
EECS 4314
Advanced Software Engineering

Topic 04:

Software Architecture: Intro and Styles

Zhen Ming (Jack) Jiang

Acknowledgement

■ Some of the slides are from Richard C.

Holt, Spiros Mancoridis, and Emad Shihab

References

■ David Garlan and Mary Shaw. An

Introduction to Software Architecture,

Advances in Software Engineering and

Knowledge Engineering, Volume 1, World

Scientific Publishing Co., 1993.

■ The Architecture of Open Source

Applications

– http://aosabook.org/en/index.html

http://aosabook.org/en/index.html
http://aosabook.org/en/index.html
http://aosabook.org/en/index.html
http://aosabook.org/en/index.html
http://aosabook.org/en/index.html
http://aosabook.org/en/index.html
http://aosabook.org/en/index.html

The Evolution of

Programming Abstractions
■ The first modern programmable computers (1950s)

were largely hardwired. The first software was written
in machine language

■ Next major breakthrough: assembly languages
– Symbolic assemblers

– Macro processors

■ 1960s: High-level languages (3GLs)
– Mostly independent of machine and problem domain

• Level is “generic problem-solving”

– FORTRAN, COBOL

– Algol, Pascal, Modula

– C, PL/1

– Simula, Smalltalk; C++, Java

Abstraction from Developers’ Perspective

■ Typed variables and user-defined types [late 1960s]

■ Modules [early 1970s]
– 1968: “The software crisis”, need “software engineering”
– Create explicit interfaces, enforce information hiding

■ ADTs and object-oriented computing [mid 1970s]
– Programming entities as mathematically precise constructs

– Abstract commonalities to one place

■ Object-oriented design patterns, refactoring [1990s]
– OO is powerful and complex

• What constitutes a “good” OO design (small to medium-sized programs)?

• What re-usable “tricks” can help to solve recurring problems?

– At the level of data structures, algorithms and a few co-operating
classes

■ Software architecture [1990s, but really since 1960s]
– Designing large systems is about understanding broad tasks, defining

system-wide structures, interfaces and protocols, understanding how
non-functional requirements impact on the system

– At the level of the handful of “big boxes” that comprise the major
components of your system, plus their interdependencies

Software Architecture

■ As the size and complexity of software
systems increases, the design problem goes
beyond algorithms and data structures.

■ Designing and specifying the overall system
structure (Software Architecture) emerges
as a new kind of problem.

■ Reference Architecture
– General architecture for an application domain.

E.g., common structure for compilers or for
operating systems

■ Product Line Architecture (PLA)
– Architecture for a line of similar software

products. E.g., software structure for a family of
computer games

Software Architecture Issues

■ Organization and global control structure,

■ Protocols of communication,

synchronization, and data access,

■ Assignment of functionality to design

elements,

■ Physical distribution,

■ Selection among design alternatives.

State of Practice

■ Currently there is no well-defined terminology
or notation to characterize architectural
structures.

■ However, good software engineers make
common use of architectural principles when
designing complex software.

■ These principles represent rules of thumb or
idiomatic patterns that have emerged
informally over time. Others are more
carefully documented as industry standards.

Descriptions of Software Architectures

- Example # 1

■ “Camelot is based on the client-server

model and uses remote procedure calls

both locally and remotely to provide

communication among applications and

servers.”

■ “We have chosen a distributed, object-

oriented approach to managing

information.”

Descriptions of Software Architectures

– Example # 2

■ “Abstraction layering and system

decomposition provide the appearance of

system uniformity to clients, yet allow Helix

to accommodate a diversity of

autonomous devices. The architecture

encourages a client-server model for the

structuring of applications.”

Descriptions of Software Architectures

– Example # 3

■ “The easiest way to make a canonical sequential

compiler into a concurrent compiler is to

pipeline the execution of the compiler phases

over a number of processors. A more effective

way is to split the source code into many

segments, which are concurrently processed

through the various phases of compilation (by

multiple compiler processes) before a final,

merging pass recombines the object code into a

single program.”

Some Standard

Software Architectures

■ ISO/OSI Reference Model is a layered

network architecture.

■ X Window System is a distributed

windowed user interface architecture

based on event triggering and callbacks.

■ NIST/ECMA Reference Model is a

generic software engineering environment

architecture based on layered

communication substrates.

The “Toaster” Model

Intuition About Architecture

■ It is interesting that we have so few named
software architectures. This is not because
there are so few architectures, but so many.

