
EECS 4314
Advanced Software Engineering

Topic 03:

UML Overview

Zhen Ming (Jack) Jiang

Acknowledgement

■ Some slides are from Ahmed E. Hassan,

Richard Paige, and Spiros Mancoridis

Unified Modelling Language (UML)

■ UML is a set of notations, not a methodology or
process.
– Version 2.x is the latest standard

• There are now ~12 kinds of diagrams!

– UML does have an official standard, backed by OMG

– Rational (now owned by IBM) is the big mover behind
UML, but they don’t “own” it.

– Lots of history and politics behind it.

■ Many expensive tools, seminars, books, hype, etc. …
but
– “UML is just a bunch of notations.”

– UML doesn’t solve your problems for you, it gives you a
way of writing them down.

• “Guaranteed cockroach killer” [Gause/Weinberg]

A short history of analysis and

design notations
1970s:

– Procedural languages (COBOL, FORTRAN, PL/I, C)

– Systems are structured as TDFD
• (TDFD == top-down functional decomposition)

– Data is mostly global and passive

– Notations and tools:
• ER diagrams (for DB design)

• DFDs, CFGs, flowcharts

• STDs (for state-oriented engineering applications)

• Data dictionaries

– Methodologies: Structured analysis

1980s:

– Some OO languages start to creep in (C++, OO-Cobol)

– Systems structured as modules, use info-hiding & interfaces.

– Data is encapsulated; must use interfaces.

– Notations and tools:

• Class/object diagrams (ER++) for analysis modelling

• Statecharts (formal STDs for engineering appls.)

• Message sequence charts (aka scenario diags)

• Use cases (Jacobson)

– Methodologies:

• OMT (Rumbaugh)

• Booch notation

• many others

1990s:
– Most of the software industry is tired of tool/notation wars.

• They want some form of agreement on a notation without an accompanying state religion.

– The “three amigos” gather at Rational; they confer, then announce “war is over (if you want it).”

– UML takes a kitchen-sink approach to language design.
• It contains many kinds of diagrams(!), and makes few restrictions on how to use them.

• UML diagrams are used to model various requirements views as well as architecture, design, implementation,
and run-time views

UML in a Nutshell

■ Early reqs views:
– Use cases:

• Identify actors, SUD boundaries/scope

• Map out basic SUD functionality at coarsely-grained level; consider
variations

■ Elaborate analysis model:
– Class diagrams:

• Shows static, structural domain model

• Model abstract relationships between problem-space entities

– Sequence / communication (a.k.a., collaboration) diagrams:

• Expand use cases into a set of scenarios

• Model interactions and flow of information between objects

• Show inter-object dynamic properties (can be coarse or fine)

UML in a Nutshell

■ (Very) detailed reqs view:
– State diagrams (Statecharts) + (detailed) sequence

diagrams:
• Show detailed view of how objects “work”.

– Statecharts model:

» intra-object dynamic behaviour

– Sequence diagrams model:

» inter-object dynamic behaviour

• Usually models “reactive” objects that respond to external
stimuli/events, e.g., embedded systems.

• Objects basically rest in a state until they are informed of an
event; they then perform some action and then go rest in
another state.

• Mainly used for real-time, embedded, and other engineering
applications; less useful for other types of systems.

1. Fowler on UML “religions”

1. UML as “religion”:

– How rigorously should you create and
maintain the UML diagrams?

– How much detail to show?

– Is XXX legal UML? Does it matter?

2. Different “perspectives” for UML
diagrams

– Using the same kinds of diagrams for
different purposes (analysis vs. design)

1. Fowler on UML “religions”

■ UML as blueprint
– Goal is rigorous, complete specification of analysis and/or design

of a software system:

• Analysis UML models are kept consistent with design UML models

– There is traceability between analysis and design models

• UML design artifacts are kept consistent with code

– Usually, this means extracting design info from code (reverse
engineering) and verifying current reality matches the specified design
model.

– UML diagrams express partial semantics of system

e.g., structure, communication paths, control / data / other
dependencies

– UML diagrams do not completely specify low-level semantics

e.g., full details of what happens inside a method body

1. Fowler on UML “religions”

■ UML as blueprint

– Tool support is key: “round trip engineering”

• Code generation from UML models

– Typically of interfaces / class skeletons, not method bodies

• Reverse engineering of UML models from source code

– Class (design) diagrams extracted from static source structure

– Sequence / communication diagrams extracted from system execution

traces

– Typically, we choose a desired level of detail; the models are

then complete with respect to that level of detail

e.g., static class structure and some set of relations (instantiates,

calls, inherits, package membership, …)

1. Fowler on UML “religions”

■ UML as programming language
– Tool support is even more important!

• Unfortunately, we are not quite there yet

• “Practical UML MDA tools are on the horizon.”

