
EECS 4314
Advanced Software Engineering

Topic 09:

4+1 Views

Zhen Ming (Jack) Jiang

Relevant Readings

■ Philippe Kruchten. The 4+1 View Model of

architecture. IEEE Software. 1995

The Problem
■ Ambiguities in Boxes-and-Arrows Diagrams

– Boxes can be programs, chunks of source code,
physical computers, logical groupings of
functionalities, …

– Arrows can be data flow, control flow, or both.

■ Architecture documents over-emphasize one
aspect of software development or

■ Architecture documents do not address the
concerns of all stakeholders
– Many stakeholders (e.g., customers, developers,

project managers, etc.), who care about different
aspects of the system

• Cannot provide one representation to satisfy all stakeholders

• Stakeholders want to interact with parts that are most
important to them

Architecture Views

■ Various parts of the architecture have to

be modeled using different approaches

■ View: is a set of design decisions related

to a common concern (or set of concerns)

■ Concern: is an aspect of the system that

a stakeholder cares about

Architectural Views
Stakeholder:

Concern:

Entities & interactions Static organization

Concurrency &

synchronization

Physical entities

& interactions

Use cases

The Logical View

■ Captures the logical (often software) entities
in a system and their interconnections
– Components: Classes

– Connectors: Associations, containment,
inheritance

– Stakeholders: End-users

– Concerns: Functionality (i.e., functional
requirements)

■ Why do we need logical views?
– It provides decompositions used for

• functional analysis and,

• to identify common elements in the system

Logical View Example

Decode and inject

signals on line

interface card

Maintain terminal

state

Represents terminals in

conversation

Class

Class utilities
Usage Association

Logical to physical

mapping, e.g. directory

Establish voice paths

Use numbering to

interpret dialing

The Process View
■ Captures the concurrency and synchronization aspects of a

design

– Components: Tasks/threads, processes

– Connectors: Messages, RPC

– Stakeholders: Integrators

– Concerns: Performance, availability, fault tolerance

■ Defines a grouping of tasks that form an executable
unit
– Major tasks are uniquely addressable

– Minor tasks are helper tasks (e.g., buffering)

■ Processes
– Can be replicated for load distribution or improved

availability

– Flow of messages and process loads can be estimated
and used to gauge performance

Process View

Scan inactive

200ms Scan active

10ms

Interpret and

communicate

changes

periodic

Bidirectional

msg

msg

Terminal

handled by

terminal

process

The Development View

■ Describes the static organization of the software in
its development environment

– Components: Module/Subsystem

– Connectors: Dependency (e.g. include)

– Stakeholders: Developers

– Concerns: Organization, reuse

■ Why do we need development view?
– Takes into account internal requirements

related to ease of development, software
management, reuse

– Serves as basis for work allocation

Development View

Domain independent

Domain specific

Customer specific

72 subsystems

The Physical View

■ Captures the physical (often HW) entities in a

system and their interconnections

– Components: Nodes

– Connectors: Network (LAN, WAN)

– Stakeholders: System designer

– Concerns: Nonfunctional requirements (e.g.

Scalability, performance, availability)

Physical View

C,F, and K are different types of computers

The Different Views

■ +1: Use cases and scenarios to illustrate these

views

Scenarios “+1” view

■ Shows how the four views work together

seamlessly

■ Redundant with other views, hence “+1”

– Drives the discovery of architectural

elements during architecture design

– Validates and illustrates role after

architecture design in complete

■ Representation is similar to logical view

Scenarios “+1” View Example

Summary

■ Different views address different concerns

■ Not all views are necessary

■ Lots of efforts needed to maintain these
concurrent views, especially as the
software system evolves

Other Visualizations for Software Architecture

- Code City

http://wettel.github.io/codecity.html

http://wettel.github.io/codecity.html