■ We next look at several architectural
disciplines in order to develop an intuition
about software architecture. Specifically, we
look at:
– Hardware Architecture

– Network Architecture

– Building Architecture

Hardware Architecture

■ RISC machines emphasize the instruction

set as an important feature.

■ Pipelined and multi-processor machines

emphasize the configuration of

architectural pieces of the hardware.

Differences & Similarities

Between SW & HW Architectures

■ Differences:
– relatively (to software) small number of design

elements.

– scale is achieved by replication of design
elements.

■ Similarities:
– we often configure software architectures in

ways analogous to hardware architectures.
(e.g., we create multi-process software and
use pipelined processing).

Network Architecture

■ Networked architectures are achieved by
abstracting the design elements of a network
into nodes and connections.

■ Topology is the most emphasized aspect:
– Star networks

– Ring networks

– Manhattan Street networks

■ Unlike software architectures, in network
architectures only few topologies are of
interest.

Building Architecture

■ Multiple Views: skeleton frames,

detailed views of electrical wiring, etc.

■ Architectural Styles: Classical,

Romanesque, and so on.

■ Materials: One does not build a

skyscraper using wooden posts and

beams.

What are Architectural Styles

■ An Architectural Style defines a family

of systems in terms of a pattern of

structural organization. It determines:

– the vocabulary of components and

connectors that can be used in instances

of that style

– a set of constraints on how they can be

combined.

Why Architectural Styles

■ Makes for an easy way to communicate

among stakeholders

■ Documentation of early design decisions

■ Allow for the reuse and transfer of qualities

to similar systems

Determining an Architectural Style

■ We can understand what a style is by answering

the following questions:

– What is the structural pattern? (i.e., components,

connectors, constraints)

– What is the underlying computational model?

– What are the essential invariants of the style?

– What are some common examples of its use?

– What are the advantages and disadvantages of

using that style?

– What are some of the common specializations of that

style?

Describing an Architectural Style

■ The architecture of a specific system is a collection of:
– computational components

– description of the interactions between these components
(connectors)

■ Software architectures are represented as graphs
where nodes represent components:
– procedures

– modules

– processes

– tools

– databases

■ and edges represent connectors:
– procedure calls

– event broadcasts

– database queries

– pipes

Architecture Styles Covered

■ Pipe and filter

■ Repository

■ Implicit invocation

■ Layered

■ Client-server

■ Process-control

Pipe and Filter Style

Pipe and Filter

Architectural Style

■ Suitable for applications that require a

defined series of independent

computations to be performed on ordered

data.

■ A component reads streams of data on its

inputs and produces streams of data on its

outputs.

Pipe and Filter

Architectural Style (Cont’d)
■ Components: called filters, apply local

transformations to their input streams and

often do their computing incrementally so

that output begins before all input is

consumed.

■ Connectors: called pipes, serve as

conduits for the streams, transmitting

outputs of one filter to inputs of another.

Pipe and Filter

Architectural Style
filter

pipes

Pipe and Filter Invariants

■ Filters do not share state with other

filters.

■ Filters do not know the identity of their

upstream or downstream filters.

■ The correctness of the output of a pipe

and filter network should not depend on

the order in which their filters perform their

incremental processing.

Pipe and Filter Specializations

■ Pipelines: Restricts topologies to linear

sequences of filters.

■ Batch Sequential: A degenerate case of

a pipeline architecture where each filter

processes all of its input data before

producing any output.

Pipe and Filter Examples

■ Unix Shell Scripts: Provides a notation

for connecting Unix processes via pipes.

– cat file | grep Eroll | wc -l

■ Traditional Compilers: Compilation

phases are pipelined, though the phases

are not always incremental. The phases

in the pipeline include:

– lexical analysis + parsing + semantic analysis

+ code generation

Pipe and Filter Style

Advantages & Disadvantage
■ Advantages

– Easy to understand the overall input/output behavior of a
system as a simple composition of the behaviors of the individual
filters.

– They support reuse, since any two filters can be hooked
together, provided they agree on the data that is being
transmitted between them.

– Systems can be easily maintained and enhanced, since new
filters can be added to existing systems and old filters can be
replaced by improved ones.

– They permit certain kinds of specialized analysis, such as
throughput and deadlock analysis.

– The naturally support concurrent execution.

■ Disadvantages
– Not good for handling interactive systems, because of their

transformational character.

