
EECS 4314 
Advanced Software Engineering 

Topic 13: 

Software Performance Engineering 

Zhen Ming (Jack) Jiang 



Acknowledgement 
■ Adam Porter 

■ Ahmed Hassan 

■ Daniel Menace 

■ David Lilja 

■ Derek Foo 

■ Dharmesh Thakkar 

■ James Holtman 

■ Mark Syer 

■ Murry Woodside 

■ Peter Chen 

■ Raj Jain  

■ Tomáš Kalibera 

■ Vahid Garousi 



Software Performance Matters 

 



What is Software Performance? 

“A performance quality requirement defines a metric that 

states the amount of work an application must perform in 

a given time, and/or deadlines that must be met for 

correct operation”. 

- Ian Gordon, Essential Software Architecture 



Performance Metrics (1) 

■ Response time 

– a measure of how responsive an application or 

subsystem is to a client request. 

■ Throughput 

– the number of units of work that can be handled 

per unit of time (e.g., requests/second, calls/day, 

hits/hour, etc.)  

■ Resource utilization 

– the cost of the project in terms of system resources. 

The primary resources are CPU, memory, disk I/O 

and network.  



Performance Metrics (2) 
■ Availability 

– the probability that a system is in a functional 
condition 

■ Reliability 

– the probability that a system is in an error-free 
condition 

■ Scalability 

– an application’s ability to handle additional workload, 
without adversely affecting performance, by adding 
resources like CPU, memory and disk 



Common Goals of 

Performance Evaluation (1) 

Evaluating  
Design Alternatives 

■ Should my application 

service implement the push 

or pull mechanism to 

communicate with my 

clients? 

Comparing System 

Implementations 

■ Does my application service 

yield better performance than 

my competitors? 

Benchmarking 



Common Goals of 

Performance Evaluation (2) 

Performance Debugging 

■ Which part of the system 

slows down the overall 

executions? 

Performance Tuning 

■ What are the configuration 

values that I should set to 

yield optimal performance? 



Common Goals of 

Performance Evaluation (3) 

Performance Prediction 

■ How would the system look 

like if the number of users 

increase by 20%? 

Capacity Planning 

■ What kind of hardware 

(types and number of 

machines) or component 

setup would give me the 

best bang for my buck? what-if analysis 



Common Goals of 

Performance Evaluation (4) 

Performance Requirements 

■ How can I determine the 

appropriate Service Level 

Agreement (SLA) policies 

for my service? 

Operational Profiling 

■ What is the expected usage 

once the system is deployed 

in the field? 

workload characterization 



Performance Evaluation v.s.  

Software Performance Engineering 

■ “Contrary to common belief, performance 

evaluation is an art. Like a work of art, 

successful evaluation cannot be produced 

mechanically.” 

- Raj Jain, 1991 

 

■ “[Software Performance Engineering] 

Utterly demystifies the job (no longer the 

art) of performance engineering” 

- Connie U. Smith and Lloyd G. Williams, 2001 



When should we start assessing  

the system performance? 

“It is common sense that we need to develop the 

application first before tuning the performance.” 

- Senior Developer A 

Many performance optimizations are related to the 

system architecture. Parts or even the whole system 

might be re-implemented due to bad performance!  



We should start performance 

analysis as soon as possible! 

Originated by Smith et al. 

 

 

 

 

 

To validate the system performance 
as early as possible (even at the 
requirements or design phase) 
      “Performance By Design” 

  



Software Performance Engineering 

Definition: Software Performance Engineering (SPE) 
represents the entire collection of software engineering 
activities and related analyses used throughout the 
software development cycle, which are directed to 
meeting performance requirements. 

