
EECS 4314
Advanced Software Engineering

Topic 12:

Software Cost Estimation

Zhen Ming (Jack) Jiang

Slides Adapted from Ian Sommerville

1
12

2

8

4
12

3

4 5

4

6

4

7

4

Why Cost Estimation?

Why Cost Estimation?

■ Need to establish a budget

■ Need to set a price

■ Need to make a profit

■ Software cost estimation predicts the

resources the required for a software

development process

Cost Estimation

■ Cost estimation and scheduling are

usually done together

■ Cost is driven by three main activities:

– HW and SW costs, including maintenance

– Travel and training (can be reduced using

technology)

– Effort costs (paying personnel)

■ For most projects effort costs is the

dominant cost

Effort Costs

■ Effort costs are more than just salaries

– E.g., heat, lighting, support staff, networking,

recreational facilities, security, etc…

■ Effort cost is calculated by taking the total

cost of running the organization and

dividing by number of productive staff

■ How much does overhead cost?

Cost Estimation Topics

■ Productivity

■ Estimation Techniques

■ Algorithmic Cost Estimation

■ Project Duration Staffing

Software Productivity

■ Generally, productivity is measured as:

– Number of units / person hours

■ Not the case in software…why?

– It can have many solutions

• Solution 1: executes more efficiently

• Solution 2: easier to read and maintain

Software Productivity

■ Based on measuring attributes of the

software divided by total development

effort

■ Size related:

– LOC delivered

■ Function related:

– Function points (FP) and object points (OP)

Size related metrics

■ LOC per programmer-month (LOC/pm)

■ This time includes requirements, design,

coding, testing, documentation

■ Advantage: Easy to calculate

■ Disadvantage: different languages

– E.g., 5000 assembly ~ 1500 C

Function Related Metrics

■ Productivity = FP/pm

■ FP is related to:

– External and internal inputs

– User interactions

– External interfaces

– Files used by the system

■ Functionality is independent of

implementation language

Function Points

■ Some input and output interactions, etc.
are more complex than others

■ You can give a weight to the FP,
considering:

– Amount of reuse, performance, etc. …

■ FP count is highly subjective and depends
on the estimator!

■ FPs are biased towards data-processing
systems

Object Points

■ Object points are an alternative to FPs

■ The number of object points is a weighted

estimate of:

– No. of separate screens displayed (1,2,3)

– No. of reports produced (2,5,8)

– No. of modules that must be developed to

support 4th generation language code

FP and OP

■ OP are easier to estimate. They only

consider screens, reports and modules

■ OP can be estimated early in the

development process

■ OP can approximate LOC from FP or OP:

– LOC = AVC x No. of FP

– AVC is 200-300 LOC/FP in assembly

language and 2 - 40 LOC in 4 GL

Productivity Estimates

■ Many factors impact productivity

– Some programmers are 10 times more

productive

– Application domain:

• Embedded systems: ~30 LOC/pm

• Application systems: ~900 LOC/pm

• 4-50 OP/pm, depending on application, tools,

developers

– Process, project size, technology support,

working environment

LOC doesn’t impress me much!

■ Counting LOC does not take into account:

– Reused code

– Generated code

– Quality

– Performance

– Maintainability

■ Not clear how productivity and quality

metrics are related!

Estimation Techniques

■ There is no simple way to make accurate

estimates of the effort required

– Initially, not much detail is given

– Technologies and people may be unknown

■ Project cost estimates may be self-fulfilling

– Estimate defines budget, project adjusted to

meet budget

Many Estimation Techniques

■ Algorithmic cost modeling

■ Expert judgment

■ Estimation by analogy

■ Parkinson’s Law

■ Pricing to win

Algorithmic code modelling

■ Model is built based on historical cost

information

■ Generally based on the size of the

software

Expert judgement

■ Several experts in software development
and the application domain are consulted

■ Process iterates until some consensus is
reached

■ Advantages: Relatively cheap estimation
method. Can be accurate if experts have
direct experience of similar systems

■ Disadvantages: Very inaccurate if there
are no experts!

Estimation by analogy

■ The project is compared to a similar

project in the same application domain

■ Advantages: Accurate if project data

available

■ Disadvantages: Impossible if no

comparable project has been tackled

Parkinson's Law

■ “Work expands to fill the time available”

i.e., the project costs whatever resources

are available

■ Advantages: No overspending

■ Disadvantages: System is usually

unfinished

Pricing to win

■ The project costs whatever the customer

has to spend on it

■ Advantages: You get the contract

■ Disadvantages: The probability that the

customer gets the system he or she wants

is small. Often, costs do not accurately

reflect the work required

Cost Estimation Approaches

■ The aforementioned techniques may be
used top-down or bottom-up

■ Top-down: Starts at the system level and
assess system functionality and its
delivery through subsystems

■ Bottom-up: Start at component level and
aggregate to obtain system effort

Top-down vs. Bottom-up

■ Top-down:

– Usable without much knowledge

– Factors in integration, configuration and

documentation costs

– Can underestimate low-level problems

■ Bottom-up:

