EECS 4314

Advanced Software Engineering

Topic 05:
Design Pattern Review
Zhen Ming (Jack) Jiang

Acknowledgement

m Some slides are adapted from Ahmed E.
Hassan, Jonathan Ostroff, Spiros
Mancoridis and Emad Shihab

The Evolution of
Programming Abstractions

m The first modern programmable computers (1950s)
were largely hardwired. The first software was written

In machine language

m Next major breakthrough: assembly languages
— Symbolic assemblers
— Macro Processors

m 1960s: High-level languages (3GLS)

— Mostly independent of machine and problem domain
* Level is “generic problem-solving”

— FORTRAN, COBOL

— Algol, Pascal, Modula

- C,PL/1

— Simula, Smalltalk; C++, Java

Abstraction from Developers’ Perspective

m Typed variables and user-defined types [late 1960s]

m Modules [early 1970s]
— 1968: “The software crisis”, need “software engineering”
— Create explicit interfaces, enforce information hiding

m ADTs and object-oriented computing [mid 1970s]
— Programming entities as mathematically precise constructs
— Abstract commonalities to one place

m Object-oriented design patterns, refactoring [1990s]

— OO is powerful and complex
* What constitutes a “good” OO design (small to medium-sized programs)?
« What re-usable “tricks” can help to solve recurring problems?

— At the level of data structures, algorithms and a few co-operating
classes

m Software architecture [1990s, but really since 1960s]

— Designing large systems is about understanding broad tasks, defining
system-wide structures, interfaces and protocols, understanding how
non-functional requirements impact on the system

— At the level of the handful of “big boxes” that comprise the major
components of your system, plus their interdependencies

What are Object-Oriented
Design Patterns (OODP)?

m Design patterns are reusable solutions to common
problems.

— An OODP typically involves a small set of classes co-
operating to achieve a desired end

— This Is done via adding a level of indirection in some clever
way, and

— The new improved solution provides the small functionality
as an existing approach, but in the some more desirable
way (elegance, efficiency and adaptability)

m OODPs often make heavy use of interfaces,
iInformation hiding, polymorphisms and intermediary
objects

m Typical presentation of an OODP
— A motivating problem and its context,

— Discussion of the possible solutions, and
— Common variations and tradeoffs

Learning Design Patterns

m Think of OODP as high-level programming
abstractions

— First, you learn the basics (data structures,
algorithms, tools and language details)

—Then, vyou learn modules, Interfaces,
iInformation hiding, classes/OO programming

— Design patterns are the next level of
abstraction

— (... Software Architecture)

Design Patterns help you ...

Design new systems using higher-level abstractions
than variables, procedures and classes

Understand relative tradeoffs, appropriateness,
(dis)advantages of patterns

Understand the nature both of the system you are
constructing and of OO design in general

Communicate about systems with other developers

Give guidance In resolving non-functional
requirements and trade-offs

— Portability, extensibility, maintainability, re-usability,
scalabllity, ...

Avoid known traps, pitfalls and temptations
Ease restructuring, refactoring, and

Foster coherent, directed system evolution and
maintenance based on a greater understanding of
OO design

Design Patterns
— Another form of Reuse

m Someone has already solved your
problem

m Exploit the wisdom and lessons learned by
other developers who have been down the
same design problem road and survived

the trip.

m Instead of code reuse, with patterns you
get experience reuse.

Design Pattern Categories

m Gang of Four (GoF) Design patterns (23 patterns)
— Creational patterns: concern the process of object

creation
» Abstract factory, Singleton, Factory method, etc.

— Structural _patterns: concern the process of
assembling objects and classes
- Adapter, Facade, Composite, Decorator, etc.
— Behavioral patterns: concern the interaction
between classes or objects
* |terator, Observer, Strategy, etc.

There are thousands of patterns “out there” and thousands more waiting to be discovered

- Some are “domain specific”
- Some are a lot like others, special cases, etc.
There is no official person/group who decides what is/isn’t a design patterns

m Patterns give
developers a
shared
vocabulary as
well as a shared
code experience

So I created this broadcast
class. It keeps track of all
the objects listening to it and anytime
a new piece of data comes along it sends a
message to each listener. What's cool is that
the listeners can join the broadcast at any
time or they can even remove themselves.
It is really dynamic and loosely-coupled!