- Woodside et al., FOSE 2007 



SPE Activities 
Performance 

Requirements 
Scenarios 

Operational 
Profile 

Performance  
Test Design 

Analyze Early-cycle 
Performance Models 

Product Architecture and Design 
(measurements and mid/late models: evaluate, diagnose) 

Performance  
Testing 

Product evolve/maintain/migrate 
(Late-cycle Performance Models:  

evaluate alternatives) 

Total  
System  

Analysis 

Software 
Development 

Life-cycle 

[Woodside et al., FOSE 2007] 

Performance  
Anti-pattern Detection 



Three General Approaches of  

Software Performance Engineering 

Measurement Analytical Modeling Simulation 

Usually applies late in 

the development cycle 

when the system is 

implemented 

Usually applies early in the 

development cycle to 

evaluate the design or 

architecture of the system 

Can be used both during 

the early and the late 

development cycles 



Three General Approaches of  

Software Performance Engineering 

Measurement Analytical Modeling Simulation 

Approaches 

Characteristic Analytical Measurement Simulation 

Flexibility High Low High 

Cost Low High Medium 

Believability Low High Medium 

Accuracy Low High Medium 



Three General Approaches of  

Software Performance Engineering 

Measurement Analytical Modeling Simulation 

Usually applies late in 

the development cycle 

when the system is 

implemented 

Usually applies early in the 

development cycle to 

evaluate the design or 

architecture of the system 

Can be used both during 

the early and the late 

development cycles 

Convergence of the approaches 



Books, Journals and Conferences 



Roadmap 
■ Measurement 

– Workload Characterization 

– Performance Monitoring 

– Experimental Design 

– Performance Analysis and Visualization 

■ Simulation 

■ Analytical Modeling 
– Single Queue 

– Queuing Networks (QN) 

– Layered Queuing Networks (LQN) 

– PCM and Other Models 

■ Performance Anti-patterns 



Performance Evaluation 

- Measurement 



Measurement-based  

Performance Evaluation 

Workload 
Experimental 

Design 
Performance 
Measurement 

Performance 
Analysis 

operational  

profile 

Minimum # of experiments, 

Maximum amount of information 

light-weight performance  

monitoring and data recording 

testing, benchmarking, 

capacity planning, etc. 



Operational Profiling 

(Workload Characterization) 

An operational profile, also called a workload, 

is the expected workload of the system under 

test once it is operational in the field. 
 

The process of extracting the expected 

workload is called operational profiling or 

workload characterization.   



Workload Characterization Techniques 

■ Past data 

– Average/Minimum/Maximum request rates 

– Markov Chain 

– … 

■ Extrapolation 

– Alpha/Beta usage data 

– Interview from domain experts 

– … 

■ Workload characterization surveys 

– M. Calzarossa and G. Serazzi. Workload characterization: a 
survey. In Proceedings of the IEEE.1993. 

– S. Elnaffar and P. Martin. Characterizing Computer Systems' 
Workloads. Technical Report. School of Computing, Queen's 
University. 2002. 

 

 

 



Workload Characterization Techniques 

- Markov Chain 

 

web access logs for the past few months 



192.168.0.1 - [22/Apr/2014:00:32:25 -0400] "GET 
/dsbrowse.jsp?browsetype=title&browse_category=&browse_actor=&bro
wse_title=HOLY%20AUTUMN&limit_num=8&customerid=41 
HTTP/1.1" 200 4073 10 

 

192.168.0.1 - [22/Apr/2014:00:32:25 -0400] "GET 
/dspurchase.jsp?confirmpurchase=yes&customerid=5961&item=646&qua
n=3&item=2551&quan=1&item=45&quan=3&item=9700&quan=2&item
=1566&quan=3&item=4509&quan=3&item=5940&quan=2 HTTP/1.1" 
200 3049 177 

 

192.168.0.1 - [22/Apr/2014:00:32:25 -0400] "GET 
/dspurchase.jsp?confirmpurchase=yes&customerid=41&item=4544&quan
=1&item=6970&quan=3&item=5237&quan=2&item=650&quan=1&item
=2449&quan=1 HTTP/1.1" 200 2515 113 

