
EECS 4313
Software Engineering Testing

Topic 14:

Empirical Studies in Software Testing

Zhen Ming (Jack) Jiang

Empirical Studies

■ The word “empirical” means information gained by
experience, observation, or experiment. The central
theme in scientific method is that all evidence must be
empirical which means it is based on evidence. In
scientific method the word "empirical" refers to the use
of working hypothesis that can be tested
using observation and experiment.
– Empirical research can be defined as "research based on

experimentation or observation (evidence)". Such research
is conducted to test a hypothesis.

– Empirical studies (use of experience, observation) have
become important for software engineering research.

Empirical Software Engineering

■ Empirical software engineering is a field of
research that emphasize the use of empirical
studies of all kinds to accumulate knowledge.
– Test theories

– Evaluate new process and tools

■ Approaches
– Survey: interviews or questionnaires

– Controlled Experiment: in the laboratory, involves
manipulation of variables

– Case Study: observational, often in-situ

Empirical Study Approaches

- Surveys

■ Pose questions via interviews or questionnaires

■ Process: select variables and choose sample,
frame questions that relate to variables, collect
data, analyze and generalize from data

■ Uses: descriptive (assert characteristics),
explanatory (assess why), exploratory (pre-
study)

Resource: E. Babbie, Survey Research Methods, Wadsworth, 1990

Empirical Study Approaches

- Controlled Experiments

■ Manipulate independent variables and measure

effects on dependent variables

■ Requires randomization over subjects and

objects (partial exception: quasi-experiments)

■ Relies on controlled environment (fix or sample

over factors not being manipulated)

■ Often involves a baseline (control group)

■ Supports use of statistical analyses

Resource: Wohlin et al., Experimentation in Software

 Engineering, Kluwer, 2000

Empirical Study Approaches

- Case Studies

■ Study a phenomenon (process, technique,
device) in a specific setting

■ Can involve comparisons between projects

■ Less control, randomization, and replicability

■ Easier to plan than controlled experiments

■ Uses include larger investigations such as
longitudinal or industrial

Resource: R. K. Yin, Case Study Research Design and Methods,

Sage Publications, 1994

Empirical Approaches: Comparison

Factor Survey Experiment Case Study

Execution

Control

 Low High Low

Measurement

Control

Low High High

Investigation

Cost

Low High Medium

Ease of

Replication

High High Low

Problems for Empiricism

■ Threats to validity: factors that limit our ability to

draw valid conclusions

■ Three types of threats

– External Validity: ability to generalize the

results

– Internal Validity: concerns the impact of

confounding factors on the results of study.

– Construct Validity: concerns about the impact

of measurement to the results of the study.

Examples of External Validity

■ Subjects (participants) aren’t representative

■ Programs (objects) aren’t representative

■ Environments aren’t representative

Examples of Internal Validity

■ Non-homogeneity among groups (different in

experience, training, motivation)

– E.g., most of the highly experienced developers also

received lots of training

Examples of Construct Validity

■ Lines of code may not adequately represent

amount of work done [measurement subject]

■ Devices or measurement tools faulty

■ The act of observing can change behavior (of

users, certainly, but also of artifacts)

Coverage is not strongly correlated
with test suite effectiveness

(ICSE 2014)

The Limits of Software Testing

■ Dijkstra: “Program Testing can be used to
show the presence of defects, but never
their absence”.

■ It is impossible to fully test a software
system in a reasonable amount of time or
money

Test Suites and Code Coverage

■ Software testing uses test suites to expose
faults

■ Code coverage (recommended by many
textbooks) as one of the metrics for
measuring the fault detection effectiveness
of test suites

– [Intuitively appealing] a test suite cannot find
bugs in code where it never executes

■ But what is the strength of code coverage
and fault detection effectiveness?

Goal of this empirical study

■ An empirical study on the relationship between
test suite size, code coverage and effectiveness in
Java programs

■ Test suite size
– SLOC

– # of test methods

■ Code coverage metrics studied
– Statement coverage,

– decision coverage,

– and modified condition coverage

■ Analysis method
– Statistical correlation

A recap on

the code coverage metrics
■ Statement coverage is achieved when all

statements in a method have been executed at least
once

■ Decision coverage is computed by considering
both branch and individual condition coverage
measures
– Branch coverage is achieved when every branch from a

node is executed at least once

– Condition coverage reports the true or false outcome of
each condition.

