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What is Software Defect Prediction? 

Software Defect Prediction (SDP) is the line 

of research that concerned with building 

prediction models, which leverage software 

metrics to predict defect-prone areas of a 

software. 



Motivation 

■ Identify software locations (e.g., subsystems, files 
or functions) that quality assurance efforts should 
focus on. Examples are:  

– Which code changes should I review first? 

– Which module should I test first?  

■ Learn from the past mistakes to improve the 
software development process. Examples are: 

– Why subsystem A is more bug-prone than another 
subsystem B? 

– What can we learn from the failures of project C to 
improve the quality of project D? 
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Bug Prediction Example 



Predicting Post-Release  

Bugs for Eclipse 

Zimmermann et al. Predicting Defects for 

Eclipse. In Proceedings of the Third 

International Workshop on Predictor Models in 

Software Engineering (PROMISE). 2007.  

– Eclipse Bug Database and R scripts (replication 

package) are available at: https://www.st.cs.uni-

saarland.de/softevo/bug-data/eclipse/ 

 
• Data gathering and processing 

• Statistical analysis techniques: GLM, correlations 
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Collecting the Eclipse Dataset 

■ Goal: Tracking which components failed 
– We need to know the location of every defect that 

has been fixed. Hence, we need to analyze the 
source code repository data (CVS) 

• Mirror the source code repository 

• Identifying bug fixing changes 

– We need to know whether the bug is a pre-
release or post-release bug. Hence, we need to 
analyze the bug tracking system (Bugzilla) 

• Collecting the bug reports 

• Map the bug identifiers to release numbers (Is this bug 
a pre- or post-release bug?) 



Mirror the Eclipse Source  

Code Repository 

■ There are tools (e.g., CVSup, CSVSuck, 

etc.) which can mirror the Eclipse CVS 

source code repository 

– Note: Eclipse switched to Git as their version 

control system now 
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Be gentle. Otherwise, you might be mistaken as a DoS attack! 



An Example of the Commit Logs 

 



Identifying the Bug Fixing Changes 

■ Obtain the commit logs 

■ Search for references to bug reports (e.g., 

fixed 42233” or “bug 23444” 

– These messages have a low trust at first 

■ Increase the trust level when a message 

contains keywords like “fixed” or “bug” or 

matches with patterns like “# and a 

number” 
Similarly, we can use keyword tagging to identify other types of changes: 

- Bug fixes 

- New features 

- License/copyright update, etc. 



Collecting the Eclipse Bug Reports 

■ Download the XML reports 



Collecting the Eclipse Bug Reports 

- Approach 1 
■ Click “See all search results for this query” 

and click XML report 

– The XML data might be too big to be fitted 

into the browser’s memory. One work-around 

is to use the “save-as” feature 



 



Collecting the Eclipse Bug Reports 

- Approach 2 
■ Click “See all search results for this query” and 

save the data using csv format 

– The CSV file will contain the Bug ID, Product name 

and other types of information 

– Parse the CSV file and download each bug report 



Collection the Eclipse Bug Reports 

- Approach 2 (Continued) 
■ For each of the bug ID, save the individual bug 

report in XML format using this link format: 

– https://bugs.eclipse.org/bugs/show_bug.cgi?ctype=x

ml&id=BUGID 



 



Pre-release vs. Post-release 

defects 

■ Pre-release defects 
– The defects were reported in the last six months 

before release 

■ Post-release defects 
– The defects were report in the first six months 

after the release 

■ For example, bug #342137 was reported on 
2011/04/07 for version 3.7. Eclipse version 
3.7 was release on 2011/06/22. Hence it’s a 
pre-release bug.  



Calculating the Complexity Metrics 

■ For each of the releases (2.0, 2.1, 3.0), we 

calculate the code complexity metrics at 

the file and the package level. (A total of 6 

files) 

- Omit the minimum values, since they are mostly zero. 

- File level is different from class level, as one file can have multiple classes 



Structure of the Abstract Syntax Trees (ASTs) 

■ For each case (file/package), additional 

data from the structure of the ASTs are 

also tracked 

– They can be used to calculate new metrics 

without processing the source code again 

■ Consult the Eclipse JDT pkg 



eclipse-metrics-files-2.0.csv 

Caution: the delimiter is semicolon not 

comma! 



What do we want to  

learn from this data?  
■ Finding a single indicator or predictor for the 

number of defects is extremely unlikely. 
Hence, we need to combine input features by 
building regression models 

 

■ Which files/packages have defects? 
– This is a classification problem 

 

■ Which files/packages have the most defects? 
– This is a ranking problem 



Which files/packages have defects? 