Web Access Logs 

Workload Characterization Techniques 
- Markov Chain 



192.168.0.1 - [22/Apr/2014:00:32:25 -0400] "GET 
/dsbrowse.jsp?browsetype=title&browse_category=&browse_actor=&bro
wse_title=HOLY%20AUTUMN&limit_num=8&customerid=41 
HTTP/1.1" 200 4073 10 

 

192.168.0.1 - [22/Apr/2014:00:32:25 -0400] "GET 
/dspurchase.jsp?confirmpurchase=yes&customerid=5961&item=646&qu
an=3&item=2551&quan=1&item=45&quan=3&item=9700&quan=2&item
=1566&quan=3&item=4509&quan=3&item=5940&quan=2 HTTP/1.1" 
200 3049 177 

 

192.168.0.1 - [22/Apr/2014:00:32:25 -0400] "GET 
/dspurchase.jsp?confirmpurchase=yes&customerid=41&item=4544&qua
n=1&item=6970&quan=3&item=5237&quan=2&item=650&quan=1&ite
m=2449&quan=1 HTTP/1.1" 200 2515 113 

For customer 41: browse -> purchase 

Workload Characterization Techniques 

- Markov Chain 



Login 

Search Purchase 

Browse 

… 

… 

0.4 

0.6 

0.8 

0.15 

0.05 

0.05 

0.95 

Workload Characterization Techniques 

- Markov Chain 



Experimental Design 

■ Suppose a system has 5 user configuration parameters. 
Three out of five parameters have 2 possible values and the 
other two parameters have 3 possible values. Hence, there 
are 23 × 32 = 72 possible configurations to test.  
 

■ Apache webserver has 172 user configuration parameters 
(158 binary options). This system has 1.8 × 1055 possible 
configurations to test! 

The goal of a proper experimental design is 

to obtain the maximum information with 

the minimum number of experiments. 



Experimental Design Terminologies  

■ The outcome of an experiment is called the response 
variable.  

– E.g., throughput and response time for the tasks.  

■ Each variable that affects the response variable and has 
several alternatives is called a factor.  

– E.g., to measure the performance of a workstation, there are 
five factors: CPU type, memory size, number of disk drives 
and workload. 

■ The values that a factor can have are called levels. 

– E.g., Memory size has 3 levels: 2 GB, 6 GB and 12 GB 

■ Repetition of all or some experiments is called replication. 

■ Interaction effects: Two factors A and B are said to 
interact if the effect of one depends on the other. 

 



Ad-hoc Approach 

 

Iteratively going through each 

(discrete and continuous) 

factors and identity factors 

which impact performance for 

an three-tired e-commerce 

system. 

[Sopitkamol et al., WOSP 2005] 



Covering Array 
■ A t-way covering array for a given input space model is a set of 

configurations in which each valid combination of factor-values 
for every combination of t factors appears at least once.  

■ Suppose a system has 5 user configuration parameters. Three out 
of five parameters have 2 possible values (0, 1) and the other 
two parameters have 3 possible values (0, 1, 2). There are total 
23 × 32 = 72 possible configurations to test. 

A 2-way covering array  

 A B C D E 

0 1 1 2 0 

0 0 0 0 0 

0 0 0 1 1 

1 1 1 0 1 

0 1 0 0 2 

1 0 1 1 0 

1 1 1 1 2 

1 0 0 2 1 

1 0 0 2 2 



Covering Array and CIT 

■ There are many other kinds of covering array 
like: variable-strength covering array, test case-
aware covering array, etc.  

■ Combinatorial Interaction Testing (CIT) models 
a system under test as a set of factors, each of 
which takes its values from a particular domain. 
CIT generates a sample that meets the specific 
coverage criteria (e.g., 3-way coverage).  

■ Many commercial and free tools: 
http://pairwise.org/tools.asp 

[Yilmaz et al., IEEE Computer 2014] 

http://pairwise.org/tools.asp


Performance Measurement 

■ Types of performance data 

■ Performance Monitoring 

– Agent-less Monitoring 

– Agent-based Monitoring 

■ Measurement-based frameworks 

■ Performance measurement issues 

 



Performance Data 

■ System and application resource usage metrics 
– CPU, memory, network, etc. 

