
EECS 4313
Software Engineering Testing

Topic 15:

Software Defect Prediction

Zhen Ming (Jack) Jiang

What is Software Defect Prediction?

Software Defect Prediction (SDP) is the line

of research that concerned with building

prediction models, which leverage software

metrics to predict defect-prone areas of a

software.

Motivation

■ Identify software locations (e.g., subsystems, files
or functions) that quality assurance efforts should
focus on. Examples are:

– Which code changes should I review first?

– Which module should I test first?

■ Learn from the past mistakes to improve the
software development process. Examples are:

– Why subsystem A is more bug-prone than another
subsystem B?

– What can we learn from the failures of project C to
improve the quality of project D?

General Process

Defect

Repository

Metric

Calculation Source Code

Repository

Other

Repository

(e.g., email)

Model

Building

Model

Evaluation

Prediction

Output

Data Collection

Bug Prediction Example

Predicting Post-Release

Bugs for Eclipse

Zimmermann et al. Predicting Defects for

Eclipse. In Proceedings of the Third

International Workshop on Predictor Models in

Software Engineering (PROMISE). 2007.

– Eclipse Bug Database and R scripts (replication

package) are available at: https://www.st.cs.uni-

saarland.de/softevo/bug-data/eclipse/

• Data gathering and processing

• Statistical analysis techniques: GLM, correlations

https://www.st.cs.uni-saarland.de/softevo/bug-data/eclipse/
https://www.st.cs.uni-saarland.de/softevo/bug-data/eclipse/
https://www.st.cs.uni-saarland.de/softevo/bug-data/eclipse/
https://www.st.cs.uni-saarland.de/softevo/bug-data/eclipse/
https://www.st.cs.uni-saarland.de/softevo/bug-data/eclipse/
https://www.st.cs.uni-saarland.de/softevo/bug-data/eclipse/
https://www.st.cs.uni-saarland.de/softevo/bug-data/eclipse/
https://www.st.cs.uni-saarland.de/softevo/bug-data/eclipse/
https://www.st.cs.uni-saarland.de/softevo/bug-data/eclipse/
https://www.st.cs.uni-saarland.de/softevo/bug-data/eclipse/
https://www.st.cs.uni-saarland.de/softevo/bug-data/eclipse/
https://www.st.cs.uni-saarland.de/softevo/bug-data/eclipse/
https://www.st.cs.uni-saarland.de/softevo/bug-data/eclipse/
https://www.st.cs.uni-saarland.de/softevo/bug-data/eclipse/
https://www.st.cs.uni-saarland.de/softevo/bug-data/eclipse/
https://www.st.cs.uni-saarland.de/softevo/bug-data/eclipse/

Collecting the Eclipse Dataset

■ Goal: Tracking which components failed
– We need to know the location of every defect that

has been fixed. Hence, we need to analyze the
source code repository data (CVS)

• Mirror the source code repository

• Identifying bug fixing changes

– We need to know whether the bug is a pre-
release or post-release bug. Hence, we need to
analyze the bug tracking system (Bugzilla)

• Collecting the bug reports

• Map the bug identifiers to release numbers (Is this bug
a pre- or post-release bug?)

Mirror the Eclipse Source

Code Repository

■ There are tools (e.g., CVSup, CSVSuck,

etc.) which can mirror the Eclipse CVS

source code repository

– Note: Eclipse switched to Git as their version

control system now

Source Code

Repository

Remote

Source Code

Repository

local

Be gentle. Otherwise, you might be mistaken as a DoS attack!

An Example of the Commit Logs

Identifying the Bug Fixing Changes

■ Obtain the commit logs

■ Search for references to bug reports (e.g.,

fixed 42233” or “bug 23444”

– These messages have a low trust at first

■ Increase the trust level when a message

contains keywords like “fixed” or “bug” or

matches with patterns like “# and a

number”
Similarly, we can use keyword tagging to identify other types of changes:

- Bug fixes

- New features

- License/copyright update, etc.