Exactly. If you
communicate in patterns,
then other developers know
immediately and precisely the
design you're describing. Just don't
get Pattern Fever... you'll know
you have it when you start using
patterns for Hello

World...

Rick, why
didn't you just say
you were using the
Observer Pattern?

Shared pattern vocabularies are POWERFUL.
When you communicate with another developer or your
team using patterns, you are communicating not just a
pattern name but a whole set of qualities, characteristics
and constraints that the pattern represents.

Patterns allow you to say more with less. When
you use a pattern in a description, other developers quickly
know precisely the design you have in mind.

Talking at the pattern level allows you to stay “in
the design” longer. Talking about software systems using
patterns allows you to keep the discussion at the design
level, without having to dive down to the nitty gritty details

of implementing objects and classes.

1y shrated ¥ dutks”
“Weve wsind ;;S t‘na\ﬁﬂ"' > og ::.‘as been
yary \0
ment Jd;\ ou the dutk bendt t\asses
Ths ke \s 1 A 'm‘ho s oW 5d 4 .{,ha"‘%td’
‘“La,zw ’ be €as! ﬁ?a"‘dd
hat tar ede
J(::ﬂch at cunt ;e
wave 1°
E-t"lt" ‘55 6& '“-.-ho

mfu#u,m& %o ;o:sm <

[

Design Pattern References

Copyrighted Material

Design Patterns

Elements of Reusable
Object-Oriented Software

Erich Gamma
Richard Helm
Ralph Johnson
John Vlissides

<4
‘b

A Brain-Friendly Guide

‘Head First
Design Patterns

Learn why everything

embarrassing

Avoid those g 9 your friends know about
P Factory pattern is
coupling mistakes i probably e
N e =t . -
~&

Discover the secrets
of the Patterns Guru

Load the patterns

that matter straight
» into your brain
See why Jim's
love life improved
g when he cut down
his inheritance

s
-/
p—2
-4
Z
-
&
€
)
P~
-
2
2
-
7
>
~
()
o/
z
P
—
Z
-
2
m
~
e

Cover a0 199 M . Escher / Condon At - Baam - Holland. Al rights reservexd.

Find out how
Starbuzz Coffee doubled S
their stock price with
the Decorator pattern

Foreword by Grady Booch

e
|
Copyrighted Material

http://www.hillside.net/patterns/

O REILLY"

http://www.hillside.net/patterns/

Design Patterns Covered

m Structural
— Adapter
— Facade
— Composite

m Behavioral
— lterator
— Strategy
— State
— Template
— Observer
— Master-Slave

m Creational
— Abstract Factory
— Singleton

For Each Pattern

m Motivation — the problem we want to
solve using the design pattern

m Intent — the intended solution the design
pattern proposes

m Structure — how the design pattern is
iImplemented

m Participants — the components of the
design pattern

Terminology

m Objects package both data and the procedures

that operate on that data

m An object performs an o
a request (or message)

m Procedures are typica
operations

peration when it receives
from a client

ly called methods or

m An object’s Iimplementation is defined by its class.

The class specifies

— Object’s internal data and representation
— Operations that object can perform

m The set of signatures
operations or methods is

defined by an object’s
called the interface

m An abstract class Is one whose main purpose Is
to define a common interface for its subclass

Structural Design Patterns
- Adapter, Facade, Composite

The Adapter Design Pattern

The Adapter Design Pattern

m Motivation:

—When we want to reuse classes In an
application that expects classes with a different
Interface, we do not want (and often cannot) to

change the reusable classes to suit our
application.

m Intent:

— Convert the interface of a class into another
Interface clients expect.

— Adapter lets classes work together that couldn't
otherwise because of incompatible interfaces.

Applicability

m Use an existing class when its interface
does not match the one you need

m Create a class that cooperates with
unrelated or unforeseen classes with
iIncompatible interfaces

Participants of the
Adapter Pattern

m Target: Defines the application-specific
Interface that clients use.

m Client: Collaborates with objects
conforming to the target interface.

m Adaptee: Defines an existing interface
that needs adapting.

m Adapter: Adapts the interface of the
adaptee to the target interface.

: sophisticated class for
sriine el displaying and editing text
elements

Shape TextView
BoundingBox() —| GetExtent()

Editor o

CreateManipulator()

One can change TextView

Interface for class sq it conforms to
graphical object Shape interface ... would
1'8’(1' need source code of

TextView. Too much work!

