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The Problem 
■ Ambiguities in Boxes-and-Arrows Diagrams  

– Boxes can be programs, chunks of source code, 
physical computers, logical groupings of 
functionalities, …  

– Arrows can be data flow, control flow, or both.  

■ Architecture documents over-emphasize one 
aspect of software development or 

■ Architecture documents do not address the 
concerns of all stakeholders 
– Many stakeholders (e.g., customers, developers, 

project managers, etc.), who care about different 
aspects of the system 

• Cannot provide one representation to satisfy all stakeholders 

• Stakeholders want to interact with parts that are most 
important to them 



Architecture Views 

■ Various parts of the architecture have to 

be modeled using different approaches 

 

■ View: is a set of design decisions related 

to a common concern (or set of concerns) 

 

■ Concern: is an aspect of the system that 

a stakeholder cares about 
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The Logical View 

■ Captures the logical (often software) entities 
in a system and their interconnections 
– Components: Classes 

– Connectors: Associations, containment, 
inheritance 

– Stakeholders: End-users 

– Concerns: Functionality (i.e., functional 
requirements) 

■ Why do we need logical views? 
– It provides decompositions used for  

• functional analysis and,  

• to identify common elements in the system 
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The Process View 
■ Captures the concurrency and synchronization aspects of a 

design 

– Components: Tasks/threads, processes 

– Connectors: Messages, RPC 

– Stakeholders: Integrators 

– Concerns: Performance, availability, fault tolerance 

■ Defines a grouping of tasks that form an executable 
unit 
– Major tasks are uniquely addressable 

– Minor tasks are helper tasks (e.g., buffering) 

■ Processes 
– Can be replicated for load distribution or improved 

availability 

– Flow of messages and process loads can be estimated 
and used to gauge performance 
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The Development View 

■ Describes the static organization of the software in 
its development environment 

– Components: Module/Subsystem 

– Connectors: Dependency (e.g. include) 

– Stakeholders: Developers 

– Concerns: Organization, reuse 

■ Why do we need development view? 
– Takes into account internal requirements 

related to ease of development, software 
management, reuse 

– Serves as basis for work allocation 
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The Physical View 

■ Captures the physical (often HW) entities in a 

system and their interconnections 

– Components: Nodes 

– Connectors: Network (LAN, WAN) 

– Stakeholders: System designer 

– Concerns: Nonfunctional requirements (e.g. 

Scalability, performance, availability) 

 
 

 



Physical View 

C,F, and K are different types of computers 

 



The Different Views 

■ +1: Use cases and scenarios to illustrate these 

views 

 

 



Scenarios “+1” view 

■ Shows how the four views work together 

seamlessly 

■ Redundant with other views, hence “+1” 

– Drives the discovery of architectural 

elements during architecture design 

– Validates and illustrates role after 

architecture design in complete 

■ Representation is similar to logical view 



Scenarios “+1” View Example 



Summary 

■ Different views address different concerns 

 

■ Not all views are necessary 

 

■ Lots of efforts needed to maintain these 
concurrent views, especially as the 
software system evolves 

 



Other Visualizations for Software Architecture  

- Code City 

 

http://wettel.github.io/codecity.html 

 

http://wettel.github.io/codecity.html

