EECS 4314

Advanced Software Engineering

Topic 07:
Reflexion Models and Source Sticky Notes
Zhen Ming (Jack) Jiang

Relevant Readings

m Gail C. Murphy, David Notkin, and Kevin J.
Sullivan. FSE 1995.

m Ahmed E. Hassan and Richard C. Holt.
Using Development History Sticky Notes

to Understand Software Architecture.
IWPC 2004.

Introduction

m Software understanding tasks represent
50-90% of maintenance efforts

m Good documentation can help, but rarely
available

m Some developers resort to code browsing,
but that is limited and does not scale

m Propose to speedup understanding using
knowledge from historical modification
records

Architecture Understanding
Process

Propose »| Compare »| Investigate

T

m Propose a conceptual architecture

m Compare the conceptual with the concrete
architecture

m /nvestigate gaps

Better Understanding

Propose - Conceptual Architecture

m Developers propose a conceptual
architecture based on:

— Reference architecture
— System documentation
— Developer experience with similar systems

— Talking to senior developers and domain
experts

Mismatch between the Conceptual
and Concrete Architecture

m However, In reality the concrete
architecture is (almost) always different

m Need to not only discover the differences,
but also uncover the rationale

Uncovering the Rationale
for the Differences

m Uncovering the rationale is challenging

— A senior developer
* may be too busy
* may not recall the rationale for such dependency
* may no longer work on the software system

— The software
* may have been bought from another company
* may have its maintenance out-sourced
m Developers must spend hours/days to uncover
the rationale. The rationale may be:

— Justified due to, e.g., optimizations or code reuse; or

— Not justified due to, e.g., developer ignorance or
pressure to market.

Software Reflexion Framework

Dependencies Mapping Extracted
Conceptual e cource
subsvstems between source entities to _
y subsystems subsystems dependencies
Conceptual Concrete
architecture architecture

Investigate Gaps

Investigating Gaps

Conceptual Concrete
View View

Absences Convergences Divergences

m Absences: rarely occur in large systems
m Convergences: usually not a concern
m Divergences: must investigate dependencies

Source Sticky Notes

m Attach change details to dependencies
between software entities

m Provide insight to developers about reasons
for that dependencies

4 "W”s when Investigating
Dependencies

= Which
m Who
m \When
m Why

Which

m Which concrete source code entities are
responsible for an unexpected dependency?

Who??

m Who introduced an unexpected dependency or
removed a missing dependency?

m A gap due to a change made by

— a novice developer may suggest that the developer
Is at fault and the change must be fixed

— a senior developer with a well established record for
producing high quality code may suggest that the
change is correct

When??

m When was the unexpected dependency
added or the missing dependency
removed?

— Is it a fix to a critical bug under a tight release
schedule?

« E.g., a few days/hours before a release

— Or is it a justified dependency that we should
expect?

Why?

m \WWhy was this unexpected dependency
added or why was an expected
dependency missing?

m Knowledge of the rationales is key In
explaining the gaps

Dependency Investigation
Questions (W4 Approach)

m Which low level code entity is responsible for
the dependency?

— Network (SendData) — Scheduler (PrintTolLog)
m Who added/removed the dependency?

— Junior vs. senior/experienced developer
m When was the dependency modified?

— Late night / Just before release

m Why was the dependency added/removed?
— The rationale!

Source StickyNotes

Entity A

(cg. function)

.

Dependency Entity B
: (eg. function,
data type)
1. Rational

2. Time
3. Related Depedencies and Entities
4. Creator

J

m We are interested Iin
— Current and past dependencies

Source StickyNotes

m Static dependencies give only a current
static view of the system — not enough
detail!

m Need to extend static dependencies, but
how?

Extending Code Dependencies

m Ask developers to fill StickyNotes for each
change

— Too time consuming and cumbersome

m Use software repositories to build these
notes automatically

— Historical information may be hard to process

StickyNotes Recovery

m Map code changes to entities and dependencies
instead of lines

m Two pass analysis of the source control
repository data, to recover:

— Record all entities defined throughout the lifetime of a
project

— Record all dependencies between these entities and
attach source control meta-data

Case Study — NetBSD

m Large long lived system with hundreds of
developers

m Case study used to demonstrate
usefulness of the reflexion model:
— Reuse prior results! ©

— Focus on investigating gaps to show the
strength of the approach of the historical
sticky notes

NetBSD’s Virtual Memory Component
Conceptual and Reflexion Architecture

—_— Depend —— Convergence
Hardware H?I_:(;\:]v:re - - ¥ Divergence
Trans. Subsystem ' |:| Subsystem
A A Vf\
A A
<« — — — —
\ \ Kernel Fault | = = 7
Kernel Fault Handler
Handler \
\ y
2
Y P -7 Pager |« |
/ ~
- ///r I
Pager - X
Virtual Addr. . .
/ + Maint. VM Policy FileSystem {— —I
Virtual Addr. .
Maint. VM Policy

Unexpected Dependencies

m Eight unexpected dependencies
m All except two dependencies existed since day one:

— Virtual Address Maintenance — Pager

vm_map_entry create (in src/sys/vm/Attic/vm_map.c)
depends on_pager_map (in /src/sys/uvm/uvm_pager.c)

Who? cgd

1993/04/09 15:54:59
Revision 1.2 of src/sys/vim/Attic/vim_map.c

Which?

When?

from sean eric fagan:

it seems to keep the v system from deadlocking the
system when it runs out of swap + physical memory.
Why? prevents the system from giving the last page(s) to
anything but the referenced "processes" (especially
important 1s the pager process, which should never
have to wait for a free page).

Dependency added to avoid deadlocking

under special circumstances

Unexpected Dependencies
m Pager = Hardware Translations

Which? uvm_pagermapin (in src/sys/uvm/uvm_pager.c) depends on
' pmap_kenter_pgs (in src/sys/arch/arm26/arm26/Attic/pmap.c)
Who? thorpej
When? 1999/05/24 23:30:44;
' Revision 1.17 of src¢/sys/uvm/uvm pager.c
Don't use pmap kenter pgs() for entering pager map
mappings. The pages are still owned by the object which 1s
paging, and so the test for a kernel object in
Why? uvm_unmap_remove() will cause pmap remove() to be used
y: msteadof pmap kremove().
This was a MAJOR source of pmap remove() Vs
pmap kremove() inconsistency (which caused the busted
kernel pmap statistics, and a cause of much locking hair on MP
systems).

Dependency added to fix a bug on

multiple process systems

Unexpected Dependencies which

existed in the past
m Two unexpected dependencies that were

removed Iin the past:
— Hardware Translation = VM Policy
— File System = Virtual Address Maintenance

mfs strategy (in.src/sys/ufs/mfs/mfs vnops.c)
depends on_vm_map (in src/sys/vi/Attic/vim_map.h)

Who? thorpej I

Which?

When? 2000/05/19 20:42:21;
' Revision 1.23 of src/sys/ufs/mfs/mfs _vnops.c
Why? Back out previous change; there 1s something
¥ Seriously Wrong,

Dependency removed to fix a previous

incorrect change

StickyNotes Usage Patterns

m First note to understand the reason for
unexpected dependencies

m Last note to study missing dependencies

m All notes when first and last notes do not
have enough information to assist in
understanding

Limitations

m Quality of comments and text entered by
developers in the past

m In many open source projects, code
revision comments are used for:
— Communicating new features
— Narrating the progress of a project

Summary

m Development history can help understand the
current structure of a software system

m [raditional dependency graphs and program
understanding models usually do not use
historical information

m Proposed StickyNotes and presented a case
study to show the strength of the approach

