EECS 4314

Advanced Software Engineering

Topic 09:
4+1 Views
Zhen Ming (Jack) Jiang

Relevant Readings

m Philippe Kruchten. The 4+1 View Model of
architecture. IEEE Software. 1995

The Problem

m Ambiguities in Boxes-and-Arrows Diagrams

— Boxes can be programs, chunks of source code,
physical computers, logical groupings of
functionalities, ...

— Arrows can be data flow, control flow, or both.

m Architecture documents over-emphasize one
aspect of software development or

m Architecture documents do not address the
concerns of all stakeholders

— Many stakeholders (e.g., customers, developers,
project managers, etc.), who care about different
aspects of the system

« Cannot provide one representation to satisfy all stakeholders

« Stakeholders want to interact with parts that are most
important to them

Architecture Views

m Various parts of the architecture have to
be modeled using different approaches

m View: is a set of design decisions related
to a common concern (or set of concerns)

m Concern: is an aspect of the system that
a stakeholder cares about

Architectural Views

StakeholderEnd-user Programmers
Concern: Functionality Software management
Logical View Dev%?eﬂnent
---._____.“
l Scenari f)
Use cases
Process View Physical View
Concurrency & Physical entities
synchronization & interactions

Integrators System engineers
Performance Topology

Scalability Communications

The Logical View

m Captures the logical (often software) entities
In a system and their interconnections
— Components: Classes

— Connectors: Associations, containment,
Inheritance

— Stakeholders: End-users
— Concerns: Functionality (i.e., functional
requirements)
m Why do we need logical views?

— It provides decompositions used for
« functional analysis and,
» to identify common elements in the system

Logical View Example

,- ~ -
/ N7 _-Q.Iass rTNL TN Logical to physical
Represents terminals in, 7 M / - "--..\ mapping, e.g. directory
conversation L Conversation ,’b\{’ Translation W
-~ A . /
N !
T \ “oa Servlc;es \
= S~ - P _tiClass utilities
Assogiation ge v=-° il
.'/_M“‘-'/’_“-. / _\"-""_n"a.
7 =\ P _ = {Establish voice paths
Maintain terminal s) A ¢ Connection ,I}
state Terminal , { _ il
o \ e Services v/
™ - \ A o !
\ ” ~ A f,.--ﬁ. 1)
M- RNPHY oyl et
r,_H‘ ’#_h‘-h :/_\'*-”/’_h‘l
y; R p: _ "'\\Use numbering to
Decode and inject ** soueoner [Numbering _fJinterpret dialing
signals on line .. ! N Plan g
. ~ AN
interface card \ - \ o)
Ed * / A Pl =% f‘
N7 ~_ _~ S e Pl

The Process View

m Captures the concurrency and synchronization aspects of a
design

— Components: Tasks/threads, processes
— Connectors: Messages, RPC
— Stakeholders: Integrators
— Concerns: Performance, availability, fault tolerance
0 De_{ines a grouping of tasks that form an executable
uni
— Major tasks are uniquely addressable
— Minor tasks are helper tasks (e.g., buffering)
m Processes

— Can be replicated for load distribution or improved
availability

— Flow of messages and process loads can be estimated
and used to gauge performance

Process View

- - Terminal
/ ~ - -~
3 / ~=7 o handled by Terminal
7/ . \ :
6 " Translation 7} terminal process
. 7
oy, Services {‘{ process \ » g
Y nterpret an
\ o, i)
SaflB” N !
A il Controller Bidirectiona communicate
-« ,’_‘ process . . mSg ges
! N - S periodic
\ / . N
! / Connection 4}
' ' Main
A
X s, Services controller
\ Pl !\ task
0_:, T et s
7/ ~ /‘_" /_-\ ,-"_\
! N < ! e Yo Controller task ﬁgnhtrollter task
/ 3 ’ i MY Low rate 'gh rate
, #~ Numbering %}
g Controller (Plan 1 Scan inactive _
™ - N AN o "\ 200ms Scan active
N / T ‘) T0ms

The Development View

m Describes the static organization of the software in
its development environment

— Components: Module/Subsystem

— Connectors: Dependency (e.g. include)
— Stakeholders: Developers

— Concerns: Organization, reuse

m Why do we need development view?

— Takes into account internal requirements
related to ease of development, software
management, reuse

— Serves as basis for work allocation

Development View

5
CAATS, MAATS, ete.. Man-Machine Interface Off-line tools

External systems Test harnesses

_
>
/ HATS Components | 4 <

ATC Functional areas: Flight manag-
ement, Sector Management, etc.

> Domain specific
ATC Framework 3

Customer specific

Aeronautical classes

ATC classes
N\ _/
=
/ Distributed Virtual Machine | 2 N

Support Mechanisms:
Communication, Time, Storage,
Resource management, etc.

> Domain independent
Basic elements |1

Bindings

Common utilities

\ Low-level servicesy

HardWare, OS, COTS

The Physical View

m Captures the physical (often HW) entities in a
system and their interconnections

— Components: Nodes
— Connectors: Network (LAN, WAN)
— Stakeholders: System designer

— Concerns: Nonfunctional requirements (e.qg.
Scalability, performance, availability)

Physical View

Central

Back-up nodes
Process

primary | backup

NN |

Pri rnan,r backu p Pri r'nary,r backu p

m m o

K

4
\

— more K

processors

K \

Controller
Process

. == / e |
C,F, and K are different types of computers - :

h 4 v

¥
| line cards | | line cards | | line cards

The Different Views

m +1: Use cases and scenarios to illustrate these
views

Scenarios “+17 view

m Shows how the four views work together
seamlessly

m Redundant with other views, hence “+1”

— Drives the discovery of architectural
elements during architecture design

— Validates and illustrates role after
architecture design in complete

m Representation is similar to logical view

Scenarios “+1” View Example

(1) Off-Hook

s

(4) digit
—» (Numbering plan

Joe:Controller /~ag—{21dialtone

Joe: Terminal

(3) digit

(5) open
conversation

:Conversation

Summary

m Different views address different concerns
m Not all views are necessary

m Lots of efforts needed to maintain these
concurrent views, especially as the
software system evolves

Other Visualizations for Software Architecture
- Code City

e

http://wettel.qithub.io/codecity.html

http://wettel.github.io/codecity.html

