
EECS 4314
Advanced Software Engineering

Topic 02:

Course Overview

Zhen Ming (Jack) Jiang

Software Process

Waterfall Development Process

Requirement
Engineering

Architecture
Analysis

Design &
Implement.

Testing

Software Requirements
Specification (SRS)

Architecture Doc

Source Code

Maintenance

Design

Implement.

What kind of problems do we have for

the Waterfall process?

The Agile Iterative Software

Development Process

Different Phases in Software

Development Cycle
1. Requirements

2. Architecture

3. Design

4. Implementation

5. Testing

6. Maintenance

■ Most emphasis during undergrad is on phases 3-5

■ Which phase lasts the longest and costs the most?

■ The problems in which phase is the mostly costly and
time consuming to fix?

Percentage of Project Costs

Devoted to Maintenance

60

65

70

75

80

85

90

95

100

1975 1980 1985 1990 1995 2000 2005

Zelkowitz 79

Lientz & Swanson 81

McKee 1984

Port 98 Huff 90

Moad 90

Eastwood 93

Erlikh 00

Survey of

Software Maintenance Activities

■ Perfective: add new functionality

■ Corrective: fix faults

■ Adaptive: new file formats, refactoring

17.4

60.3

18.2

56.7
39.0

2.2

Lientz, Swanson, Tompkins [1978]

Nosek, Palvia [1990]

MIS Survey

Schach, Jin, Yu, Heller, Offutt [2003]

Mining ChangeLogs

(Linux, GCC, RTP)

Cost of Incorrect or

Incomplete Requirements

■ [1981] ~ 75 – 85% of all errors found in SW

can be traced back to the requirements and

design phases

■ [2000] Based on a survey of the cost of

maintaining 500 major projects, 70 – 85%

of total project costs are due to requirement

errors and new requirements

The High Cost of

Requirements Errors

■ The errors discovered during the design
of a development project could fall into
one of two categories:
1. Errors that occurred when the development

staff created a technical design from a
correct set of requirements, or

2. Errors that should have been detected as
requirements errors somewhat earlier in the
process but that somehow "leaked" into the
design phase of the project.

■ It's the second category of errors that turn
out to be particularly expensive .. Why?

Because ...

1. The errors are misleading. Everyone is

looking for design errors during the

testing or inspection activities while in fact

they are in the requirements.

2. By the time the requirements error is

discovered, time and effort have been

lost in faulty design. So, the design have

to be thrown away or reworked.

The High Cost of

Requirements Errors
■ In order to repair a defect, we are likely to experience

costs in some or all of the following areas:
– Respecification, Redesign, Recoding, Retesting,

– Change orders: replacing defected systems by
corrected one,

– Corrective action: undoing whatever damage may have
been done and refund.

– Scrap: useless code, design and test cases.

– Recall of defective software (could be embedded)

– Warranty costs.

– Product liability: customer can sue for damages

– Service costs for reinstallation.

– Documentation

Requirements

Where Do Requirements

Come From?
■ Requirements come from users and

stakeholders who have demands/needs

■ An analyst/requirement engineer:
– Elicits these demands/needs (raw requirements)

– Analyzes them for consistency, feasibility, and
completeness

– Formulates them as requirements and write down a
specification

– Validates that the gathered requirements reflect the
needs/demands of stakeholders:

• Yes, this is what I am looking for.

• This system will solve my problems.

More Stakeholders

Developers’ View of Users Users’ View of Developers

Users don’t know what they want.

Users can’t articulate what they want.

Users have too many needs that are

politically motivated.

Users want everything right now.

Users can’t prioritize needs.

Users refuse to take responsibility for the

system.

Users are unable to provide a usable

statement of needs.

Users are not committed to system

development projects.

Users are unwilling to compromise.

Users can’t remain on schedule.

Developers don’t understand operational needs.

Developers place too much emphasis on

technicalities.

Developers try to tell us how to do our jobs.

Developers can’t translate clearly stated needs

into a successful system.

Developers say no all the time.

Developers are always over budget.

Developers are always late.

Developers ask users for time and effort, even

to the detriment of the users’ important

primary duties.

Developers set unrealistic standards for

requirements definition.

Developers are unable to respond quickly to

legitimately changing needs.

Types of Requirements

■ Functional Requirements
– Specify the function of the system

– F(input, system state)  (output, new state)

■ Non-Functional Requirements (Constraints)
– Quality Requirements

• Specify how well the system performs its intended functions

• Performance, Usability, Maintenance, Reliability, Portability

– Managerial Requirements
• When will it be delivered

• Verification (how to check if everything is there)

• What happens if things go wrong (legal responsibilities)

– Context / Environment Requirements
• Range of conditions in which the system should operate

Design

Design v.s. Architecture

■ Design
– Inner structure of the components

– Low level (information hidding and interfaces help it change)

– Mostly technical concerns

– Makes sense for systems with KLOCs

– Late in life cycle

■ Architecture
– Structure of system (components and connectors)

– High level and hard to change (better get it right!)

– Concerned with technical and non technical requirements (e.g.,
Security, Legal, Outsourcing)

– Makes sense for systems with MLOCs

– Very early in life cycle

Design Patterns

■ Good designers know not to solve every problem
from first principles. They reuse solutions.

■ Practitioners do not do a good job of recording
experience in software design for others to use.

