
EECS 4314
Advanced Software Engineering

Topic 05:

Design Pattern Review

Zhen Ming (Jack) Jiang

Acknowledgement

■ Some slides are adapted from Ahmed E.

Hassan, Jonathan Ostroff, Spiros

Mancoridis and Emad Shihab

The Evolution of

Programming Abstractions
■ The first modern programmable computers (1950s)

were largely hardwired. The first software was written
in machine language

■ Next major breakthrough: assembly languages
– Symbolic assemblers

– Macro processors

■ 1960s: High-level languages (3GLs)
– Mostly independent of machine and problem domain

• Level is “generic problem-solving”

– FORTRAN, COBOL

– Algol, Pascal, Modula

– C, PL/1

– Simula, Smalltalk; C++, Java

Abstraction from Developers’ Perspective

■ Typed variables and user-defined types [late 1960s]

■ Modules [early 1970s]
– 1968: “The software crisis”, need “software engineering”

– Create explicit interfaces, enforce information hiding

■ ADTs and object-oriented computing [mid 1970s]
– Programming entities as mathematically precise constructs

– Abstract commonalities to one place

■ Object-oriented design patterns, refactoring [1990s]
– OO is powerful and complex

• What constitutes a “good” OO design (small to medium-sized programs)?

• What re-usable “tricks” can help to solve recurring problems?

– At the level of data structures, algorithms and a few co-operating
classes

■ Software architecture [1990s, but really since 1960s]
– Designing large systems is about understanding broad tasks, defining

system-wide structures, interfaces and protocols, understanding how
non-functional requirements impact on the system

– At the level of the handful of “big boxes” that comprise the major
components of your system, plus their interdependencies

What are Object-Oriented

Design Patterns (OODP)?
■ Design patterns are reusable solutions to common

problems.
– An OODP typically involves a small set of classes co-

operating to achieve a desired end

– This is done via adding a level of indirection in some clever
way, and

– The new improved solution provides the small functionality
as an existing approach, but in the some more desirable
way (elegance, efficiency and adaptability)

■ OODPs often make heavy use of interfaces,
information hiding, polymorphisms and intermediary
objects

■ Typical presentation of an OODP
– A motivating problem and its context,

– Discussion of the possible solutions, and

– Common variations and tradeoffs

Learning Design Patterns

■ Think of OODP as high-level programming

abstractions

– First, you learn the basics (data structures,

algorithms, tools and language details)

– Then, you learn modules, interfaces,

information hiding, classes/OO programming

– Design patterns are the next level of

abstraction

– (… Software Architecture)

Design Patterns help you …
■ Design new systems using higher-level abstractions

than variables, procedures and classes

■ Understand relative tradeoffs, appropriateness,
(dis)advantages of patterns

■ Understand the nature both of the system you are
constructing and of OO design in general

■ Communicate about systems with other developers

■ Give guidance in resolving non-functional
requirements and trade-offs
– Portability, extensibility, maintainability, re-usability,

scalability, …

■ Avoid known traps, pitfalls and temptations

■ Ease restructuring, refactoring, and

■ Foster coherent, directed system evolution and
maintenance based on a greater understanding of
OO design

Design Patterns

– Another form of Reuse

■ Someone has already solved your

problem

■ Exploit the wisdom and lessons learned by

other developers who have been down the

same design problem road and survived

the trip.

■ Instead of code reuse, with patterns you

get experience reuse.

Design Pattern Categories

■ Gang of Four (GoF) Design patterns (23 patterns)

– Creational patterns: concern the process of object
creation

• Abstract factory, Singleton, Factory method, etc.

– Structural patterns: concern the process of
assembling objects and classes

• Adapter, Façade, Composite, Decorator, etc.

– Behavioral patterns: concern the interaction
between classes or objects

• Iterator, Observer, Strategy, etc.

There are thousands of patterns “out there” and thousands more waiting to be discovered

- Some are “domain specific”

- Some are a lot like others, special cases, etc.

