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Relevant Readings

m Philippe Kruchten. The 4+1 View Model of
architecture. IEEE Software. 1995




The Problem

m Ambiguities in Boxes-and-Arrows Diagrams

— Boxes can be programs, chunks of source code,
physical computers, logical groupings of
functionalities, ...

— Arrows can be data flow, control flow, or both.

m Architecture documents over-emphasize one
aspect of software development or

m Architecture documents do not address the
concerns of all stakeholders

— Many stakeholders (e.g., customers, developers,
project managers, etc.), who care about different
aspects of the system

« Cannot provide one representation to satisfy all stakeholders

« Stakeholders want to interact with parts that are most
important to them




Architecture Views

m Various parts of the architecture have to
be modeled using different approaches

m View: is a set of design decisions related
to a common concern (or set of concerns)

m Concern: is an aspect of the system that
a stakeholder cares about



Architectural Views
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The Logical View

m Captures the logical (often software) entities
In a system and their interconnections
— Components: Classes

— Connectors: Associations, containment,
Inheritance

— Stakeholders: End-users
— Concerns: Functionality (i.e., functional
requirements)
m Why do we need logical views?

— It provides decompositions used for
« functional analysis and,
» to identify common elements in the system




Logical View Example
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The Process View

m Captures the concurrency and synchronization aspects of a
design

— Components: Tasks/threads, processes
— Connectors: Messages, RPC
— Stakeholders: Integrators
— Concerns: Performance, availability, fault tolerance
0 De_{ines a grouping of tasks that form an executable
uni
— Major tasks are uniquely addressable
— Minor tasks are helper tasks (e.g., buffering)
m Processes

— Can be replicated for load distribution or improved
availability

— Flow of messages and process loads can be estimated
and used to gauge performance




Process View
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The Development View

m Describes the static organization of the software in
its development environment

— Components: Module/Subsystem

— Connectors: Dependency (e.g. include)
— Stakeholders: Developers

— Concerns: Organization, reuse

m Why do we need development view?

— Takes into account internal requirements
related to ease of development, software
management, reuse

— Serves as basis for work allocation




Development View
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The Physical View

m Captures the physical (often HW) entities in a
system and their interconnections

— Components: Nodes
— Connectors: Network (LAN, WAN)
— Stakeholders: System designer

— Concerns: Nonfunctional requirements (e.qg.
Scalability, performance, availability)




Physical View
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The Different Views

m +1: Use cases and scenarios to illustrate these
views




Scenarios “+17 view

m Shows how the four views work together
seamlessly

m Redundant with other views, hence “+1”

— Drives the discovery of architectural
elements during architecture design

— Validates and illustrates role after
architecture design in complete

m Representation is similar to logical view



Scenarios “+1” View Example

(1) Off-Hook

s

(4) digit
—» ( Numbering plan

Joe:Controller /~ag—{21dialtone

Joe: Terminal

(3) digit

(5) open
conversation

:Conversation



Summary

m Different views address different concerns
m Not all views are necessary

m Lots of efforts needed to maintain these
concurrent views, especially as the
software system evolves




Other Visualizations for Software Architecture
- Code City

e

http://wettel.qithub.io/codecity.html



http://wettel.github.io/codecity.html