■ Application performance metrics 
– Response time, throughput, # of requests submitted 

and # of requests completed, etc.  

■ Application specific metrics 
– # of concurrent connections to the database, rate of 

database transactions, # of garbage collections 

■ Some of these data can be obtained directly, while 
others need to be derived (e.g., from logs). 



Performance Monitor 

■ Monitors and records the system behavior 

over time 

■ Needs to be light-weight 

– Imposing as little performance overhead as 

possible 

■ Two types of performance monitoring 

approaches 

– Agent-less monitoring 

– Agent-based monitoring 

 



Agent-less Monitoring Examples 

 

Task Manager JConsole 

PerfMon (Windows), sysstat (Linux), top 



Agent-based Monitoring Examples 

 

App Dynamics CA Willy 

Dell FogLight, New Relic 



A Framework for Measurement- 

based Performance Modeling 

Test 

Enumeration

Test 

Reduction

Environment

Setup

Test

Analysis

Test 

Execution

Test 

Transition

Control Flow Data Flow

Performance

Data

Performance

Model

Model 

Building

[Thakkar et al., WOSP 2008] 

Capacity Planning 



Talos  

- Mozilla Performance Regression Testing Framework  

[Talbert et al., http://aosabook.org/en/posa/talos.html] 

Source 
Change 

Talos 
Harness Upload 

Graph 
Server 

Firefox 

Regression 
Detection 

Script 

Regression 
Notice Email 

http://aosabook.org/en/posa/talos.html
http://aosabook.org/en/posa/talos.html


Server processes results & updates internal databases Server selects best task that matches client characteristics Client executes task & returns results Client registers & receives client kit When client becomes available it requests a QA task 

return results task request QA task register client kit 

Skoll – A Distributed Continuous  

Quality Assurance (DCQA) Infrastructure 

Clients 

Server(s) 

[Memon et al., ICSE 2004] 

Performance Regression Testing 

under different configurations 



Measurement Bias 

■ Measurement bias is hard to avoid and 
unpredictable.  

■ Example 1: How come the same application 
today runs faster compared with yesterday? 

■ Example 2: Why the response time is very 
different when running the same binary under 
different user accounts? 

■ Example 3: Why the code optimization only 
works on my computer? 

 

 

 

 

[Mytkowicz et al., ASPLOS 2010] 

• Repeated measurement 

• Randomize experiment setup 



 



Performance Analysis  

■ Statistical analysis 

– Descriptive statistics  

– Hypothesis testing 

– Regression analysis 

■ Performance visualization 

■ Performance debugging 

– Profiling 

– Instrumentation 



Comparing Two Alternatives 
■ Paired observations 

– E.g., there are six scenarios ran on two versions of the system. 
The response time are: {(5.4, 19.1), (16.6, 3.5), (0.6, 3.4), (1.4, 
2.5), (0.6, 3.6), (7.3, 1.7)} 

– Paired student-t test 

■ Unpaired observations 

– E.g., the browsing scenarios were ran 10 times on Release A and 
11 times on Release B 

– Unpaired student-t test 

■ Student-t tests assume that the two datasets are normally 
distributed. Otherwise, we need to use non-parametric tests 

– Wilcoxon signed-rank test for paired observations 

– Mann-Whitney U test for the unpaired observations 



Comparing More than  

Two Alternatives 

■ For comparing more than two alternatives, we will 

use ANOVA (Analysis of variance) 

– E.g., There are 6 different measurements under 6 

different software configurations. 

■ ANOVA also assumes the datasets are normally 

distributed. Otherwise, we need to use non-

parametric tests (e.g., Kruskal-Wallis H test) 

 

 



Statistical significance v.s.  