- There is no official person/group who decides what is/isn’t a design patterns

■ Patterns give

developers a

shared

vocabulary as

well as a shared

code experience

Design Pattern References

http://www.hillside.net/patterns/

http://www.hillside.net/patterns/

Design Patterns Covered

■ Structural
– Adapter

– Façade

– Composite

■ Behavioral
– Iterator

– Strategy

– State

– Template

– Observer

– Master-Slave

■ Creational
– Abstract Factory

– Singleton

For Each Pattern ….

■ Motivation – the problem we want to

solve using the design pattern

■ Intent – the intended solution the design

pattern proposes

■ Structure – how the design pattern is

implemented

■ Participants – the components of the

design pattern

Terminology
■ Objects package both data and the procedures

that operate on that data

■ An object performs an operation when it receives
a request (or message) from a client

■ Procedures are typically called methods or
operations

■ An object’s implementation is defined by its class.
The class specifies
– Object’s internal data and representation

– Operations that object can perform

■ The set of signatures defined by an object’s
operations or methods is called the interface

■ An abstract class is one whose main purpose is
to define a common interface for its subclass

Structural Design Patterns

- Adapter, Façade, Composite

The Adapter Design Pattern

The Adapter Design Pattern

■ Motivation:
– When we want to reuse classes in an

application that expects classes with a different
interface, we do not want (and often cannot) to
change the reusable classes to suit our
application.

■ Intent:
– Convert the interface of a class into another

interface clients expect.

– Adapter lets classes work together that couldn’t
otherwise because of incompatible interfaces.

Applicability

■ Use an existing class when its interface

does not match the one you need

■ Create a class that cooperates with

unrelated or unforeseen classes with

incompatible interfaces

Participants of the

 Adapter Pattern

■ Target: Defines the application-specific

interface that clients use.

■ Client: Collaborates with objects

conforming to the target interface.

■ Adaptee: Defines an existing interface

that needs adapting.

■ Adapter: Adapts the interface of the

adaptee to the target interface.

Adapter Lets users draw and

arrange graphical

elements

Interface for

graphical object

Subclass of shape

defined by editor for

lines

OTS UI toolkit. Provides

sophisticated class for

displaying and editing text

One can change TextView

class so it conforms to

Shape interface … would

need source code of

TextView. Too much work!

Define TextShape to adapt

TextView interface to Shape’s

BoundingBox requests

are converted to

GetExtent requests

Allows objects to be

‘dragged’

interactively

Adapter Pattern Structure

(Object Adapter)

Client
Target

Request()

Adaptee

SpecificRequest()

Adapter

Request() SpecificRequest()

adaptee

Defines the application-

specific interface that

clients use

Collaborates with

objects conforming to

the target interface

Adapts the interface of

the adaptee to the target

interface

Defines an existing

interface that needs

adapting

Structure of the Adapter Pattern

Using Multiple Inheritance

(Class Adapter)

Client Target

Request()

Adaptee

SpecificRequest()

Adapter

Request() SpecificRequest()

(implementation)

Applicability

■ Use an existing class when its interface does
not match the one you need

■ Create a class that cooperates with unrelated
or unforeseen classes with incompatible
interfaces

■ Object Adapter Only
– Need to use several existing subclasses, but it is

impractical to adapt by sub-classing each one of
them

• Object adapter adapts the interface of the parent class

Tradeoffs
■ A class adapter – inheritance

– Adapts Adaptee to Target by committing to concrete
Adapter class

• Class adapter is not useful when we want to adapt a class
and all its subclasses

– Lets Adapter override some of Adaptee's behaviour
• Adapter is a subclass of Adaptee

– Introduces only one object
• No additional pointer indirection is needed to get to Adaptee

■ An object adapter – uses
– One Adapter can work with many Adaptees

• Adaptee and all its subclasses

• Can add functionality to all Adaptees at once

– Makes it harder to override Adaptee behaviour
• Requires making ADAPTER refer to the subclass rather than

the ADAPTEE itself, Or

• Subclassing ADAPTER for each ADAPTEE subclass

The Façade Design Pattern

The Façade Pattern

■ Motivation

– Structuring a system into subsystems helps reduce
complexity.

– A common design goal is to minimize the
communication and dependencies between
subsystems.

– Use a facade object to provide a single, simplified
interface to the more general facilities of a subsystem.

■ Intent

– Provide a unified interface to a set of interfaces in a
subsystem. Facade defines a higher-level interface
that makes the subsystem easier to use.

