
EECS 4313
Software Engineering Testing

Topic 13:

Load Testing

Zhen Ming (Jack) Jiang

Acknowledgement

■ Ahmed Hassan

■ Derek Foo

■ Haroon Malik

■ Mark Syer

■ Parminder Flora

Load Test

Objectives

Designing

a Load Test

Testing

Load

Executing

a Load Test

Recorded System

Behavior Data

Analyzing

a Load Test

Testing

Results

Looking Forward

Roadmap

Techniques Used in

a Load Test

Motivation

(Ultra) Large-Scale Software Systems

450 million active users

> 50 billion messages every day

4 million users

2600-3000 req/sec on most weekdays

Rapid Growth and

Varying Usage Patterns

0

200

400

600

800

1000

1200

2005 2006 2007 2008 2009 2010 2011 2012

User Growth Over the Years (in millions)

Facebook Twitter LinkedIn WordPress Tumblr Google+ Pinterest

Flickr outage impacted

89 million users

(05/24/13)

Most field problems for large-scale

systems are rarely functional,

instead they are load-related

One hour global outage

lost $7.2 million in revenue

(02/24/09)

Load Testing

Mimics multiple users repeatedly performing the same tasks

Take hours or even days

Produces GB/TB of data that must be analyzed

Test Design Test Execution Test Analysis

Experimental Design

Experimental Design

■ Suppose a system has 5 user configuration parameters.
Three out of five parameters have 2 possible values and the
other two parameters have 3 possible values. Hence, there
are 23 × 32 = 72 possible configurations to test.

■ Apache webserver has 172 user configuration parameters
(158 binary options). This system has 1.8 × 1055 possible
configurations to test!

The goal of a proper experimental design is

to obtain the maximum information with

the minimum number of experiments.

Experimental Design Terminologies

■ The outcome of an experiment is called the response
variable.

– E.g., throughput and response time for the tasks.

■ Each variable that affects the response variable and has
several alternatives is called a factor.

– E.g., to measure the performance of a workstation, there are
five factors: CPU type, memory size, number of disk drives
and workload.

■ The values that a factor can have are called levels.

– E.g., Memory size has 3 levels: 2 GB, 6 GB and 12 GB

■ Repetition of all or some experiments is called replication.

■ Interaction effects: Two factors A and B are said to
interact if the effect of one depends on the other.

Ad-hoc Approach

Iteratively going through each

(discrete and continuous)

factors and identity factors

which impact performance for

an three-tired e-commerce

system.

[Sopitkamol et al., WOSP 2005]

Covering Array
■ A t-way covering array for a given input space model is a set of

configurations in which each valid combination of factor-values
for every combination of t factors appears at least once.

■ Suppose a system has 5 user configuration parameters. Three out
of five parameters have 2 possible values (0, 1) and the other
two parameters have 3 possible values (0, 1, 2). There are total
23 × 32 = 72 possible configurations to test.

A 2-way covering array

 A B C D E

0 1 1 2 0

0 0 0 0 0

0 0 0 1 1

1 1 1 0 1

0 1 0 0 2

1 0 1 1 0

1 1 1 1 2

1 0 0 2 1

1 0 0 2 2

Covering Array and CIT

■ There are many other kinds of covering array
like: variable-strength covering array, test case-
aware covering array, etc.

■ Combinatorial Interaction Testing (CIT) models
a system under test as a set of factors, each of
which takes its values from a particular domain.
CIT generates a sample that meets the specific
coverage criteria (e.g., 3-way coverage).

■ Many commercial and free tools:
http://pairwise.org/tools.asp

[Yilmaz et al., IEEE Computer 2014]

http://pairwise.org/tools.asp

Designing a Load Test

Load Test

Objectives

Designing

a Load Test

Testing

Load

Executing

a Load Test

Recorded System

Behavior Data

Analyzing

a Load Test

Testing

Results

Designing a Load Test

Designing a Load Test

Designing

Realistic Loads

Designing Fault-

Inducing Loads

Load Design Optimizations

and Reductions

Designing Realistic Loads

Aggregate Workload

Login
10%

Browse
80%

Purchase
5%

Logout
5%

100%

An E-Commerce System

Steady Load, Step-wise load,

Extrapolated load

Use-Case

Login

Browse

Purchase

Logout

Load Derived from UML, Markov and

Stochastic Form-oriented Models

Characterizing an Aggregate Workload

■ Workload Mix

– browsing (30%), purchasing (10%) and

searching (60%)

■ Workload Intensity

– Rate of requests (5 requests/sec)

Aggregate Workload (1)

■ Steady Load

– Ease of measurement

– Memory leaks?

