com/products/performance-management-control/opnet.html
http://www.riverbed.com/products/performance-management-control/opnet.html

Performance Evaluation
- Analytical Modeling

Performance Models

m Performance _models describe how system
operations use resources and how resource
content affects operations.

* Early-cycle performance models can predict a
system’s performance before 1t’s build, or assess

the effect of a change before 1t’s carried out.
During the requirements or design stages

* Late-cycle performance models explore amongst
various architecture and configuration
alternatives to support the evolution of these large
software systems.

Uses data from the measurement-based approach

Basic Components of a Queue

,’_ _\\ # of Servers
4 N\
/ \

E @ ¢ \

Y99\ Queue Size < e =
LAY e Rate,’ \\ .
Y X ‘| K Service Time
o

w* L
- . ’

 EEEE
|| [FE

(1 RN

M | 1

ﬁ" 1

\\—f/ \ g

W Customers waiting
\\’ - ,’ in the queue
NS -~ ’, Customers currently
Customer being serviced

i
A | I

L
1 R

population

Performance Anti-patterns

Performance Anti-Patterns

m A pattern 1s a common solution to a problem that
occurs 1n many different contexts. Patterns capture
expert knowledge about “best practices” 1In
software design in a form that allows that
knowledge to be reused and applied 1n the design
of many different types of software.

m An anti-pattern documents common mistakes made
during software development as well as therr
solutions.

m A performance anti-pattern can lie at the

— software architecture or design level, or

— code level

[Smith et al., WOSP 2000]

Design-level Anti-patterns
- Circuitous Treasure Hunt

Model

Element

1..N

modellD : int

<

elementNo : int

Node

nodeNo : int
X :int
y oint
Z:int

draw()

RN

draw()

?

Beam Triangle Plate
node1 :int node1 : int nodesl] : int
node2 : int node2 : int

node3 : int
draw()
draw() draw()

[Smith et al., WOSP 2000]

Design-level Anti-patterns
- Circuitous Treasure Hunt

L ICAD . Database . Beam . Node : Node
T T

Redengn the database schema

find(modellD)

T
|
|
|
|
I |
| |
| [
! I
- fnamosele Refactor the de51gn to reduce the #
ﬁnd(modeIID. beams
| sonosams) | ; of datqbase calls
| | | | |
loop, | i *“[each b:eam] i i
: retrieve(beam) | : } }
A e
: «creiate» ___i i i
[-
find{modellD, node1, no:tieZ) i i i
>
: retrieve(node1) i i i i
>
I i ate» i -J i
I »
: retrieve(node2) i i i i
—
I i i eate» i J
i draw() i _i i i
: i : draw() ; i
I >
| i | aawg |
[>
i i ilk__draw() } }
| | -
: close() : !
|

[Smith et al., WOSP 2000]

Code-level Anti-patterns
- Repetitive Computations

Question: where is the redundant computation?

1 // Simplified from the XYPlot class in JFreeChart
2 public void render(...) {

3 for (int item = 0; item < itemCount; item++) { // Outer Loop
4 renderer.drawltem(...item...); // Calls drawVerticalltem

s}

6

7 // Simplified from the CandlestickRenderer class in JFreeChart

8 public void drawVerticalltem(...) {

9 int maxVolume = 1;

10 for (int i = 0; i < maxCount; i++) { // Inner Loop

11 int thisVolume = highLowData.getVolumeValue(series, i).intValue();
12 if (thisVolume > maxVolume) {

13 maxVolume = thisVolume;

14 }

15}

16 ... = maxVolume;

17 }

A JFreeChart Performance bug

[Nistor et al., ICSE 2013]

Detecting architecture/design level
anti-patterns

m Define software performance requirements for the
system (response time, throughput and utilization)

m Encode the studied system architecture into the
PCM with service demands and workload

m Encode the design/architecture level performance
anti-patterns using rules

m Analyze the performance of the PCM model to see
if 1t violates any performance requirements

m (If there are performance requirements violated,)
Detect the performance anti-patterns using the
encoded rules

[Trubianiet et al., J|SS 2014]

Mining Historical Data for
Performance Anti-patterns

m Randomly sampled 109 real-world performance

bugs from five open source software systems
(Apache, Chrome, GCC, Mozilla and MySQL)

m Static Analysis: Encode them as rule-checkers

1NS10C

e LLVM

Mozilla Bug 515287 & Patch |

XMLHttpRequest::OnStop(){
//at the end of each XHR

-- mScriptContext->GC();

} nsXMLHttpRequest.cpp

doing garbage collection (GC) after every
. XMLHttpRequest (XHR) is too frequent.

" It causes Firefox to consume 10X more

What is this bug
This was not a bug until Web 2.0, where

CPU at idle GMail pages than Safari.

An example of a Mozilla bug — Intensive GCs

[Tin et al., PLDI 2012]

Performance Anti-patterns
- Repetitive Loop lterations

m Dynamic Analysis: Using the soot framework

to detect similar memory access 1n the loops

1 // Simplified from the XYPlot class in JFreeChart
2 public void render(...) {
3 for (int item = O; item < itemCount; item++) { // Outer Loop
4 renderer.drawltem(...item...); // Calls drawVerticalltem
5}
6 }
7 // Simplified from the CandlestickRenderer class in JFreeChart
8 public void drawVerticalltem(...) {
int maxVolume = 1;

10 for (inti = 0; i < maxCount; i++) { // Inner Loop
11 int thisVolume = highLowData.getVolumeValue(series, i).intValue();

b=

12 if (thisVolume > maxVolume) {
13 maxVolume = thisVolume;

14 }

15}

16 ... = maxVolume;

17 }

A JFreeChart Performance bug

[Nistor et al., ICSE 2013]

Accessing the Database
Using ORM

select u from user

User u = findUserByID(1); S where u.1d = 1; s
N
ORM
update user set Database
name="Peter”
u.setName(“Peter’); where user.id = 1; ~—

—_— >

[Chen et al., ICSE 2014]

Performance Anti-patterns
iIn Hibernate

Company company = em.find(Company.class, companylD=1);
for (Department d : company.getDepartment()) {
List<Employee> e = d.getEmployee();
for (Employee tmp : e) {
tmp.getld();

b

select ¢ from company c where c.ID = 1
select ¢ from employee ¢ where ¢.ID = departmentID.1
select ¢ from employee ¢ where ¢.ID = departmentID.2

select e from employee ¢ where ¢.ID = departmentID.n

[Chen et al., ICSE 2014]

Performance Anti-patterns
iIn Hibernate

@Fetch(FetchMode.SUBSELECT) private List<Employee> employee
Company company = em.find(Company.class, companylD=1);
for (Department d : company.getDepartment()) {
List<Employee> e = d.getEmployee();
for (Employee tmp : ¢) {
tmp.getld();

b

select ¢ from company c where c.ID = 1
select * from employee ¢ where e¢.departmentID
= (select departmentID where department.company.id = 1)

20 Department, 200 Department, 20000 Department,

10 Employee 10 Employee 10 Employee
Before (ms) 282 ms 1238ms 20462ms
After (ms) 214ms (+24%) 715ms (+42%) 6382ms (+69%)

[Chen et al., ICSE 2014]