BoundingBox requests
are converted to

LineS hape TextS hape GetExtent requests
BoundingBox() BoundingBox() ®*"" return text -> GetExtent()
CreateManipulator() CreateManipulator() .| ... return new Text Manipulator
Subclass of shape : Allows objects to be

. . Define TextShape to adapt ‘ ,
defined by editor for TextView interface to Shape’s dragged

lines interactively

Adapter Pattern Structure
(Object Adapter)

Collaborates with Defines the application- Defines an existing
the target interface clients use adapting
_ —> Target Adaptee
Client
Request() —>|SpecificRequest()|
A
adaptee
Adapts the interface of
the adaptee to the target
interface

Adapter

Request() ©f SpecificRequest()

Structure of the Adapter Pattern
Using Multiple Inheritance
(Class Adapter)

Client < Target Adaptee
Request() SpecificRequest()
A

(implementation)

Adapter

Request() o:fereeee SpecificRequest()

Applicability

m Use an existing class when its interface does
not match the one you need

m Create a class that cooperates with unrelated
or unforeseen classes with incompatible
Interfaces

m Object Adapter Only

— Need to use several existing subclasses, but it Is
Impractical to adapt by sub-classing each one of
them

* Object adapter adapts the interface of the parent class

Tradeoffs

m A class adapter — inheritance
— Adapts Adaptee to Target by committing to concrete

Adapter class

» Class adapter is not useful when we want to adapt a class
and all its subclasses

— Lets Adapter override some of Adaptee's behaviour
« Adapter is a subclass of Adaptee

— Introduces only one object
« No additional pointer indirection is needed to get to Adaptee

m An object adapter — uses

— One Adapter can work with many Adaptees
« Adaptee and all its subclasses
« Can add functionality to all Adaptees at once

— Makes it harder to override Adaptee behaviour

* Requires making ADAPTER refer to the subclass rather than
the ADAPTEE itself, Or

« Subclassing ADAPTER for each ADAPTEE subclass

The Facade Design Pattern

The Facade Pattern

m Motivation
— Structuring a system into subsystems helps reduce
complexity.
— A common design goal is to minimize the

communication and dependencies between
subsystems.

— Use a facade object to provide a single, simplified
Interface to the more general facilities of a subsystem.

m Intent

— Provide a unified interface to a set of interfaces in a
subsystem. Facade defines a higher-level interface
that makes the subsystem easier to use.

Facade Example —

Programming Environment

Compiler

Compile

CodeGen eratorl

‘ L*Scannerw» Token
mm—

Parser f¢---___ ~o

'-—

!

RISCCG

ProgNodeBuilder —1

StackMachineCG

ProgNode

+

Statement Node

iCompller Subsystem

Expression Node

Classes Variable Node

Give access to

: compiler

~Implement compiler

Structure of the Facade Pattern

Client Classes

- | b

Facade

ESu bsystem Classes

Participants of the
Facade Pattern

m Facade:

m Subsystem C

Knows which subsystem classes are
responsible for a request.

— Delegates client requests to appropriate
subsystem objects.

AdSSES.

mplement su

psystem functionality.

Handle work assigned by the facade object.

Have no knowledge of the facade; that is, they
Keep no references to it.

Participants of Facade Pattern

m Facade (compiler)
— Knows which subsystem classes are responsible
for a request

— Delegates client requests to appropriate
subsystem objects

m Subsystem classes (Scanner, Parser,etc..)
— Implements subsystem functionality
— Handles work assigned by the facade object

Facade Pattern Applicability

m Use a facade when

— To provide a simple interface to a complex
subsystem

— To decouple clients and implementation
classes

— To define an entry point to a layered
subsystem

Adapter vs. Facade

m [he basicidea is similar, but ...

m Adapter typically changes the interface of a single
class into something more natural for clients

— Adapter adds a “human face” to a grungy abstraction,
but does not change the adaptee

— Adapter are often applied to
* Library entities external to your system that you want to use, or
« Components of your system that external clients will use

m Facade puts a human face on a whole system

— A facade usually requires changing the core code to
make all accessing go through the facade

— Typically this is done to (older) pieces of your system
when you are performing a redesign

The Composite Design Pattern

Composite Pattern

m Motivation

— Applications that have recursive groupings of
primitives and groups (containers)