■ Step-wise Load

– Same workload mix

– Different workload intensity

[Bondi, CMG 2007]

[Hayes, CMG 2000]

Derived the testing loads from historic data

Aggregate Workload (2)

■ In case of missing past usage data, testing

loads can be extrapolated from the following

sources:

– Beta-usage data

– Interviews with domain experts

– Competitors’ data

[Barber, WSE 2004]

Use-Case (1)

- UML Diagrams

The RUG (Realistic Usage Model)

- derived based on UML use case diagrams

[Wang, ISPA 2004]

Login

Search Purchase

Browse

…

…

0.4

0.6

0.8

0.15

0.05

0.05

0.95

Use-Case (2)

- Markov Chain

Use-Case (2)

- Markov Chain

web access logs for the past few months

192.168.0.1 - [22/Apr/2014:00:32:25 -0400] "GET
/dsbrowse.jsp?browsetype=title&browse_category=&browse_actor=&bro
wse_title=HOLY%20AUTUMN&limit_num=8&customerid=41
HTTP/1.1" 200 4073 10

192.168.0.1 - [22/Apr/2014:00:32:25 -0400] "GET
/dspurchase.jsp?confirmpurchase=yes&customerid=5961&item=646&qua
n=3&item=2551&quan=1&item=45&quan=3&item=9700&quan=2&item
=1566&quan=3&item=4509&quan=3&item=5940&quan=2 HTTP/1.1"
200 3049 177

192.168.0.1 - [22/Apr/2014:00:32:25 -0400] "GET
/dspurchase.jsp?confirmpurchase=yes&customerid=41&item=4544&quan
=1&item=6970&quan=3&item=5237&quan=2&item=650&quan=1&item
=2449&quan=1 HTTP/1.1" 200 2515 113

Web Access Logs

Use-Case (2)

- Markov Chain

192.168.0.1 - [22/Apr/2014:00:32:25 -0400] "GET
/dsbrowse.jsp?browsetype=title&browse_category=&browse_actor=&bro
wse_title=HOLY%20AUTUMN&limit_num=8&customerid=41
HTTP/1.1" 200 4073 10

192.168.0.1 - [22/Apr/2014:00:32:25 -0400] "GET
/dspurchase.jsp?confirmpurchase=yes&customerid=5961&item=646&qu
an=3&item=2551&quan=1&item=45&quan=3&item=9700&quan=2&item
=1566&quan=3&item=4509&quan=3&item=5940&quan=2 HTTP/1.1"
200 3049 177

192.168.0.1 - [22/Apr/2014:00:32:25 -0400] "GET
/dspurchase.jsp?confirmpurchase=yes&customerid=41&item=4544&qua
n=1&item=6970&quan=3&item=5237&quan=2&item=650&quan=1&ite
m=2449&quan=1 HTTP/1.1" 200 2515 113

For customer 41: browse -> purchase

Use-Case (2)

- Markov Chain

Login

Search Purchase

Browse

…

…

0.4

0.6

0.8

0.15

0.05

0.05

0.95

Use-Case (2)

- Markov Chain

How to represent the notion of a

successful or a failure login?

Use-Case (3)

- Stochastic Form-Oriented Model

[Cai et al., ASE 2004]

Pages are represented as ovals,

actions as boxes

Designing

Fault-Inducing Loads
Source Code System Models

Code Analysis

(e.g., data flow analysis or symbolic execution)

Model Formulation

(e.g., linear programing and genetic algorithm)

■ Identifies potential load sensitive modules
and regions for load sensitive faults (e.g.,
memory leaks and incorrect dynamic memory
allocation

– Annotating the Control Flow Graph of
malloc()/free() calls and their sizes

– Load Sensitivity Index (LSI) indicates the net
increase/decrease of heap space used for
each iteration: the difference of the heap size
before/after each iteration

■ Write test cases which exercise the code
regions with high LSI values

Source Code Analysis (1)
- Data Flow Analysis

[Yang el al., ISSTA 1996]