– Usable when architecture of the system is known

– May underestimate system-level activities such

as integration

Algorithmic Cost Modeling

Algorithmic Cost Modeling

■ A cost model can be built by analyzing the
cost and attributes of similar projects

■ Effort = A x SizeB x M

• A – depends on organization

• B – ~1-1.5 reflects disproportionate effort for large projects
(communication and configuration management)

• M – reflects product, process and people attributes

■ Most models are similar but with different
values for A, B and M

Estimation Accuracy

■ Difficult to estimate size early on. The values
for B and M are subjective

■ Several factors influence the final size
– Use of COTS (Commercial Off-the-Shelf) and

components

– Programming language

■ Estimations become more accurate as
development progresses

Estimate uncertainty

[Sommerville 2000]

COCOMO Model

■ COCOMO stands for Constructive Cost

Modeling

■ Empirical model based on project experience

– Derived by collecting data from a large number of

software projects of different sizes

■ Started with COCOMO-81 and later revised

to COCOMO 2

■ COCOMO 2 is very detailed and takes into

account different approaches, reuse, etc. …

COCOMO 81

A – depends on organization

B – reflects disproportionate effort for large projects

M - reflects product, process and people attributes

COCOMO 2 levels

■ Early prototyping model
– Estimates based on OP and a simple formula

■ Early design model
– Estimates based on FP that are translated to LOC

■ Reuse model
– Estimates effort to integrate reused and

generated code

■ Post-architecture level
– Estimates based on lines of source code

Early Prototyping Level

■ Supports prototyping projects and projects

where software is developed by

composing existing components

■ PM = (NOP x (1 - %reuse/100)) / PROD

– PM is the effort in person-months

– NOP is the number of object points

– PROD is the productivity

Object point productivity

Early design level

■ Estimates can be made after requirements

■ Based on standard algorithmic model
– PM = A x SizeB x M

• A = 2.94 in initial calibration

• Size in KLOC (approximated from FP)

• B varies from 1.01 to 1.26 depending on novelty,
development flexibility, risk management and the
process maturity

• M = PERS x RCPX x RUSE x PDIF x PREX x
FCIL x SCED

Multipliers

■ Multipliers developers, non-functional requirements,
development platform, etc.

– PERS - personnel capability

– RCPX - product reliability and complexity

– RUSE - the reuse required

– PDIF - platform difficulty

– PREX - personnel experience

– SCED - required schedule

– FCIL - the team support facilities

The Reuse Model

■ Effort is required to integrate automatically
generated code

■ PMAuto = (ASLOC x (AT/100)) / ATPROD

■ ASLOC – Number of LOC that have to be adapted

■ AT - % of adapted code that is automatically generated

■ ATPROD – engineer productivity in adapting code (2400
LOC/month)

■ Example: 20,000 LOC, 30% automatically
generated
■ (20,000 x 30/100) / 2400 = 2.5 pm

Post-architecture level

■ Uses same formula as early design

estimates (PM = A x SizeB x M)

■ Size estimate for the software should be

more accurate at this stage. Takes into

consideration:

– New code to be developed

– Rework required to support change

– Extent of possible reuse

■ This depends on 5 scale factors (very low – extra high 5-

0). Their sum/100 is added to 1.01

The exponent term (B)

■ Example:
– Precedentedness

• new project (4), rated low

– Development flexibility
• no client involvement, (1) Very high

– Architecture/risk resolution
• No risk analysis, (5) Very Low

– Team cohesion
• new team, (3) nominal

– Process maturity
• some control, (3) nominal

■ Scale factor is therefore 1.17
– (4 + 1 + 5 + 3 + 3) / 100 + 1.01 = 1.17

The Exponent Term (B)

Example

Multipliers (M)
■ Product attributes

– required characteristics of the
software product being
developed

■ Computer attributes

– constraints imposed on the
software by the hardware
platform

■ Personnel attributes

– multipliers that take the
experience and capabilities of
the people working on the project
into account

■ Project attributes
– concerned with the particular

characteristics of the software
development project

Values (0.5-1.5)

Effects of cost drivers

Effects of cost drivers

Effects of cost drivers

Project Duration

■ COCOMO

– TDEV = 3 x (PM)(0.33+0.2*(B-1.01))

■ COCOMO 2

– TDEV = 3 x (PM)(0.33+0.2*(B-1.01)) x SCEDP/100

– TDEV – calendar months

– PM – person effort computed by the COCOMO model

– B – Exponent related to complexity

– SCEDP - % increase or decrease in nominal schedule

COCOMO Example

System to be built

■ An airline sales system is to be built in C:

– Back-end database server has already been

built.