– Excessive parsing and unparsing leads to loss of performance
and increased complexity in writing the filters themselves.

Summary of Pipe-and-Filter Style

■ Independent components connected by

pipes that route data streams between

filters

■ Advantages
■ Easy to understand

■ Easy to maintain

and enhance

■ Disadvantages
■ Poor performance

■ Increased

complexity

Repository Style

Repository Style

■ Suitable for applications in which the

central issue is establishing, augmenting,

and maintaining a complex central body of

information.

■ Typically the information must be

manipulated in a variety of ways. Often

long-term persistence is required.

Repository Style (Cont’d)

■ Components:

– A central data structure representing the

current state of the system.

– A collection of independent components that

operate on the central data structure.

■ Connectors:

– Typically procedure calls or direct memory

accesses.

Repository Style (Cont’d)

Shared Data

Memory

Memory Access

Computation

Repository Style Specializations

■ Changes to the data structure trigger

computations.

■ Data structure in memory (persistent

option).

■ Data structure on disk.

■ Concurrent computations and data

accesses.

Repository Style Examples

■ Information Systems

■ Central Code Repository Systems

■ Programming Environments

■ Graphical Editors

■ Database Management Systems

■ Games (World of Warcraft)

Repository Style Advantages

■ Efficient way to store large amounts of

data.

■ Sharing model is published as the

repository schema.

■ Centralized management:

– backup

– security

– concurrency control

Repository Style Disadvantages

■ Must agree on a data model a priori.

■ Difficult to distribute data.

■ Data evolution is expensive.

Summary of Repository Style

■ Independent components (programs)

access and communicate exclusively

through global repository

■ Advantages
■ Efficient storage of

data

■ Easily manageable

■ Can solve complex

problems

■ Disadvantages
■ Evolving data is

expensive

■ Cannot handle high

volume or complex

logic

Case Study

- The Architecture of a Compiler

Case Study:

Architecture of a Compiler

■ The architecture of a system can change

in response to improvements in

technology.

■ This can be seen in the way we think

about compilers.

Early Compiler Architectures

■ In the 1970s, compilation was regarded as

a sequential (batch sequential or pipeline)

process:

Lex Syn Sem Opt CGen
text code

Early Compiler Architectures

■ Most compilers create a separate symbol

table during lexical analysis and used or

updated it during subsequent passes.

Symbol Table

Lex Syn Sem Opt CGen
text code

Modern Compiler Architectures

■ Later, in the mid 1980s, increasing

attention turned to the intermediate

representation of the program during

compilation.

Symbol Table

Lex Sem CGen
code text

Attributed
Parse Tree

Opt Syn

Hybrid Compiler Architectures

■ The new view accommodates various

tools (e.g., syntax-directed editors) that

operate on the internal representation

rather than the textual form of a program.

■ Architectural shift to a repository style,

with elements of the pipeline style, since

the order of execution of the processes is

still predetermined.

Hybrid Compiler Architectures

Lex Syn Sem Opt Cgen

Edit Flow

Attributed
Parse Tree

Symbol Table

Implicit Invocation Style

Implicit Invocation Style

Publish-Subscribe Event Based

Taylor et al. 2010

Implicit Invocation Variants

■ Publish-Subscribe

– Subscribers register to receive specific

messages

– Publishers maintain a subscription list and

broadcast messages to subscribers

■ Event-Based

– ICs asynchronously emit and receive “events”

communicated over event bus

Implicit Invocation Style

■ Components

– Publishers, subscribers

– Event generators and consumers

■ Connectors

– (PS) Procedure calls

– Event bus

Implicit Invocation Style Topology

■ Subscribers connect to publishers directly

(or through network)

■ Components communicate with the event

bus, not directly to each other

Implicit Invocation Advantages

■ (PS) Efficient dissemination of one-way

information

■ Provides strong support for reuse

– Any component can be added, by

registering/subscribing for events

■ Eases system evolution

– components may be replaced without

affecting other components in the system

Implicit Invocation

Disadvantages
■ (PS) Need special protocols when number

of subscribers is very large

■ When a component announces an event:

– it has no idea what other components will
respond to it,

– it cannot rely on the order in which the
responses are invoked

– it cannot know when responses are finished

Implicit Invocation Examples

■ Used in programming environments

to integrate tools:

– Debugger stops at a breakpoint and makes

that announcement

– Editor scrolls to the appropriate source line

and highlights it

■ Twitter, Google+

QA evaluation for Implicit

Invocation

■ Performance
– (PS) Can deliver 1000s of msgs

– Event bus: how does it compare to Repository?