« Drawing programs
— Lines, text, figures and groups

 Directory structure
— Folders and files
— Operations on groups are different than primitives
but clients treat them in the same way

m Intent

— Compose objects into tree structures
representing part-whole hierarchies

— Clients deal uniformly with individual objects and
hierarchies of objects

Composite Pattern Example

Graphic .
Draw()
Add(Graphic)
Remove(Graphic)
GetChild(int)

Aggregate |of Graphic objectp

graphics
Line Rect. Text T Picture
Draw() O
Draw() Draw() Draw() Add(Graphic)
— : _ Remove(Graphic) | :
Primitive graphical objects L GetChild(int) j

forall g in graphics
g.Draw()

Structure of Composite Pattern

Declares interface for

; objects and child
Client 1 components
Manipulates objects in Component <

the composition through Operation()

Component interface Add(Component)
Remove(Component)
GetChild(int)

4

children
Leaf Composite
: forall g in children
: Operation() O :
Operation
p 0 AE@aEanen g.Operation()
Remove(Component) Defines behavior for
Defines behavior for GetChild(int) components having
primitive objects. Leafs children. Implements

have no children child-related operations

Behavioral Design Patterns
- Iterator, Observer, Template,
Master/Slave

The lterator Design Pattern

The lterator Pattern

m Motivation

— Don’t want to expose implementation details of
the container AND want to allow multiple
simultaneous traversals

« Create separate interface/class that provide simple
“hooks”

— Often we want to say to a container (e.g., tree,
graph, table, list, graphics):

* Apply f() to each of your objects

m Intent

— Provide a clean, abstract way to access all of the
elements in an aggregate (container) without
exposing the underlying representation

— Move responsibility for access and traversal to a
separate “iterator” object

lterator Pattern Example

Access and traversal
responsibilities are taken
out of List object into an

iterator object (Listlterator)

_ list _
List < Listlterator
Count() :
Append(Element) EZ)S(ES
Remove(Element) IsDone()
Currentltem()

index

Can define different traversal policies without enumerating
them in the List interface

Structure of Iterator Pattern

Interface for accessing and
traversing elements

Provides a common

Aggregate interface for creating Ilterator
Iterator object
Createlterator :
0 First()
Next()
IsDone()
T Implements the Iterator Currentltem()
creation interface to return
instance of Concretelterator
A

ConcreteAggregate

Concretelterator

Createlterator() o |

Implements the Iterator
return new Concretelterator(this) interface

The Strategy Design Pattern

The Strategy Pattern

m Motivation

— Have a problem with multiple well-defined
solutions that conform to a common interface

— Want to let client vary the implementation
according to particular needs. Variation due to
either:

« Different functionality (e.g., justification styles)

« Same functionality, but different non-functional
attributes (efficiency, trust, debugging input)
— E.g., sorting routines, resource allocation strategies
— Implementation is mostly decoupled from client
code. Most binding Is to abstract parent interface

m Intent

— Define a family of related algorithms behind a
common interface

superclass DUCK

Duck
Al ducks quack and swim, the | tuack)
supevelass takes cave of the swim() _
]m?'-CMH{:&‘EI:Ih tode. dispiay() &—— The dh?‘af_:} ,,.g{h:d ":‘:
11 OTHER duck-like methods. . sbsbract, since all dut
——————— subtypes lock different
ubbcﬁc / T \
aob %0 e MallardDuck RedheadDuck foypes ok Quers
gt e A) _ Lots of othe® ST\ ass
6 YO N — | display(){ display) { - hevik From he
W peed Il looks like @ mallard } 11 looks like a redhead }
aﬁ"{"‘aw“_ '\!'ﬁ'.-
R
E:;‘r. gLret™

Q: How do we make the
ducks fly?

Problem: Find a design?

m Most ducks fly in the same way, but a few
species of duck have different flyable
behaviour, or perhaps they do not fly at all

m Most ducks gquack in the same way, but a
few species have a different quackable
behaviour or they do not quack at all

m Must be able to change flyable and
guackable behavior dynamically

m Inheritance hasn’t worked out very well, since the duck
behavior keeps changing across the subclasses, and it's
not appropriate for all subclasses to have those behaviors.

m The Flyable and Quackable interface sounded promising
at first — only ducks that really do fly will be Flyable, etc.,
— except Java interfaces have no implementation code,
S0 no code reuse.

m And that means that whenever you need to modify a
behavior, you're forced to track down and change it in all
the different subclasses where that behavior is defined,
probably introducing new bugs along the way!