Façade Example –

Programming Environment

Software Design (OOD Patterns)

Compiler

Scanner

Parser

Token

ProgNode

ProgNodeBuilder

RISCCG

StackMachineCG

Statement Node

Expression Node

Variable Node Compiler Subsystem Classes

Compile()

CodeGenerator
Implement compiler

Give access to

compiler

Structure of the Facade Pattern

Subsystem Classes

Facade

Client Classes

Participants of the

Facade Pattern

■ Facade:
– Knows which subsystem classes are

responsible for a request.

– Delegates client requests to appropriate
subsystem objects.

■ Subsystem Classes:
– Implement subsystem functionality.

– Handle work assigned by the facade object.

– Have no knowledge of the facade; that is, they
keep no references to it.

Participants of Façade Pattern

■ Façade (compiler)

– Knows which subsystem classes are responsible

for a request

– Delegates client requests to appropriate

subsystem objects

■ Subsystem classes (Scanner, Parser,etc..)

– Implements subsystem functionality

– Handles work assigned by the façade object

Façade Pattern Applicability

■ Use a façade when

– To provide a simple interface to a complex

subsystem

– To decouple clients and implementation

classes

– To define an entry point to a layered

subsystem

Adapter vs. Façade

■ The basic idea is similar, but …

■ Adapter typically changes the interface of a single
class into something more natural for clients

– Adapter adds a “human face” to a grungy abstraction,
but does not change the adaptee

– Adapter are often applied to
• Library entities external to your system that you want to use, or

• Components of your system that external clients will use

■ Façade puts a human face on a whole system

– A façade usually requires changing the core code to
make all accessing go through the façade

– Typically this is done to (older) pieces of your system
when you are performing a redesign

The Composite Design Pattern

Composite Pattern
■ Motivation

– Applications that have recursive groupings of
primitives and groups (containers)

• Drawing programs
– Lines, text, figures and groups

• Directory structure
– Folders and files

– Operations on groups are different than primitives
but clients treat them in the same way

■ Intent
– Compose objects into tree structures

representing part-whole hierarchies

– Clients deal uniformly with individual objects and
hierarchies of objects

Composite Pattern Example
Graphic

Draw()

Add(Graphic)

Remove(Graphic)

GetChild(int)

Line Text Rect.

Draw() Draw() Draw()

Picture

Draw()

Add(Graphic)

Remove(Graphic)

GetChild(int)

forall g in graphics

g.Draw()

graphics

Primitive graphical objects

Aggregate of Graphic objects

Structure of Composite Pattern

Client

Component

Operation()

Add(Component)

Remove(Component)

GetChild(int)

Leaf Composite

Operation()
Operation()

Add(Component)

Remove(Component)

GetChild(int)

forall g in children

g.Operation()

children

Declares interface for

objects and child

components

Defines behavior for

primitive objects. Leafs

have no children

Defines behavior for

components having

children. Implements

child-related operations

Manipulates objects in

the composition through

Component interface

Behavioral Design Patterns

- Iterator, Observer, Template,

Master/Slave

The Iterator Design Pattern

The Iterator Pattern
■ Motivation

– Don’t want to expose implementation details of
the container AND want to allow multiple
simultaneous traversals

• Create separate interface/class that provide simple
“hooks”

– Often we want to say to a container (e.g., tree,
graph, table, list, graphics):

• Apply f() to each of your objects

■ Intent
– Provide a clean, abstract way to access all of the

elements in an aggregate (container) without
exposing the underlying representation

– Move responsibility for access and traversal to a
separate “iterator” object

Iterator Pattern Example

List

Count()

Append(Element)

Remove(Element)

…

ListIterator

First()

Next()

IsDone()

CurrentItem()

index

list

Access and traversal

responsibilities are taken

out of List object into an

iterator object (ListIterator)

Can define different traversal policies without enumerating

them in the List interface

Structure of Iterator Pattern

Aggregate

CreateIterator()

ConcreteAggregate

CreateIterator()

Iterator

First()

Next()

IsDone()

CurrentItem()

ConcreteIterator

return new ConcreteIterator(this)