– The UML diagrams are the system
• They are the “maintenance artifacts” of the system, not the code!

• The code is auto-generated from detailed state models (and class
diagrams)

– Rarely done
• But it’s the grand goal of the MDA movement (model-driven

architecture)
– See http://www.omg.org/mda

http://www.omg.org/mda

2. Fowler on UML perspectives

■ Conceptual (domain / reqs) perspective

– Can involve use case diagrams & use cases, class

diagrams, scenarios with actors & SUD, …

– The conceptual class diagram also called the domain

model

• Entities are things in the domain, and actors

– Classes in this model do not (usually) correspond to

programming language classes; that’s what design is!

• Associations are abstract relationships between

classes/objects (including inheritance and aggregation).

2. Fowler on UML perspectives

■ Software (design) perspective

– Can include class diagrams, scenarios, …

– The key difference is that the “things”
modeled here correspond to source code
entities

• The class diagram shows Java classes, their
interrelationships that can be seen in the code

– Attributes are fields, operations are methods

– Associations model responsibilities

e.g., updates, manages

• Scenarios show sequences of real method calls

Additional UML References

■ UML Distilled - Applying the Standard

Object Modeling Language by Martin

Fowler and Kendall Scott

■ Applying UML and Patterns: An

Introduction to Object-Oriented Analysis

and Design and the Unified Process (3rd

Edition) by Craig Larman

UML Tools

■ Anything you can find to use

– ArgoUML, MagicDraw, Rational, Microsoft

Visio, etc.

– Different tools produce slightly different

diagrams

• Don’t get stuck in the details

• Make sure the notations in the diagrams are

consistent

Software Design

Static Modeling using the

Unified Modeling Language

(UML)

Classes

ClassName

attributes

operations

A class is a description of a set of

objects that share the same attributes,

operations, relationships, and semantics.

Graphically, a class is rendered as a

rectangle, usually including its name,

attributes, and operations in separate,

designated compartments.

Class Names

ClassName

attributes

operations

The name of the class is the only required

tag in the graphical representation of a

class. It always appears in the top-most

compartment.

Class Attributes

Person

name : String

address : Address

birthdate : Date

ssn : Id

An attribute is a named property of a

class that describes the object being modeled.

In the class diagram, attributes appear in

the second compartment just below the

name-compartment.

Class Operations

Person

name : String

address : Address

birthdate : Date

ssn : Id

eat

sleep

work

play

Operations describe the class behavior

and appear in the third compartment.

Class Operations (Cont’d)

PhoneBook

newEntry (n : Name, a : Address, p : PhoneNumber, d : Description)

getPhone (n : Name, a : Address) : PhoneNumber

You can specify an operation by stating its signature: listing the

name, type, and default value of all parameters, and, in the case of

functions, a return type.

Depicting Classes

Person

name : String

birthdate : Date

ssn : Id

eat()

sleep()

work()

play()

When drawing a class, you needn’t show attributes and operation

in every diagram.

Person

Person

name

address

birthdate

Person

eat

play

Person

Relationships

In UML, object interconnections (logical or physical), are

modeled as relationships.

There are three kinds of relationships in UML:

• dependencies

• generalizations

• associations

Dependency Relationships

CourseSchedule

add(c : Course)

remove(c : Course)

Course

A dependency indicates a semantic relationship between two or

more elements. The dependency from CourseSchedule to

Course exists because Course is used in both the add and

remove operations of CourseSchedule.

Generalization Relationships

Person
A generalization connects a subclass

to its superclass. It denotes an

inheritance of attributes and behavior

from the superclass to the subclass and

indicates a specialization in the subclass

of the more general superclass.
Student

Generalization Relationships

(Cont’d)

Student

UML permits a class to inherit from multiple superclasses,

although some programming languages (e.g., Java) do not permit

multiple inheritance.

TeachingAssistant

Employee

Association Relationships

If two classes in a model need to communicate with each other,

there must be link between them.

An association denotes that link.

Instructor Student

Association Relationships

(Cont’d)
We can indicate the multiplicity of an association by adding

multiplicity adornments to the line denoting the association.

The example indicates that a Student has one or more

Instructors:

Instructor Student
1..*

Association Relationships

(Cont’d)

The example indicates that every Instructor has one or more

Students:

Instructor Student
1..*

Association Relationships

(Cont’d)
We can also indicate the behavior of an object in an association

(i.e., the role of an object) using rolenames.

Instructor Student
1..* 1..*

learns from teaches

Association Relationships

(Cont’d)
We can also name the association.

Team Student
membership

1..* 1..*

Association Relationships

(Cont’d)
We can specify dual associations.

Team Student

member of

1..*

president of 1 1..*

1..*

Association Relationships

(Cont’d)
Associations can also be objects themselves, called link classes

or an association classes.