Delegation

[nstante variables hold a veferente to

The behavior variables are 5 s?cc,i-(-'h‘_ behavior at vuntime.

detlared as the behavior Duck

INTERFACE type. t —
FlyBehavior flyBehavior -~
QuackBehavior quackBehavior

These methods veplace performQuack()
fiyO) and %“W swim()

-\ display)
performFly()

[OTHER duck-like methods...

Now we implement performQuack():

'EC-' somt"‘.'h“""ﬁ {ha{:

public class Duck { nteckate:

avor
QuackBehavior quackBehavior; < 1m?1¢m:h‘\:s the &uat.kBt
// more

havior
Rather han hard\rd “‘Z“{TZ‘;‘?‘JZ{
public void performQuack() { self, the Dutk OBt)ed: :.Fg?-mctd by
quackBehavior.quack() ; é’/ behavio to the ¢'h)d’+“ ‘
}

} quatkBehavio

The behavior vaviables ave
detlared as the behavior

INTERFACE type.

These methods veplate
fiyO) and quack().

N

[nstante vaviables hold a vefevente to
a spetikic behavior at vunti

| Duck

FlyBehavior flyBehavior -~
QuackBehavior quackBehavior

performQuack()

swim()

display()

performFly()

/I OTHER duck-like methods ..

Came thing heve Lor the quack

“_\,’“Qa ’c\\i\ behavior; we ha;c a;\ l:ﬁivf;cc
%C\\au\of e . Y\c""—"*" B H\ah i Csd Do be
. o, 0056 X & veed & method that needs
new e
gleme /
<<interface>> <<mterface>>
FlyBehavior QuackBehavior
0 quack()
FlyWithWings ‘ FlyNoWay Quack Squeak ‘ MuteQuack
fiy({ fiy() { quack() { quack() { quack() {
! implements duck flying /I do nothing - can't fiy! I implements duck quacking £ | // rubber duckie squeak /I do nothing - can't quack!
} } } } }

Q“Jck T ?\
And heves /K real), * thay
-{: hat squeak.
Here's 4 3l dueks ¢, 2 "Plementatis, L Tk i ks Quatks that make
of P Can't £y, o sound at all.
‘F/y, -P e”‘tnfa.é’ no
th 3 f or On

all due
Wings.

Client makes use of an |
cnca?sula{cd «Famil’;{ of algon{hms
£or both £lying and quacking,

Client Duck

FlyBehavior flyBehavior
QuackBehavier quackBehavior

SWimi)

display()

perormQuack])

perormFly()

setFlyBehavior])
setQuackBehavior)

I OTHER, duck-like methods .

Encapsulated fly behavior

<<interface=>

FlyBehavior

7 [w

FlyWithWings FlyNoWay

fiyl) {
Il implements duck fiying

iy {
I do nothing - can't fiy!

} i

MallardDuck

RedheadDuck RubberDuck

DecoyDuck

display() {
I looks Bke a mallard }

displayl) {
I looks like a redhead }

display() {

I looks like @ rubberduck }

display() {
I ook like a decoy duck }

Encapsulated quack behavior
\ <‘iﬂﬂfa:l::;0r

quack(]

Sq-ueak

}

Quack MuteQuack
quack) { quack() { quack) {
Il implements duck gquacking I rubber duckie squeak I do nothing - can't quack!

}

The Observer Design Pattern

The Observer Pattern

m Motivation

— A common side-effect of partitioning a system
Into a collection of cooperating classes is the
need to maintain consistency between related
objects.

— How can you achieve consistency?

m Intent

— Define a one-to-many dependency between
objects so that when one object changes state,
all its dependents are notified and updated
automatically.

Observer Pattern Example

Observer

Subject

requests, modifications change notification
B | asssssssssssssssssssssssssnss >

Observer Pattern Structure

Provides an interface for
attaching and detaching

Observer objects

Defines interface for objects
that should be notified of
changes in a subject

- observers
Subject d Observer
Attach(Observer) Update()
Detach(Observer) tor all 0 in
Notify(O] observers { A Implements the Observer
o -> Update()} interface to keep its state
A consistent with the subject
ConcreteObserver
observerState =
subject Update() O subject->GetState()
ConcreteSubject |- observerState
GetState() g..p............. return subjectState
SetState()
subjectState Sends a natification to

observers when its state
changes

th
€y,
up Tsogy W ouuse ™ 4
Qagey 2 s rerface oy
dr \ o fons
You see the song Y e he
display update and gcon“o\\e‘
hear the new song . "
X Play new song
playing

Controller

Model tells the
view the state has

Controller asks

changed cla;s l(’layer Player model o
p a' - .
in € View,, "0tifj buzn () {} sang
State 2 Chay, controller
Je manipulates
the model

Mo
The model tontains all Jchc sha{:c, del
data, and application logie needed
to maintain and ?\8\, my%s.