Provides a common

interface for creating

Iterator object

Interface for accessing and

traversing elements

Implements the Iterator

interface

Implements the Iterator

creation interface to return

instance of ConcreteIterator

The Strategy Design Pattern

The Strategy Pattern

■ Motivation
– Have a problem with multiple well-defined

solutions that conform to a common interface

– Want to let client vary the implementation
according to particular needs. Variation due to
either:

• Different functionality (e.g., justification styles)

• Same functionality, but different non-functional
attributes (efficiency, trust, debugging input)

– E.g., sorting routines, resource allocation strategies

– Implementation is mostly decoupled from client
code. Most binding is to abstract parent interface

■ Intent
– Define a family of related algorithms behind a

common interface

superclass DUCK

Q: How do we make the

ducks fly?

Problem: Find a design?

■ Most ducks fly in the same way, but a few

species of duck have different flyable

behaviour, or perhaps they do not fly at all

■ Most ducks quack in the same way, but a

few species have a different quackable

behaviour or they do not quack at all

■ Must be able to change flyable and

quackable behavior dynamically

■ Inheritance hasn’t worked out very well, since the duck

behavior keeps changing across the subclasses, and it’s

not appropriate for all subclasses to have those behaviors.

■ The Flyable and Quackable interface sounded promising

at first — only ducks that really do fly will be Flyable, etc.,

— except Java interfaces have no implementation code,

so no code reuse.

■ And that means that whenever you need to modify a

behavior, you’re forced to track down and change it in all

the different subclasses where that behavior is defined,

probably introducing new bugs along the way!

Delegation

Has-a

Is-a

The Observer Design Pattern

The Observer Pattern

■ Motivation
– A common side-effect of partitioning a system

into a collection of cooperating classes is the
need to maintain consistency between related
objects.

– How can you achieve consistency?

■ Intent
– Define a one-to-many dependency between

objects so that when one object changes state,
all its dependents are notified and updated
automatically.

Observer Pattern Example

a b c
60

y
x

50 30
30

20
10

z 80 10 10 a b c

a

b

c

a = 50%

b = 30%

c = 20%

change notification requests, modifications

Subject

Observer

Observer Pattern Structure

Subject

Attach(Observer)

Detach(Observer)

Notify()

ConcreteSubject

subjectState

GetState()

SetState()

for all o in

 observers {

 o -> Update()}

Observer

Update()

observers

ConcreteObserver

observerState =

subject->GetState()
Update()

observerState

return subjectState

subject

Defines interface for objects

that should be notified of

changes in a subject

Provides an interface for

attaching and detaching

Observer objects

Implements the Observer

interface to keep its state

consistent with the subject

Sends a notification to

observers when its state

changes

MVC

iTunes

mp3 player

The State Design Pattern

The State Design Pattern

■ Motivation

– An object may be in one of many states. It

responds differently depending upon its

current state

■ Intent

– Alter behaviour of an object when its internal

state changes

– Object appears to change its class

Exercise: Gumball Example

adding new states

State vs. Strategy
■ The class diagrams are similar but they differ in intent

■ State
– Behaviours are constantly changing over time and the

client (context) knows very little about how those different
behaviours work

– Encapsulate behaviours in state objects and set change in
the context

– Alternative to putting a lot of conditional statements in the
context

■ Strategy
– Client knows quite a lot about what behaviour (strategy) is

most appropriate e.g., we know that a mallard duck has
typical flying behaviour and a decoy duck never flies

– Change in state less usual

– Flexible alternative to subclassing

The Template Design Pattern

The Template Pattern
■ Motivation

– Consider an application that provides Application and Document
classes

• Application: opens existing document

• Document: represents the information in a doc

– By defining some of the steps of an algorithm, using abstract
operations, the template method fixes their ordering.

– Specific applications can subclass Application and Document to
suit their specific needs

• Drawing application: defines DrawApplication and DrawDocument
sublclasees

• Spreadsheet application: defines SpreadsheetApplication and
SpreadsheetDocument sublclasees

■ Intent
– Define the skeleton of an algorithm in an operation, deferring

some steps to subclasses.

– The Template pattern lets subclasses redefine certain steps of
an algorithm without changing the algorithm’s structure.