■ Classify files/packages as defect-prone or not based on the 
code metrics 
– Defect-prone: has_defect = 1 

– Defect-free: has_defect = 0 

■ Logistic regression is useful when predicting a binary 
outcome (post-release bugs) from a set of continuous (e.g., 
FOUT_avg, MLOG_avg) and/or categorical predictor 
variables. Logistic regression models typically predict the 
likelihoods a value between [0, 1]: 

        defect-prone (0.5 < value ≤ 1) 

    Defect Classification =    

        defect-free (0 ≤ value ≤ 0.5) 
 

– Logistic regression is a type of glm (generalized linear models) 

■ Build (train) the model using data from one version (e.g., v2.0) 
and test the model on another version (e.g., v2.1)  

 



Evaluate the Performance of the 

Defect Classification Models  
Are defects observed? 

True False 

Positive True Positive (TP) False Positive (FP) 

Negative False Negative (FN) True Negative (TN) 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 

𝑟𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

 



Which files/packages have the 

most post-release defects? 

■ Use (multiple) linear regression models 

to predict the number of post-release 

defects for each files/packages based on 

code metrics 

■ Similarly, we build (train) the model using 

data from one version (e.g., v2.0) and test 

the model on another version (e.g., v2.1)  

 



Evaluate the Performance of the 

Defect Ranking Models 

■ List 𝑅2 of the trained model 

■ Compared the predicted resulting ranking 
with the actual observed ranking 

– Spearman rank correlation 

■ Only for the sake of completeness, they 
also calculated the Pearson correlation 

– Pearson correlation assumes a linear 
relationships between the correlated 
variables.  



Discussion 

■ How can we improve the performance of bug prediction? 
– More data 

– New prediction models 

■ Did the data linking (code changes to bugs) approach manage to 
extract all the bug data? 
– Any bias in the bug-fix dataset? 

■ Was the statistical analysis performed properly? 
– Was statistical assumptions violated? 

– How can we open up (understand) this prediction mode? 

■ How can we make bug prediction more useful? 
– Effort-aware 

– Security/Performance/etc.,  

– Re-opened  

– Just-in-time 

– Cross-project 

– “Surprise” 

– Fine-grained (method-level) 

– etc.,  



More metrics and more 

prediction techniques 
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Metrics Data Used in the  

Bug Prediction Models 
■ Independent variables: 

– Product factors (e.g., code size) are used to predict 

– Process factors (e.g., churn) are used to predict 

– Other factors: other than product and process used to 
predict 

■ Dependent variables: 
– Pre: Predictions are made to predict pre-release 

defects 

– Post: Predictions are made to predict post-release 
defects 

– Other: Predictions are made for a dependent variable 
other than pre- and post-release defects 



Product Metrics 
■ Rationale:  

– Complex components are harder to change. Hence, 
they are more error prone 

■ Product Metrics (also called Source Code Metrics) 
are metrics that are directly derived from the 
source code (e.g., complexity or size).  



Process Metrics 
■ Rationale:  

– Bugs are caused by changes 

■ E.g., a piece of code is changed many times or by 
many people, this may indicate that it is more 
likely to be defect prone.  

Other process metrics are # of pre-release defects, relative churn, 

social, ownership, etc. 



Other Metrics used as the 

Independent Variables 
■ Execution: Captures the execution characteristics of a software system. 

For example, execution factors can be the deployment percentage of a 
module and the average transaction time on a system serving a typical 
user. 

■ Programming Language: The programming language in which the 
software is written. For example, Java, C, C++ or Perl. 

■ Module Knowledge: A subjective measure which captures the team’s 
knowledge of a module. 

■ Design/UML: Are factors that capture the design of the software system. 
These factors can be derived from the definition of the class interfaces at 
the design stage (e.g., from UML diagrams). These factors may include 
class factors, parameter types, class attributes and inheritance 
relationships. 

■ Platform and Hardware Configuration: Factors that capture the platform 
and HW configurations that software system runs on. For example, whether 
the software system runs on a Windows or Linux based platform and 
whether it runs on a single- or multi-core system. 



Dependent Variables 

■ Post-release Defects: is the number of defects that 
appear after the software is released. Generally, post-
release defects is the number of defects within six 
months of the software release date. 

■ Defect Density: is generally measured as the number 
of defects per LOC or KLOC. 

■ Defect-introducing Change: is a dependent variable 
that specifies whether a change introduced a defect. 

■ Vulnerabilities: is a dependent variable which 
accounts for a security vulnerability that exists in a 
software artifact. 



Bug Prediction Models 

Category Model Notes 

Statistical Naive Bayes 

MARS A multivariate adaptive 

regression splines model 

Logistic regression 

Linear regression 

Tree-based Decision trees 

Random forests 

CART A classification and 

regression trees model 

Recursive partitioning  

SVM Support Vector Machine 



Other Bug Prediction Studies 
- How can we make bug prediction more useful? 

■ Effort-aware 

■ Security/Performance/etc.,  

■ Re-opened  

■ Just-in-time 

■ Cross-project 

■ “Surprise” 

■ Fine-grained (method-level) 

■ etc.,  
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