■ A Design Pattern systematically names, explains,
and evaluates an important and recurring design.

■ We describe a set of well-engineered design
patterns that practitioners can apply when crafting
their applications.

Software Architecture

Software Architecture

(IEEE Definition)

■ Architecture is the fundamental

organization of a system embodied in its

components, their relationships to each

other, and to the environment, and the

principles guiding its design and evolution.

[IEEE 1471]

What is a system? ([IEEE 1471])

■ System: a collection of components organized

to accomplish a specific function or set of

functions.

■ A System can mean

– individual applications

– systems in the traditional sense

– subsystems, systems of systems, etc…

■ A system exists to fulfill one or more

missions in its environment.

Environments, Missions and

Stakeholders ([IEEE 1471])

■ Environment: determines the setting and
circumstances of developmental, operational,
political, and other influences upon that system.

■ Mission: a use or operation for which a system
is intended by one or more stakeholders to
meet some set of objectives.

■ Stakeholder: an individual, team, or
organization (or classes thereof) with interests
in, or concerns relative to, a system.

Architectural Styles

Understanding Software

Architecture
■ Live Architecture

– Is in head(s) of software developer(s), the "software architect"

– May be abstract or mostly concrete

– Is a "mental model", "wetware"; may be fuzzy, inaccurate,
incomplete, incorrect …

■ Complexity
– Architecture simplifies the system, by concentrating on structure,

not content or semantics

– Cognitive complexity: how hard to understand or visualize

■ Reverse Engineering
– Extraction of design (or architecture) from implementation and

from developers

– "Design recovery"

Architectural Styles of

Software Systems
■ Architectural Style

– Form of structure, e.g.,

• "Pipes" between components, or

• "Layered" system, or

• "Bulletin board" system

– Analogy: Style of a building

■ It determines:

– the vocabulary of components and connectors that can be

used in instances of that style

– a set of constraints on how they can be combined. For

example, one might constrain:

• the topology of the descriptions (e.g., no cycles).

• execution semantics (e.g., processes execute in parallel).

More Terminology

■ Reference Architecture
– General architecture for an application domain

– Example: Common structure for compilers or for operating
systems

■ Product Line Architecture (PLA)
– Architecture for a line of similar software products

– Example: Software structure for a family of computer games

Determining an

Architectural Style

■ We can understand what a style is by answering the
following questions:

– What is the structural pattern? (i.e., components,
connectors, constraints)

– What are the essential invariants of the style?

– What are some common examples of its use?

– What are the advantages and disadvantages of using that
style?

– What are some of the common specializations of that
style?

Architecture Recovery

Architecture Terminology

■ Conceptual Software Architecture
– Abstract structure: Large piece of software with many

parts and interconnections

– Analogy: Blueprint of house

■ Concrete Software Architecture
– Actual structure: Large piece of software with many

parts and interconnections

– Analogy: Actual structure of house

■ Reference Architecture
– General architecture for an application domain

– Example: Common structure for compilers or for
operating systems

– Analogy: Typical architecture of a house

Linux Architecture

Concrete Architecture Conceptual Architecture

Project Scheduling

Project

■ A project is
– a temporary endeavour undertaken to create a

"unique" product or service

■ A project is composed of
– a number of related activities that are directed to the

accomplishment of a desired objective

■ A project starts when
– at least one of its activities is ready to start

■ A project is completed when
– all of its activities have been completed

Project plan

■ A project plan is a schedule of activities

indicating

– The start and stop for each activity. The start and stop

of each activity should be visible and easy to measure

– When a resource is required

– Amount of required project resources

Project Planning

■ Managers should consider:

– Resource availability

– Resource allocation

– Staff responsibility

– Cash flow forecasting

■ Mangers need to monitor and re-plan as

the project progresses towards its pre-

defined goal

Cost Estimation

Software cost estimation

■Predicting the resources required for

a software development process
– Productivity

– Estimation techniques

– Algorithmic cost modelling

– Project duration and staffing

Software Metrics

(if time permits)

Example software metrics

■ LOC: number of lines of code

■ NOM: number of methods

■ FanIn: number of other classes that
reference the class

■ FanOut: number of other classes
referenced by the class

■ CBO: coupling between objects

Design Principles:

 “High cohesion and low coupling”

Software Performance

(if time permits)

Common Goals of

Performance Evaluation (1)

Evaluating
Design Alternatives

■ Should my application

service implement the

push or pull mechanism

to communicate with my

clients?

Comparing System

Implementations

■ Does my application

service yield better

performance than my

competitors?

Benchmarking

Common Goals of

Performance Evaluation (2)

Performance Debugging

■ Which part of the

system slows down the

overall executions?

Performance Tuning

■ What are the

configuration values that I

should set to yield optimal

performance?

Common Goals of

Performance Evaluation (3)

Performance Prediction

■ How would the system

look like if the number of

users increase by 20%?

Capacity Planning

■ What kind of hardware

(types and number of

machines) or

component setup would

give me the best bang

for my buck?

what-if analysis

Common Goals of

Performance Evaluation (4)

Performance Requirements

■ How can I determine the

appropriate Service Level

Agreement (SLA) policies

for my service?

Operational Profiling

■ What is the expected

usage once the system is

deployed in the field?

workload characterization