■ Availability
– Publisher needs to be replicated

■ Scalability
– Can support 1000s of users, growth in data size

■ Modifiability
– Easily add more subscribers, change in message

format affects many subscribers

Layered Style

Layered Style

■ Architecture is separated into ordered

layers

– A program in one layer may obtain services

from a layer below it

Layered Style Specializations

■ Often exceptions are be made to permit

non-adjacent layers to communicate

directly.

– This is usually done for efficiency reasons.

Layered Style Examples

■ Layered Communication Protocols:

– Each layer provides a substrate for

communication at some level of abstraction.

– Lower levels define lower levels of interaction,

the lowest level being hardware connections

(physical layer).

■ Operating Systems

– Unix

Unix Layered Architecture

Layered Style Advantages

■ Design: based on increasing levels of

abstraction.

■ Enhancement: since changes to the

function of one layer affects at most two

other layers.

■ Reuse: since different implementations

(with identical interfaces) of the same layer

can be used interchangeably.

Layered Style Disadvantages

■ Not all systems are easily structured in a

layered fashion.

■ Performance requirements may force the

coupling of high-level functions to their

lower-level implementations.

Client-Server Style

Client-Server Style

■ Suitable for applications that involve

distributed data and processing across a

range of components.

Client-Server Style

■ Components:

– Servers: Stand-alone components that

provide specific services such as printing,

data management, etc.

– Clients: Components that call on the

services provided by servers.

■ Connector: The network, which allows

clients to access remote servers.

Client-Server Style

Client-Server Style Examples

■ File Servers:

– Primitive form of data service.

– Useful for sharing files across a network.

– The client passes request for files over the

network to the file server.

Client-Server Style

Examples (Cont’d)

■ Database Servers:

– More efficient use of distributing power than

file servers.

– Client passes SQL requests as messages to

the DB server; results are returned over the

network to the client.

– Query processing done by the server.

– No need for large data transfers.

– Transaction DB servers also available.

Client-Server Style

Advantages

■ Distribution of data is straightforward,

■ Transparency of location,

■ Mix and match heterogeneous platforms,

■ Easy to add new servers or upgrade

existing servers.

Client-Server Style

Disadvantages

■ No central register of names and services

-- it may be hard to find out what services

are available

Process-Control Style

Process-Control Style

■ Suitable for applications whose purpose is

to maintain specified properties of the

outputs of the process at (sufficiently near)

given reference values.

Process-Control Style
■ Components:

– Process Definition includes mechanisms for
manipulating some process variables.

– Control Algorithm for deciding how to
manipulate process variables.

■ Connectors: are the data flow relations for:
– Process Variables:

• Controlled variable whose value the system is intended
to control.

• Input variable that measures an input to the process.

• Manipulated variable whose value can be changed by
the controller.

– Set Point is the desired value for a controlled
variable.

– Sensors to obtain values of process variables
pertinent to control.

Feed-Back Control System

■ The controlled variable is measured and

the result is used to manipulate one or

more of the process variables.

Open-Loop Control System

■ Information about process variables is not

used to adjust the system.

Process Control Examples

■Real-Time System Software to

Control:
– Automobile Anti-Lock Brakes
– Nuclear Power Plants
– Automobile Cruise-Control

MAPE-K loop

Exercise

Automated Stock Trading System

■ A customer approaches YOURSTRULYTradingSolutions

with the need for an architecture design for an

automated stock trading system. The system needs to

take in a list of stocks, related to specific sectors and

buy/sell these stocks based on some predefined

algorithms.

■ The system needs to perform well (place many orders)

and scale to support many investors.

■ Your task is to propose an architecture for the system,

accompanied by an informal evaluation of the

advantages and disadvantages of the proposed

architecture.

Automated Stock Trading System

■ Input

– List of sectors/stocks to trade

– List of investors and their daily budget

■ Output

– Notification to buyers/sellers

• List of stocks bought/sold

• Cost, if bought; Gain/Loss, if sold

– Withdraw/deposit money based on orders

Automated Stock Trading System

Assumptions

■ Historical data of all stocks will be provided (very

large)

– To perform historical analysis on the stocks/sectors

■ Buy/Sell algorithms will be provided by financial

engineers

– To know which stocks to buy/sell

■ Investor personal data will be provided

– To withdraw and deposit money