■ We will use OP estimation technique for

high level estimates and FP for detailed

estimates

COCOMO Example

- Object Point Analysis

PM = (NOP x (1 - %reuse/100)) / PROD

• PM is the effort in person-months

• NOP is the number of object points

• PROD is the productivity

Object Point Analysis

– Complexity Weighting

Complexity

Type of object Simple Medium Difficult

Screen 1 2 3

Report 2 5 8

3GL

component
N/A N/A 10

Object Point Analysis - Screen

Number and source of data tables

Number of

views

contained

Total < 4

(<2 server,

<2 client)

Total < 8

(2-3 server,

3-5 client)

Total 8+

(>3 server,

>5 client)

< 3 Simple Simple Medium

3 – 7 Simple Medium Difficult

8+ Medium Difficult Difficult

Object Point Analysis - Reports

Number and source of data tables

Number of

sections

contained

Total < 4

(<2 server,

<2 client)

Total < 8

(2-3 server,

3-5 client)

Total 8+

(>3 server,

>5 client)

< 2 Simple Simple Medium

2 or 3 Simple Medium Difficult

> 3 Medium Difficult Difficult

Object Point Analysis

– Productivity Rate

Very

low
Low Nominal High

Very

High

Developer’s

experience

and capability

4 7 13 25 50

CASE maturity

and capability
4 7 13 25 50

Object Point Analysis

■ Application will have 3 screens and will

produce 1 report:

– A booking screen: records a new sale booking

– A pricing screen: shows the rate for each day

and each flight

– An availability screen: shows available flights

– A sales report: shows total sale figures for the

month and year, and compares figures with

previous months and years

Rating of system

■ Booking screen:

– Needs 3 data tables (customer info, customer
history table, available seats)

– Only 1 view of the screen is enough. So, the
booking screen is classified as simple.

■ Similarly, the levels of difficulty of the
pricing screen, the availability screen and
the sales report are classified as simple,
medium and medium, respectively. There
is no 3GL component

Rating Results

■ Assessment of the developers and the environment
shows:
– The developers’ experience is very low (4)

– The CASE tool is low (7). So, we have a productivity rate of 5.5

■ The project requires approx. 1.64 (= 9/5.5) person-months

Name Objects Complexity Weight

Booking Screen Simple 1

Pricing Screen Simple 1

Availability Screen Medium 2

Sales Report Medium 5

Total 9

COCOMO Example

- Function Point Analysis

Effort = A × (Size)B × M

• A: 2.94

• Size: Estimated size in KLOC

• B: combined process factors

• M: combined effort factors

Function Point Table

Number of FPs Complexity

External user type Low Average High

Inputs 3 4 6

Outputs 4 5 7

Files 7 10 15

Interfaces 5 7 10

Queries 3 4 6

Example of Function Point

Analysis (FPA)
■ An inventory system that needs to

– ‘Add a record’

– ‘Duplicate a record’,

– ‘Calculate the total sum of multiple records’,

– ‘Edit a record’, and

– ‘Print a record’

– will have

• 3 inputs (add/duplicate/edit a record)

• 1 output (print a record)

• 1 query (calculation)

Function Point Estimation

(FP->KLOC)
Name External user types Complexity FP

Booking External output type Low 4

Pricing External inquiry type Low 3

Availability External inquiry type Medium 4

Sales External output type Medium 5

Total 16

FP->LOC

■ Total function points = 16

■ Published figures for C show that:

– 1 FP = 128 LOC in C

■ Estimated Size

– 16 * 128 = 2048 = 2 KLOC

Scale Factor Estimation (B)

Name Very low

(5)

Low

(4)

Nominal

(3)

High

(2)

Very High

(1)

Extra High

(0)

Assessment Value

Precedentedness Thoroughly

unprecedented

Largely

unprecedented

Somewhat

unprecedented

Generally

familiar

Largely

familiar

Thoroughly

familiar

Very high 1

Flexibility Rigorous Occasional

relaxation

Some

relaxation

General

conformity

Some

conformity

General

goals

Very high 1

Significant risks

eliminated

Little (20%) Some (40%) Often (60%) Generally

(75%)

Mostly

(90%)

Full (100%) Nominal 3

Team

interaction

process

Very

difficult

Some difficult Basically

cooperative

Largely

cooperative

Highly

cooperative

Seamless

interactions

High 2

Process maturity Level 1 Level 2 Level 2+ Level 3 Level 4 Level 5 Low 4

Add 1.01

Total 1.12

Effort Adjustment Factors (M)

Identifier Name Ranges

(VL – EH)

Assessment

VL/L/N/H/VH/EH

Values

RCPX product Reliability and

ComPleXity

0.5 – 1.5 low 0.75

RUSE required reusability 0.5 – 1.5 nominal 1.0

PDIF Platform DIFficulty 0.5 – 1.5 high 1.1

PERS PERSonnel capability 1.5 – 0.5 high 0.75

PREX PeRsonnel EXperience 1.5 – 0.5 very high 0.65

FCIL FaCILities available 1.5 – 0.5 nomial 1.0

SCED SChEDule pressure 1.5 – 0.5 low 1.2

Product 0.4826

■ Effort = 2.94  (2.048)1.12  0.4826 = 3.80 person-months

References

■ Hughes, B., and Cotterell, M. (1999) Software

project management, 2nd ed., McGraw Hill

■ Pfleeger, S.L. (1998) Software Engineering:

Theory and Practice, Prentice Hall

■ Royce, W. (1998) Software Project

Management: A Unified Framework, Addison

Wesley

■ Center for Software Engineering, USC (1999)

COCOMO II Model Definition Manual.