Template Pattern Example

Document

Save()

Open()

Close()

DoRead()

Application

AddDoc()

OpenDoc()

DoCreateDoc()

CanOpenDoc()

AboutToOpenDoc()

MyDocument

DoRead()

MyApplication

DoCreateDoc()

CanOpenDoc()

AboutToOpenDoc()

docs

return new MyDocument

OpenDoc is a template

method that defines each

step for opening a

document

■ CanOpenDoc() – check if

doc can be opened

■ DoCreateDoc() – create

doc

■ AboutToOpenDoc() – lets

application know when a

doc is about to be opened

Template Pattern Structure

TemplateMethod()

PrimitiveOp1()

PrimitiveOp2()

AbstractClass

ConcreteClass

PrimitiveOp1()

PrimitiveOp2()

...
PrimitiveOp1()

PrimitiveOp2()

...

AbstractClass – defines

abstract primitive operations

that concrete subclass

implement

Implements a template method defining

the skeleton. The template method calls

primitive ops and operations defined in

the Abstract class

Concrete class –

implements primitive ops to

carry out subclasss-specific

steps of an algorithm

The Master-Slave

Design Pattern

The Master-Slave Pattern
■ Motivation

– Fault tolerance is a critical factor in many systems.

– Replication of services and delegation of the same
task to several independent suppliers is a common
strategy to handle such cases.

■ Intent

– Independent components providing the same service
(slaves) are separated from a component (master)
responsible for invoking them and for selecting a
particular result from the results returned by the
slaves.

– (Master) Handles the computation of replicated
services within a software system to achieve fault
tolerance and robustness.

Master-Slave Pattern Example

NuclearPP

acceptableRL()

Voter

RadLevel()

return max(

slave1->RadLevel(),

slave2->RadLevel(),

slave3->RadLevel())

Slave2

RadLevel()

Slave1

RadLevel()

Slave3

RadLevel()

Master-Slave Pattern Structure

Slave1

ServiceImp1()

Slave2

ServiceImp1()

Slave3

ServiceImp1()

Master

service()

Client

Compute()

request

service

forward

request

forward

request

forward

request
Requests a service

to solve its task

Organizes the invocation of

replicated services and

decides which of the results

to pass to clients

Implements a

service

Creational Design Patterns

- Singleton, Abstract Factory

The Singleton Design Pattern

The Singleton Pattern

■ Motivation

– Some classes must only have one instance
file system, window manager

■ Intent

– Ensure a class has only one instance

– Provide a global point of access

■ Applicability

– Must have only one instance of a class

– Must be accessible from a known location

Singleton Pattern Structure

Singleton

return instance Static Instance()

Singleton getInstance()

Operations

Defines an instance

operation that lets clients

access its unique instance

Singleton example (Java)
public class SimpleSingleton {

 private SimpleSingleton singleInstance = null;

 //Marking default constructor private

 //to avoid direct instantiation.

 private SimpleSingleton() {

 }

 //Get instance for class SimpleSingleton

 public static SimpleSingleton getInstance() {

 if(null == singleInstance) {

 singleInstance = new SimpleSingleton();

 }

 return singleInstance;

 }

}

http://viralpatel.net/blogs/2009/01/java-singleton-design-pattern-tutorial-example-singleton-j2ee-design-pattern.html

The Abstract Factory

Design Pattern

The Abstract Factory Pattern

■ Motivation

– Sometimes we have systems that support
different representations depending on
external factors.

– The Abstract Factory pattern provides an
interface for the client. In this way the client
can obtain a specific object through this
abstract interface.

■ Intent

– Provides an interface for creating families of
related or dependent objects without
specifying their concrete classes

Abstract Factory Example

■ UI toolkit supports multiple look-and-feel

standards

– Motif and Presentation Manager

■ Look and feel (LnF) standards define

appearance and behavior of UI widgets

(e.g. scroll bars and windows)

■ To be portable, should not hard code LnF

standards

Abstract Factory Example

WidgetFactory

CreateScrollBar()

CreateWindow()

CreateScrollBar()

Create Window()

CreateScrollBar()

Create Window()

MotifWidgetFactory PMWidgetFactory PMWindow MotifWindow

Window

Client

PMScrollBar MotifScrollBar

ScrollBar