Performance impact 

■ The new design’s performance may be 

statistically faster than the old version. However, 

it’s only 0.001 seconds faster and will take a 

long time to implement. Is it worth the effort? 

Trivial (Cohen’s D ≤ 0.2) 
 

Small (0.2 < Cohen’s D ≤ 0.5) 
 

Medium if 0.5 < Cohen’s D ≤ 0.8 
 

Large 0.8 < Cohen’s D   

Effect Sizes = 

Cliff’s δ -> Non-parametric alternative 



Regression-based Analysis 

■ Can we find an empirical model which predicts 

the application CPU utilization as a function of the 

workload? For example,  
 

𝐶𝑃𝑈 =  𝑏0 + 𝑏1 × # 𝑜𝑓 𝑏𝑟𝑜𝑤𝑠𝑖𝑛𝑔 + 𝑏2 × # 𝑜𝑓 𝑠𝑒𝑎𝑟𝑐ℎ𝑖𝑛𝑔 
 

■ Then we can conduct various what-if analysis? 

– (Field Assessment) What if the field workload is A, 

would the existing setup be able to handle that load? 

– (Capacity Planning) What kind of machine (CPU 

power) should we pick based on the project 

workload for next 3 years? 

 

 

Are input variables linearly independent of each other? 

If they are highly correlated, keep only one of them in the model 



Performance Visualization 

 



Line Plots 

 

Metrics plots from vmstats 
[Holtman, 2006] 



Histogram Plots 

 

[Holtman, 2006] 



Scatter Plot 

 

[Jiang et al., ICSM 2009] 



Hexbin Plot 

 

[Holtman, 2006] 



Box-Plot 

 

Width of the box is proportional to the square root  

of the number of samples for that transaction type 
[Holtman, 2006] 



Violin Plot 

 

[Georges et al., OOPSLA 2007] 



Bean Plot 

 

[Jiang et al., ICSM 2009] 



Control Charts 

[Nguyen et al., APSEC 2011] 



Gantt Chart 

[Jain, 1991] 

Shows the relative duration of a  

number of (Boolean) conditions 



Instrumentation 
■ Source code level instrumentation 

– Ad-hoc manual instrumentation,  

– Automated instrumentation (e.g., AspectJ), and 

– Performance instrumentation framework (e.g., the 
Application Response Time API) 

■ Binary instrumentation framework 
– DynInst (http://www.dyninst.org/),  

– PIN (http://www.dyninst.org/) 

– Valgrind (http://valgrind.org/) 

■ Java Bytecode instrumentation framework 
– Ernst’s ASE 05 tutorial on “Learning from executions: 

Dynamic analysis for software engineering and program 
understanding” 
(http://pag.csail.mit.edu/~mernst/pubs/dynamic-tutorial-
ase2005-abstract.html) 

http://www.dyninst.org/
http://www.dyninst.org/
http://www.dyninst.org/
http://www.dyninst.org/
http://valgrind.org/
http://valgrind.org/
http://pag.csail.mit.edu/~mernst/pubs/dynamic-tutorial-ase2005-abstract.html
http://pag.csail.mit.edu/~mernst/pubs/dynamic-tutorial-ase2005-abstract.html
http://pag.csail.mit.edu/~mernst/pubs/dynamic-tutorial-ase2005-abstract.html
http://pag.csail.mit.edu/~mernst/pubs/dynamic-tutorial-ase2005-abstract.html
http://pag.csail.mit.edu/~mernst/pubs/dynamic-tutorial-ase2005-abstract.html
http://pag.csail.mit.edu/~mernst/pubs/dynamic-tutorial-ase2005-abstract.html
http://pag.csail.mit.edu/~mernst/pubs/dynamic-tutorial-ase2005-abstract.html
http://pag.csail.mit.edu/~mernst/pubs/dynamic-tutorial-ase2005-abstract.html


Profiling 

■ Profilers can help developers locate “hot” methods 

– Methods which consume the most amount of resources 
(e.g., CPU)  

– Methods which take the longest 

– Methods which are called frequently 

■ Examples of profilers: 