Collecting the Eclipse Bug Reports

■ Download the XML reports

Collecting the Eclipse Bug Reports

- Approach 1
■ Click “See all search results for this query”

and click XML report

– The XML data might be too big to be fitted

into the browser’s memory. One work-around

is to use the “save-as” feature

Collecting the Eclipse Bug Reports

- Approach 2
■ Click “See all search results for this query” and

save the data using csv format

– The CSV file will contain the Bug ID, Product name

and other types of information

– Parse the CSV file and download each bug report

Collection the Eclipse Bug Reports

- Approach 2 (Continued)
■ For each of the bug ID, save the individual bug

report in XML format using this link format:

– https://bugs.eclipse.org/bugs/show_bug.cgi?ctype=x

ml&id=BUGID

Pre-release vs. Post-release

defects

■ Pre-release defects
– The defects were reported in the last six months

before release

■ Post-release defects
– The defects were report in the first six months

after the release

■ For example, bug #342137 was reported on
2011/04/07 for version 3.7. Eclipse version
3.7 was release on 2011/06/22. Hence it’s a
pre-release bug.

Calculating the Complexity Metrics

■ For each of the releases (2.0, 2.1, 3.0), we

calculate the code complexity metrics at

the file and the package level. (A total of 6

files)

- Omit the minimum values, since they are mostly zero.

- File level is different from class level, as one file can have multiple classes

Structure of the Abstract Syntax Trees (ASTs)

■ For each case (file/package), additional

data from the structure of the ASTs are

also tracked

– They can be used to calculate new metrics

without processing the source code again

■ Consult the Eclipse JDT pkg

eclipse-metrics-files-2.0.csv

Caution: the delimiter is semicolon not

comma!

What do we want to

learn from this data?
■ Finding a single indicator or predictor for the

number of defects is extremely unlikely.
Hence, we need to combine input features by
building regression models

■ Which files/packages have defects?
– This is a classification problem

■ Which files/packages have the most defects?
– This is a ranking problem

Which files/packages have defects?

■ Classify files/packages as defect-prone or not based on the
code metrics
– Defect-prone: has_defect = 1

– Defect-free: has_defect = 0

■ Logistic regression is useful when predicting a binary
outcome (post-release bugs) from a set of continuous (e.g.,
FOUT_avg, MLOG_avg) and/or categorical predictor
variables. Logistic regression models typically predict the
likelihoods a value between [0, 1]:

 defect-prone (0.5 < value ≤ 1)

 Defect Classification =

 defect-free (0 ≤ value ≤ 0.5)

– Logistic regression is a type of glm (generalized linear models)

■ Build (train) the model using data from one version (e.g., v2.0)
and test the model on another version (e.g., v2.1)

Evaluate the Performance of the

Defect Classification Models
Are defects observed?

True False

Positive True Positive (TP) False Positive (FP)

Negative False Negative (FN) True Negative (TN)

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

Which files/packages have the

most post-release defects?

■ Use (multiple) linear regression models

to predict the number of post-release

defects for each files/packages based on

code metrics

■ Similarly, we build (train) the model using

data from one version (e.g., v2.0) and test

the model on another version (e.g., v2.1)

Evaluate the Performance of the

Defect Ranking Models

■ List 𝑅2 of the trained model

■ Compared the predicted resulting ranking
with the actual observed ranking

– Spearman rank correlation

■ Only for the sake of completeness, they
also calculated the Pearson correlation

– Pearson correlation assumes a linear
relationships between the correlated
variables.

Discussion

■ How can we improve the performance of bug prediction?
– More data

– New prediction models

■ Did the data linking (code changes to bugs) approach manage to
extract all the bug data?
– Any bias in the bug-fix dataset?

■ Was the statistical analysis performed properly?
– Was statistical assumptions violated?

– How can we open up (understand) this prediction mode?