Warranty Product

Registration

modelNumber

serialNumber

warrentyCode

Association Relationships

(Cont’d)

A class can have a self association.

LinkedListNode

next

previous

Association Relationships

(Cont’d)
We can model objects that contain other objects by way of

special associations called aggregations and compositions.

An aggregation specifies a whole-part relationship between an

aggregate (a whole) and a constituent part, where the part can

exist independently from the aggregate. Aggregations are

denoted by a hollow-diamond adornment on the association.

Car

Manufacturer

Owner

Association Relationships

(Cont’d)
A composition (aggregation in Eiffel’s term) indicates a strong

ownership and coincident lifetime of parts by the whole (i.e.,

they live and die as a whole). Compositions are denoted by a

filled-diamond adornment on the association.

Window

Scrollbar

Titlebar

Menu

1

1

1

1

1

1 .. *

Interfaces

An interface is a named set of

operations that specifies the behavior

of objects without showing their inner

structure. It can be rendered in the

model by a one- or two-compartment

rectangle, with the stereotype

<<interface>> above the interface

name.

<<interface>>

ControlPanel

Interface Services

Interfaces do not get instantiated.

They have no attributes or state.

Rather, they specify the services

offered by a related class.

<<interface>>

ControlPanel

getChoices : Choice[]

makeChoice (c : Choice)

getSelection : Selection

Interface Realization

Relationship

<<interface>>

ControlPanel

VendingMachine

A realization relationship

connects a class with an

interface that supplies its

behavioral specification. It is

rendered by a dashed line with

a hollow triangle towards the

specifier.

specifier

implementation

Enumeration

<<enumeration>>

Boolean

false

true

An enumeration is a user-defined

data type that consists of a name and

an ordered list of enumeration

literals.

Exceptions

<<exception>>

KeyException

<<exception>>

SQLException

<<exception>>

Exception

getMessage()

printStackTrace()

Exceptions can be modeled

just like any other class.

Notice the <<exception>>

stereotype in the name

compartment.

Packages

Compiler

A package is a container-like element

for organizing other elements into

groups.

A package can contain classes and

other packages and diagrams.

Packages can be used to provide

controlled access between classes in

different packages.

Packages (Cont’d)

Classes in the FrontEnd package and classes in the BackEnd

package cannot access each other in this diagram.

FrontEnd BackEnd

Compiler

Packages (Cont’d)

Classes in the BackEnd package now have access to the classes

in the FrontEnd package.

FrontEnd BackEnd

Compiler

Packages (Cont’d)

JavaCompiler

We can model generalizations and

dependencies between packages. Compiler

Java

Component Diagram

Component diagrams are one of the two kinds of diagrams

found in modeling the physical aspects of an object-oriented

system. They show the organization and dependencies

between a set of components.

Use component diagrams to model the static

implementation view of a system. This involves modeling

the physical things that reside on a node, such as

executables, libraries, tables, files, and documents.

 - The UML User Guide, Booch et. al., 1999

Component Diagram
collision.dll

driver.dll
version = 8.1.3.2

path.dll

IDrive

ISelfTest

Here’s an example of a component

model of an executable release.

[Booch,99]

Deployment Diagram

Deployment diagrams are one of the two kinds of diagrams

found in modeling the physical aspects of an object-oriented

system. They show the configuration of run-time processing

nodes and the components that live on them.

Use deployment diagrams to model the static deployment

view of a system. This involves modeling the topology of the

hardware on which the system executes.

 - The UML User Guide, [Booch,99]

Deployment Diagram
A component is a physical unit of implementation with well-

defined interfaces that is intended to be used as a replaceable

part of a system. Well designed components do not depend

directly on other components, but rather on interfaces that

components support.

 - The UML Reference Manual, [Rumbaugh,99]

spell-check

Dictionary
synonyms

component

interfaces

Deployment Diagram

Update Transactions

Account

[Rumbaugh,99]

ATM-GUI

<<database>>

component

realization dependency

interface

usage dependency

stereotyped
component

Deployment Diagram

reservations

<<database>>

meetingsDB

:Scheduler

server:HostMachine

clientMachine:PC

:Planner

Deployment diagram

of a client-server

system.

[Rumbaugh,99]

<<direct channel>>

Software Design

Dynamic Modeling using the

Unified Modeling Language

(UML)

Use Case

“A use case specifies the behavior of a system or a part of a

system, and is a description of a set of sequences of actions,

including variants, that a system performs to yield an observable

result of value to an actor.”

 - The UML User Guide, [Booch,99]

“An actor is an idealization of an external person, process, or

thing interacting with a system, subsystem, or class. An actor

characterizes the interactions that outside users may have with

the system.”

 - The UML Reference Manual, [Rumbaugh,99]

Use Case (Cont’d)

Register for Courses
A use case is rendered as an ellipse

in a use case diagram. A use case is

always labeled with its name.