– Windows events: xperf 

– Java applications: xprof, hprof, JProfiler, YourKit 

– .net applications: YourKit 

– Dump analysis: DebugDiag (Windows dumps), Eclipse 
Memory Analyzer (Java heap dumps) 

– Linux events: SystemTap/Dtrace, lttng 

 



JProfiler 

 



How JProfiler works 
■ Monitors the JVM activities via the JVM Tool 

Interface (JVMTI) to trap one or more of the 
following event types: 
– Lifecycle of classes, 

– Lifecycle of threads, 

– Lifecycle of objects, 

– Garbage collection events, etc. 

■ System overhead v.s. the details of system behavior 
– The more the types of monitored events, the higher the 

total number of events collected by the profiler, the 
slower the system is (higher overhead) 

– To reduce overhead:  
• the profiler is recommended to run under sampling mode, and 

• select only the “needed” types of events to monitor 

 http://resources.ej-technologies.com/jprofiler/help/doc/index.html 

 

http://resources.ej-technologies.com/jprofiler/help/doc/index.html
http://resources.ej-technologies.com/jprofiler/help/doc/index.html
http://resources.ej-technologies.com/jprofiler/help/doc/index.html
http://resources.ej-technologies.com/jprofiler/help/doc/index.html
http://resources.ej-technologies.com/jprofiler/help/doc/index.html


Evaluating the Accuracy of Java Profilers 

■ This paper shows that four commonly-used Java 

profilers (xprof, hprof, jprofile, and yourkit) often 

disagree on the identity of the hot methods.  

■ The results of profilers disagree because 

– They are run under the “sampling” mode 

– The samples are not randomly selected 

• They are all “yield point-based” profilers 

• The “observer effect” of profilers => Using a different 

profiler can lead to differences in the compiled code 

(dynamic optimizations by the JVM) and subsequently 

differently placed yield points 

[Mytkowicz et al., PLDI 2010] 



Performance Evaluation 

- Simulation 



Simulation 

■ A simulation model can be used  
– when during the design stage or even some 

components are not available; or 

– when it is much cheaper and faster than 
measurement-based approach (Simulating an 8-
hour experiment is much faster than running the 
experiment for 8 hours.) 

■ However, the simulation models 
– usually take longer to develop than the analytical 

models, and  

– are not as convincing to practitioners as the 
measurement-based models 



Evaluating the Performance Impact  

of Software Design Changes 

 

[Foo et al., MESOCA 2011] 
Developed using the OMNetT++ framework 



Simulation 

■ Used extensively in computer networking. It is also 
gaining popularity in SPE, especially when it is used to 
solve performance models. 

 

■ Popular simulation frameworks 
– NS2 network simulator: http://isi.edu/nsnam/ns/ 

 

– OMNeT++ network simulation framework: 
http://www.omnetpp.org/ 
 

– OPNet: http://www.riverbed.com/products/performance-
management-control/opnet.html 

 

http://isi.edu/nsnam/ns/
http://isi.edu/nsnam/ns/
http://www.omnetpp.org/
http://www.omnetpp.org/
http://www.riverbed.com/products/performance-management-control/opnet.html
http://www.riverbed.com/products/performance-management-control/opnet.html
http://www.riverbed.com/products/performance-management-control/opnet.html
http://www.riverbed.com/products/performance-management-control/opnet.html
http://www.riverbed.com/products/performance-management-control/opnet.html
http://www.riverbed.com/products/performance-management-control/opnet.html


Performance Evaluation 

- Analytical Modeling 



• Early-cycle performance models can predict a 

system’s performance before it’s build, or assess 

the effect of a change before it’s carried out.  
 

• Late-cycle performance models explore amongst 

various architecture and configuration 

alternatives to support the evolution of these large 

software systems.  

Performance Models 

■ Performance models describe how system 
operations use resources and how resource 
content affects operations.  
 