■ How can we make bug prediction more useful?
– Effort-aware

– Security/Performance/etc.,

– Re-opened

– Just-in-time

– Cross-project

– “Surprise”

– Fine-grained (method-level)

– etc.,

More metrics and more

prediction techniques

General Process

Defect

Repository

Metric

Calculation Source Code

Repository

Other

Repository

(e.g., email)

Model

Building

Model

Evaluation

Prediction

Output

Data Collection

Metrics Data Used in the

Bug Prediction Models
■ Independent variables:

– Product factors (e.g., code size) are used to predict

– Process factors (e.g., churn) are used to predict

– Other factors: other than product and process used to
predict

■ Dependent variables:
– Pre: Predictions are made to predict pre-release

defects

– Post: Predictions are made to predict post-release
defects

– Other: Predictions are made for a dependent variable
other than pre- and post-release defects

Product Metrics
■ Rationale:

– Complex components are harder to change. Hence,
they are more error prone

■ Product Metrics (also called Source Code Metrics)
are metrics that are directly derived from the
source code (e.g., complexity or size).

Process Metrics
■ Rationale:

– Bugs are caused by changes

■ E.g., a piece of code is changed many times or by
many people, this may indicate that it is more
likely to be defect prone.

Other process metrics are # of pre-release defects, relative churn,

social, ownership, etc.

Other Metrics used as the

Independent Variables
■ Execution: Captures the execution characteristics of a software system.

For example, execution factors can be the deployment percentage of a
module and the average transaction time on a system serving a typical
user.

■ Programming Language: The programming language in which the
software is written. For example, Java, C, C++ or Perl.

■ Module Knowledge: A subjective measure which captures the team’s
knowledge of a module.

■ Design/UML: Are factors that capture the design of the software system.
These factors can be derived from the definition of the class interfaces at
the design stage (e.g., from UML diagrams). These factors may include
class factors, parameter types, class attributes and inheritance
relationships.

■ Platform and Hardware Configuration: Factors that capture the platform
and HW configurations that software system runs on. For example, whether
the software system runs on a Windows or Linux based platform and
whether it runs on a single- or multi-core system.

Dependent Variables

■ Post-release Defects: is the number of defects that
appear after the software is released. Generally, post-
release defects is the number of defects within six
months of the software release date.

■ Defect Density: is generally measured as the number
of defects per LOC or KLOC.

■ Defect-introducing Change: is a dependent variable
that specifies whether a change introduced a defect.

■ Vulnerabilities: is a dependent variable which
accounts for a security vulnerability that exists in a
software artifact.

Bug Prediction Models

Category Model Notes

Statistical Naive Bayes

MARS A multivariate adaptive

regression splines model

Logistic regression

Linear regression

Tree-based Decision trees

Random forests

CART A classification and

regression trees model

Recursive partitioning

SVM Support Vector Machine

Other Bug Prediction Studies
- How can we make bug prediction more useful?

■ Effort-aware

■ Security/Performance/etc.,

■ Re-opened

■ Just-in-time

■ Cross-project

■ “Surprise”

■ Fine-grained (method-level)

■ etc.,

References

■ Emad Shihab. An Exploration of Challenges
Limiting Pragmatic Software Defect
Prediction. PhD Thesis. School of
Computing. Queen's University, Ontario,
Canada, 2012. [Chapter 2]

■ Marco D'Ambros, Michele Lanza, Romain
Robbes. Evaluating defect prediction
approaches: a benchmark and an extensive
comparison. Empirical Software Engineering
(EMSE). 2012.
– Dataset: http://bug.inf.usi.ch/

http://bug.inf.usi.ch/
http://bug.inf.usi.ch/
http://bug.inf.usi.ch/
http://bug.inf.usi.ch/
http://bug.inf.usi.ch/
http://bug.inf.usi.ch/
http://bug.inf.usi.ch/
http://bug.inf.usi.ch/
http://bug.inf.usi.ch/
http://bug.inf.usi.ch/