MVC
ITunes
mp3 player

G) model/DB/

bean business logic

@ . —\A/,l l p
' servlet/controller %,
z i/

jsp/view

You make an HTTP request, which is received by a servlet.

Using your web browser you make an HT TP request. This typically involves
sending along some form data, like your username and password. A servlet
receives this form data and parses it.

The servlet acts as the controller.
The servlet plays the role of the controller and processes your request,

most likely making requests on the model (usually a database). The result
of processing the request is usually bundled up in the form of a JavaBean.

The controller forwards control to the view.

The View is represented by a JSP. The JSP's only job is to generate
the page representing the view of model (@which it obtains via the
JavaBean) along with any controls needed for further actions.

The view returns a page to the browser via HTTP.

A page is returned to the browser, where it is displayed as the view. The
user submits further requests, which are processed in the same fashion.

The State Design Pattern

The State Design Pattern

m Motivation

— An object may be in one of many states. It
responds differently depending upon Its
current state

m Intent

— Alter behaviour of an object when its internal
state changes

— Object appears to change its class

The Context is the ¢lass that
¢an have a numbev O‘c in{-.,crnal

Thc State interface defines 3 tommon
interface for 3| tontrete states; +he
states all imPlcnch{’, the Same in’ccrfacc,

ales so they are intevthangeable.
g Context = State
requgst() handle()
I state handle() ' ConcreteStateA ConcreteStateB >
/7 handle() handle()

'Whencvcr the request()
s made on the Context

it is delegated to the
state to handle.

| Mahy CW"C{;C

Yo j “tates are possiple

ConeveteStates handle vequests from the
Context Eath ContveteState provides its
own implementation for a vequest. In this
way, when the Context thanges state, its
behavior will thange as well.

Exercise: Gumball Example

Here's the way we 4hink the oumball mathine tontrolley needs to
work. We've hoping Yyou ¢an implement. this in Java for us! We
Nﬁg]-[{y Gumba]], Inc may be adding wore behavior inthe Lukure, so 1{0;; need to keep
e 1] the desion as Clexible and maintainable as possible!

Where the Gumball Machine

Is Nevey Half Empty — Mighty Qumball Engineers

adding new states

We think that by turning
“gumball buying” into a game we
can significantly increase our
sales. We're going to put one of
these stickers on every machine.
We're so glad we've got Java
in the machines because this is
going to be easy, right?

ioc?[u O‘Q ‘Eht ‘Ell‘nCJ

when the trank
15 ‘Eu.!"hf.dr {‘,‘nﬂ
f,usjwﬁ"c" SCJC:' two

gum'bans ins‘tﬂad
o£ oné-

CEO, Mighty
ﬁum‘oa\'l y !r\f.-

JawBreaker o
éurn d-‘“o??'

éq.,....‘oaﬂs J

State vs. Strateqy

m The class diagrams are similar but they differ in intent

m State

— Behaviours are constantly changing over time and the
client (context) knows very little about how those different
behaviours work

— Encapsulate behaviours in state objects and set change In
the context

— Alternative to putting a lot of conditional statements in the
context

m Strategy

— Client knows quite a lot about what behaviour (strategy) is
most appropriate e.g., we know that a mallard duck has
typical flying behaviour and a decoy duck never flies

— Change in state less usual
— Flexible alternative to subclassing

The Template Design Pattern

The Template Pattern

m Motivation
— Consider an application that provides Application and Document
classes
« Application: opens existing document
« Document: represents the information in a doc
— By defining some of the steps of an algorithm, using abstract
operations, the template method fixes their ordering.
— Specific applications can subclass Application and Document to

suit their specific needs
« Drawing application: defines DrawApplication and DrawDocument
sublclasees
« Spreadsheet application: defines SpreadsheetApplication and
SpreadsheetDocument sublclasees

m Intent
— Define the skeleton of an algorithm in an operation, deferring
some steps to subclasses.