Use Case (Cont’d)

An actor is rendered as a stick

figure in a use case diagram.

Each actor participates in one or

more use cases.

Student

Use Case (Cont’d)

Student Person

Actors can participate in a generalization relation with other

actors.

Use Case (Cont’d)

Register for Courses

Actors may be connected to use cases

only by associations.

Student

Use Case (Cont’d)

Student

Billing System

Registrar

Register for Courses

Here we have a Student interacting with the Registrar and the

Billing System via a “Register for Courses” use case.

State Machine
“The state machine view describes the dynamic behavior of

objects over time by modeling the lifecycles of objects of each

class. Each object is treated as an isolated entity that

communicates with the rest of the world by detecting events and

responding to them. Events represent the kinds of changes that

objects can detect... Anything that can affect an object can be

characterized as an event.”

 - The UML Reference Manual, [Rumbaugh,99]

State Machine
An object must be in some specific state at any given time during

its lifecycle. An object transitions from one state to another as the

result of some event that affects it. You may create a state

diagram for any class, collaboration, operation, or use case in a

UML model .

There can be only one start state in a state diagram, but there may

be many intermediate and final states.

State Machine

start state final state

simple state

concurrent composite state

sequential composite state

State Machine

selecting

verifying

downloading

checking schedule

download course offerings

make a course selection

verify selection

check schedule

select another course

make a different selection

unscheduled

scheduled

sign schedule

Sequence Diagram
A sequence diagram is an interaction diagram that emphasizes

the time ordering of messages. It shows a set of objects and the

messages sent and received by those objects.

Graphically, a sequence diagram is a table that shows objects

arranged along the X axis and messages, ordered in increasing

time, along the Y axis.

 - The UML User Guide, [Booch,99]

Sequence Diagram

An object in a sequence diagram is rendered

as a box with a dashed line descending from it.

The line is called the object lifeline, and it

represents the existence of an object over a

period of time.

an Order Line

Sequence Diagram
an Order Line a Stock Item

[check = “true”]

 remove()

check()

Messages are rendered as horizontal

arrows being passed from object to

object as time advances down the

object lifelines. Conditions (such as

[check = “true”]) indicate when a

message gets passed.

Sequence Diagram
an Order Line a Stock Item

[check = “true”]

 remove()

check()

Notice that the bottom arrow is different.

The arrow head is not solid, and there is

no accompanying message.

This arrow indicates a return from a

previous message, not a new message.

Sequence Diagram
an Order a Order Line

* prepare()
An iteration marker, such as * (as

shown), or *[i = 1..n] , indicates

that a message will be repeated as

indicated. Iteration
marker

an Order Entry

window
an Order an Order Line a Stock Item

A Reorder

Item

A Delivery

Item

new

[check = “true”]

 new

[needsToReorder = “true”]

needsToReorder()

[check = “true”]

 remove()

check()

* prepare()

prepare()

Object

Message

Iteration

Return

Creation

Condition

Self-Delegation

[Fowler, 97]

Collaboration Diagram

A collaboration diagram emphasizes the relationship of the

objects that participate in an interaction. Unlike a sequence

diagram, you don’t have to show the lifeline of an object

explicitly in a collaboration diagram. The sequence of events are

indicated by sequence numbers preceding messages.

Object identifiers are of the form objectName : className, and

either the objectName or the className can be omitted, and the

placement of the colon indicates either an objectName: , or a

:className.

Collaboration Diagram
: Order Entry Window

: Order

: Order Line

:Delivery Item

: Stock Item

:Reorder Item

1: prepare()

2*: prepare() 3: check()

4: [check == true] remove()

6: new 7: [check == true] new

5: needToReorder()

[Fowler,97]

Self-Delegation

Object

Message

Sequence Number

Collaboration Diagram
Sequence Diagram

Both a collaboration diagram and a sequence diagram derive

from the same information in the UML’s metamodel, so you can

take a diagram in one form and convert it into the other. They

are semantically equivalent.

Activity Diagram

An activity diagram is essentially a flowchart, showing the

flow of control from activity to activity.

Use activity diagrams to specify, construct, and document the

dynamics of a society of objects, or to model the flow of

control of an operation. Whereas interaction diagrams

emphasize the flow of control from object to object, activity

diagrams emphasize the flow of control from activity to

activity. An activity is an ongoing non-atomic execution

within a state machine.

 - The UML User Guide, [Booch,99]

[Fowler,97] Receive
Order

Authorize

Payment

Check

Line

Item

Cancel
Order

Assign to

Order

Reorder

Item

Dispatch

Order

[failed]

[succeeded] [in stock]

*
for each line

item on order

[need to

reorder]

[stock assigned to
all line items and

payment authorized]

Synchronization Condition

Multiple Trigger