■ Modified condition/decision coverage extends
branch and decision coverage with the requirement
that each condition should affect the decision
outcome independently

Test Coverage

Criteria Subsumption

Branch and condition

(decision) coverage

Branch

coverage

Statement

coverage

Condition coverage

Modified condition and

decision coverage

A recap on statistical correlation

■ Correlation coefficients are used to describe relationships
among quantitative variables.

■ The sign ± indicates the direction of the relationship (positive
or inverse), and the magnitude indicates the strength of the
relationship (ranging from 0 for no relationship to 1 for a
perfectly predictable relationship). The actual range varies
from books to books:
– No correlation

• (-0.1, 0.1)

– Weak correlation
• (0.1, 0.3), (-0.3, -0.1)

– Moderate correlation
• (0.3, 0.5), (-0.5, -0.3)

– Strong correlation
• (0.5, 1), (-1, -0.5)

High correlation does not

imply cause and effect

Correlation != Causation
■ Does this mean pirates cause global warming

or vice versa?

Study Design

1. Select a set of (Java) program to study

2. Make test suites

3. Measure test suite coverage

4. Measure suite effectiveness

– Mutation testing

– Representative of fault detection

effectiveness

Subject programs

■ Five open source Java programs

1. Apache POI: API for manipulating Microsoft

documents

2. Closure: JavaScript optimizing compiler

3. HSQLDB: relational database management

system

4. JFreeChart: library for producing charts

5. Joda Time: open source replacement for

Java Date and Time classes

Generating test suites

■ Identify all the test methods in a program

■ Generate new test suites of fixed size by

randomly selecting a subset of these

methods without replacement

■ We run these test suites and measure the

code coverage using the CodeCover tool

Mutation Testing

■ Faults are introduced into the program by creating
many versions of the program called mutants

■ Each mutant contains a single fault

■ Test cases are applied to the original program and
to the mutant program

■ The goal is to cause the mutant program to fail, thus
demonstrating the effectiveness of the test suite

■ Mutation testing is used to generate faulty programs
in this study

■ The mutation testing tool is PIT

Mutation Testing Algorithm

■ Generate program test cases

■ Run each test case against the original program
– If the output is incorrect, the program must be modified and re-

tested

– If the output is correct go to the next step ...

■ Construct mutants using a mutation testing tool
■ Execute each test case against each alive mutant

– If the output of the mutant differs from the output of the original
program, the mutant is considered incorrect and is killed

• “Good test cases kill the mutants"

– Once we find a test case that kills a mutant, we can forget the
mutant and keep the test case. The mutant is dead

■ Two kinds of mutants survive:
– Functionally equivalent to the original program: Cannot be

killed
– Killable: Test cases are insufficient to kill the mutant. New test

cases must be created.

Mutation Coverage Criteria

■ Mutation Coverage (MC)
– For each mutant m, test requirements (TR)

contain a requirement to “kill m”
• Mutation score is the percentage of mutants killed

■ The mutation score for a set of test cases is the
percentage of non-equivalent mutants killed by the
test data
– Mutation Score = 100 * D / (N - E)

• D: Dead mutants

• N: Number of mutants

• E: Number of equivalent mutants

– A set of test cases is mutation adequate if its mutation
score is 100%.

Findings

■ There is a low to moderate correlation between
code coverage metrics and test suite effectiveness

■ If you code coverage is slow, the likelihood of
exposing faults is low
– Hence, code coverage is useful to identify under-

tested parts of a program

■ However, stronger coverage do not provide
greater insights into the effectiveness of the test
suites
– Hence, code coverage should not be used as a

quality target because it is not a good indicator of test
suite effectiveness

Potential Threats

■ What about other programs not written in
Java?

■ What about other coverage metrics (e.g.,
data flow or concurrency coverage)?

■ It assumes any mutants that are not killed by
the master suite (original test suites) are
equivalent mutants
– Overestimates the # of equivalent mutants

– Scale to large size programs

■ Are faults seeded in mutation testing
representative of real faults?

Are mutants a valid substitute for
real faults in software testing?

(FSE 2014)