— The Template pattern lets subclasses redefine certain steps of
an algorithm without changing the algorithm’s structure.

Template Pattern

Document

Save()
Open()
Close()
DoRead()

docs

Example

OpenDoc is a template
method that defines each
step for opening a

A

MyDocument

y 3

DoRead()

A

MyApplication

DoCreateDoc() G
CanOpenDoc() :
AboutToOpenDoc() :

document
Application

Audpoc() m CanOpenDoc() — check if
OpenDoc() doc can be opened
DoCreateDoc() P
CanOpenDoc() m DoCreateDoc() — create
AboutToOpenDoc() doc

m AboutToOpenDoc() — lets

A

application know when a
doc is about to be opened

return new MyDocument

Template Pattern Structure

AbstractClass — defines
abstract primitive operations
that concrete subclass

implement

Implements a template method defining
the skeleton. The template method calls
primitive ops and operations defined in
the Abstract class

AbstractClass

TemplateMethod() --e-eeeeeerererene
PrimitiveOp1()

PrimitiveOp2()

PrimitiveOp1()
PrimitiveOp2()

Concrete class —

steps of an algorithm

ConcreteClass

PrimitiveOp1()
PrimitiveOp2()

A | implements primitive ops to
carry out subclasss-specific

The Master-Slave
Design Pattern

The Master-Slave Pattern

m Motivation
— Fault tolerance is a critical factor in many systems.

— Replication of services and delegation of the same
task to several independent suppliers iIs a common
strategy to handle such cases.

m Intent

— Independent components providing the same service
(slaves) are separated from a component (master)
responsible for invoking them and for selecting a
particular result from the results returned by the
slaves.

— (Master) Handles the computation of replicated

services within a software system to achieve fault
tolerance and robustness.

Master-Slave Pattern Example

Slavel
RadLevel()
NuclearPP Voter Slave?
acceptableRL() - Ra%LeveI() RadLevel()
return ma;<(
slavel->RadLevel(), Slaves
slave2->RadLevel(),
slave3->RadLevel()) RadLevel()

Master-Slave Pattern Structure

Organizes the invocation of

replicated services and Slavel

decides which of the results
to pass to clients

Servicelmpl()

Requests a service forward
to solve its task request

forward
request

—| Servicelmpl()

Client Master Slave2

Compute() f—| service()

request
service Implements a
service
forward
reguest
q Slave3

Servicelmpl()

Creational Design Patterns
- Singleton, Abstract Factory

The Singleton Design Pattern

The Singleton Pattern

m Motivation

— Some classes must only have one instance
file system, window manager

m Intent
— Ensure a class has only one instance
— Provide a global point of access

m Applicability
— Must have only one instance of a class
— Must be accessible from a known location

Singleton Pattern Structure

Defines an instance
operation that lets clients
access its unique instance

Singleton

Statlc Instance() O. return instance

Singleton getinstance()
Operations

Singleton example (Java)

public class SimpleSingleton {
private SimpleSingleton singlelnstance = null;

//Marking default constructor private
/lto avoid direct instantiation.
private SimpleSingleton() {

}

//Get instance for class SimpleSingleton
public static SimpleSingleton getinstance() {

if(null == singlelnstance) {

singlelnstance = new SimpleSingleton();

return singlelnstance;

}

http://viralpatel.net/blogs/2009/01/java-singleton-design-pattern-tutorial-example-singleton-j2ee-design-pattern.html

The Abstract Factory
Design Pattern

The Abstract Factory Pattern

m Motivation

— Sometimes we have systems that support
different representations depending on
external factors.

— The Abstract Factory pattern provides an
Interface for the client. In this way the client
can obtain a specific object through this
abstract interface.

m Intent

— Provides an interface for creating families of
related or dependent objects without
specifying their concrete classes

Abstract Factory Example

m Ul toolkit supports multiple look-and-feel
standards

— Motif and Presentation Manager
m Look and feel (LnF) standards define

appearance and behavior of Ul widgets
(e.g. scroll bars and windows)

m To be portable, should not hard code LnF
standards

Abstract Factory Example

WidgetFactory [« Client

CreateScrollBar()
CreateWindow()

A Window -

MotifWidgetFactory === |PMWidgetFactory ===+~ w1 PMWindow MotifWindow [<==--=

CreateScrollBar() CreateScrollBar()
Create Window() : | Create Window()

ScrollBar |-

%o PMScrollBar MotifScrollBar [<===-