Uses data from the measurement-based approach 

During the requirements or design stages 



Basic Components of a Queue 

Customer 

population 

Customers waiting  

in the queue 

Customers currently  

being serviced 

Arrival Rate 

Queue Size 

# of Servers 

Service Time 



Performance Anti-patterns 



Performance Anti-Patterns 

■ A pattern is a common solution to a problem that 
occurs in many different contexts. Patterns capture 
expert knowledge about “best practices” in 
software design in a form that allows that 
knowledge to be reused and applied in the design 
of many different types of software.  

■ An anti-pattern documents common mistakes made 
during software development as well as their 
solutions. 

■ A performance anti-pattern can lie at the  

– software architecture or design level, or  

– code level 

 

 
[Smith et al., WOSP 2000] 



Design-level Anti-patterns 

- Circuitous Treasure Hunt 

 

[Smith et al., WOSP 2000] 



Design-level Anti-patterns 

- Circuitous Treasure Hunt 

 

[Smith et al., WOSP 2000] 

• Redesign the database schema  

• Refactor the design to reduce the # 
of database calls 



Code-level Anti-patterns 

- Repetitive Computations 

A JFreeChart Performance bug 

[Nistor et al., ICSE 2013] 

Question: where is the redundant computation? 



Detecting architecture/design level 

anti-patterns 
■ Define software performance requirements for the 

system (response time, throughput and utilization) 

■ Encode the studied system architecture into the 
PCM with service demands and workload 

■ Encode the design/architecture level performance 
anti-patterns using rules  

■ Analyze the performance of the PCM model to see 
if it violates any performance requirements 

■ (If there are performance requirements violated,) 
Detect the performance anti-patterns using the 
encoded rules 

 

[Trubianiet et al., JSS 2014] 



Mining Historical Data for 

Performance Anti-patterns 

■ Randomly sampled 109 real-world performance 

bugs from five open source software systems 

(Apache, Chrome, GCC, Mozilla and MySQL) 

■ Static Analysis: Encode them as rule-checkers 

inside LLVM 

 

[Jin et al., PLDI 2012] 

An example of a Mozilla bug – Intensive GCs 



Performance Anti-patterns 

- Repetitive Loop Iterations 
■ Dynamic Analysis: Using the soot framework 

to detect similar memory access in the loops 

[Nistor et al., ICSE 2013] 

A JFreeChart Performance bug 



Accessing the Database  

Using ORM 

User u = findUserByID(1); 

ORM 
Database 

select u from user 

where u.id = 1; 

u.setName(“Peter”); 

update user set 

name=“Peter” 

where user.id = 1; 

Objects SQLs 

[Chen et al., ICSE 2014] 



Performance Anti-patterns  

in Hibernate 
Company company = em.find(Company.class, companyID=1); 

for (Department d : company.getDepartment()) { 

 List<Employee> e = d.getEmployee(); 

 for (Employee tmp : e) { 

  tmp.getId(); 

 } 

} 

select c from company c where c.ID = 1 

select e from employee e where e.ID = departmentID.1 

select e from employee e where e.ID = departmentID.2 

… 

select e from employee e where e.ID = departmentID.n 

[Chen et al., ICSE 2014] 



Performance Anti-patterns 

in Hibernate 
@Fetch(FetchMode.SUBSELECT) private List<Employee> employee 

Company company = em.find(Company.class, companyID=1); 

for (Department d : company.getDepartment()) { 

 List<Employee> e = d.getEmployee(); 

 for (Employee tmp : e) { 

  tmp.getId(); 

 } 

} 

select c from company c where c.ID = 1 

select * from employee e where e.departmentID  

 = (select departmentID where department.company.id = 1) 

20 Department, 

10 Employee 

200 Department, 

10 Employee 

20000 Department, 

10 Employee 

 

Before (ms) 282 ms 1238ms 20462ms 

After (ms) 214ms (+24%) 715ms (+42%) 6382ms (+69%) 

[Chen et al., ICSE 2014] 