Source Code Analysis (2)
- Symbolic Executions

[Zhang et al., ASE 2011]

Path Performance Estimation (Response Time)

• Weight of 10 for invoking bytecode

• Weight of 1 for all other methods

Two path conditions:

• x > 0

• x ≤ 0

Memory Analysis

• Uses Java PathFinder’s built-in object lifecycle

listener mechanism to track the heap size of

each path

y = x;

if (y > 0) then y++;

return y;

System Models

- Genetic Algorithms

[Penta et al., GECCO 2007]

A Service-Oriented Architecture (SOA) Example

- An image processing composite web service

System Models

- Genetic Algorithms

Genetic Algorithms applied to SOA

- Each gene: a particular type of web service

- A chromosome: the resulting workflow

- The fitness function: the risky workflow with high response time (SLA violation)

[Penta et al., GECCO 2007]

gene chromosome

CS1C CS2B CS3C CS4A CS1C CS2B CS3B CS4A

Random Mutation

CS1A CS2C CS3B CS4C

CS1C CS2B CS3C CS4A

Crossover

CS1A CS2C CS3C CS4A

CS1C CS2B CS3B CS4C

Fitness function: How good is the solution?

Load Design Reductions

- Extrapolation

■ Question: Can we reduce the load
testing effort and costs, when there is
limited time and hardware/software
resources?

■ Extrapolation for step-wise load
testing

– Only examine a few load levels

– Extrapolate the system performance
for the other load levels

[Menasce et al., CMG 2002]

Load Design Reductions

- Probability Mass Coverage

Sample states for a telecom system:

(2, 3, 0, 1, 5)

- 2 active calls

- 3 leaving voice mail

- 0 updating profile

- 1 checking status

- 5 accessing voice mail

(0, 0, 0, 0, 0)

- Idle state

Probability # of States

0.3 34

0.4 51

0.5 72

0.6 99

0.7 137

0.8 206

0.9 347

0.99 721

0.999 843

1.0 857

Test Coverage

[Avritzer et al., IEEE SW 1996]

Realistic load tests are based on
(historical) field workloads, but
field workloads change over time

Load Profile

Evolution and Maintenance

■ Field workload can evolve over time. Hence,

load testing practitioners need to periodically

update the load profiles

[Barros et al., DSN 2007]

Executing a Load Test

Load Test

Objectives

Designing

a Load Test

Testing

Load

Executing

a Load Test

Recorded System

Behavior Data

Analyzing

a Load Test

Testing

Results

Executing a Load Test

Executing a Load Test

Live-user Based

Execution

Driver Based

Execution

Emulation Based

Execution

Setup

Load Generation and Termination

Test Monitoring and Data Collection

Live-user Based

Test Execution

• Coordinated live-user testing

• Users are selected based on different

testing criteria (e.g., locations, browser

types, etc.)

 Reflects realistic user behavior

 Obtain real user feedbacks on

acceptable performance and

functional correctness

 Hard to scale (e.g., limited

testing time)

 Limited test complexity due to

manual coordination

Driver-based

Test Execution

 Easy to automate

 Scale to large number of requests

 Load driver configurations

 Hard to track some system behavior

(e.g., audio quality or image display)

• Specialized Benchmarking tools (e.g., LoadGen)

• Centralized Load Drivers (e.g, LoadRunner, WebLoad)

o Easy to control load, but hard to scale (limited to a machine’s memory)

• Peer-to-peer Load Drivers (e.g., JMeter, PeerUnit)

o Easy to scale, but hard to control load

Emulation-based

Test Execution

• Special platforms enabling early and

continuous verification of system behavior

under load

• Special platforms enabling deterministic

execution and replay

[Hill et al., IEEE SW 2010]

[Musuvathi et al., OSDI 2008]

Three General Aspects

When Executing a Load Test

Test Setup

• System Deployment

• Test Execution Setup

Load Generation and

Termination

• Static Configuration

• Dynamic Feedback

• Deterministic

Test Monitoring and Data

Collection

• Metrics and Logs

System Deployment for Live-user

and Driver-based Executions

■ Field load testing
– Costly but realistic

■ Selection of hardware
– Dedicated hardware, or

– Cloud-based testing

■ Creating realistic databases
– Importing realistic raw data

– Sanitizing field database

■ Mimicking realistic network traffic
– Network latency

– Network spoofing

■ Do not deploy drivers on the same machines with the
SUT

System Deployment for

Emulation-based Executions

■ For continuous performance evaluation:

– Automated Code Generations for Incomplete

System Components via a Model Interpreter

■ For deterministic executions:

– Deploy on the CHESS platform

[Hill et al., ECBS 2008]

[Musuvathi et al., OSDI 2008]

Test Execution Setup

■ Live-user-based executions

– Tester recruitment, setup and training

■ Driver-based executions

– Programming

– Store-and-replay configuration

– Model configurations

■ Emulation-based executions

– Write your own load driver

Load Generation

and Termination
Static

Configuration
Dynamic

Feedback

• Timer-Driven

• Counter-Driven

• Statistic-Driven

Deterministic

• Dynamically steer the

testing loads based on

system feedback

• Systematically execute

all the possible inter-

leavings

Load Generation

and Termination
Static

Configuration
Dynamic

Feedback
Deterministic

Live-user Based Driver Based Emulation Based

Static

Dynamic

Deterministic

Dynamic Feedback (1)

- System Identification Techniques

[Bayan et al., SAC 2008]

Start with random testing to identify performance sensitive input

Dynamic Feedback (2)

- Two-Layered Queuing Models

A stress goal is target perf.

metric threshold:

- a sw/hw utilization,

- a target response time or

- throughput

for a class of request

[Barna et al., ICAC 2011]

Deterministic Load Execution

Implemented a wrapper layer via binary instrumentation,

between the program & the concurrency API

[Musuvathi et al., OSDI 2008]

Test Monitoring Tools

Task Manager
JConsole

CA Willy

App Dynamics pidstat

Agent-less Monitoring Examples

Task Manager JConsole

PerfMon (Windows), sysstat (Linux), top

Agent-based Monitoring Examples

App Dynamics CA Willy

Dell FogLight, New Relic

Instrumentation
■ Source code level instrumentation

– Ad-hoc manual instrumentation,

– Automated instrumentation (e.g., AspectJ), and

– Performance instrumentation framework (e.g., the Application
Response Time API)

■ Binary instrumentation framework
– DynInst (http://www.dyninst.org/),

– PIN (https://software.intel.com/en-us/articles/pin-a-binary-
instrumentation-tool-downloads/), and

– Valgrind (http://valgrind.org/)

■ Java Bytecode instrumentation framework
– Ernst’s ASE 05 tutorial on “Learning from executions: Dynamic

analysis for software engineering and program understanding”
(http://pag.csail.mit.edu/~mernst/pubs/dynamic-tutorial-ase2005-
abstract.html)

http://www.dyninst.org/
http://www.dyninst.org/
https://software.intel.com/en-us/articles/pin-a-binary-instrumentation-tool-downloads/
https://software.intel.com/en-us/articles/pin-a-binary-instrumentation-tool-downloads/
https://software.intel.com/en-us/articles/pin-a-binary-instrumentation-tool-downloads/
https://software.intel.com/en-us/articles/pin-a-binary-instrumentation-tool-downloads/
https://software.intel.com/en-us/articles/pin-a-binary-instrumentation-tool-downloads/
https://software.intel.com/en-us/articles/pin-a-binary-instrumentation-tool-downloads/
https://software.intel.com/en-us/articles/pin-a-binary-instrumentation-tool-downloads/
https://software.intel.com/en-us/articles/pin-a-binary-instrumentation-tool-downloads/
https://software.intel.com/en-us/articles/pin-a-binary-instrumentation-tool-downloads/
https://software.intel.com/en-us/articles/pin-a-binary-instrumentation-tool-downloads/
https://software.intel.com/en-us/articles/pin-a-binary-instrumentation-tool-downloads/
https://software.intel.com/en-us/articles/pin-a-binary-instrumentation-tool-downloads/
https://software.intel.com/en-us/articles/pin-a-binary-instrumentation-tool-downloads/
https://software.intel.com/en-us/articles/pin-a-binary-instrumentation-tool-downloads/
http://valgrind.org/
http://valgrind.org/
http://pag.csail.mit.edu/~mernst/pubs/dynamic-tutorial-ase2005-abstract.html
http://pag.csail.mit.edu/~mernst/pubs/dynamic-tutorial-ase2005-abstract.html
http://pag.csail.mit.edu/~mernst/pubs/dynamic-tutorial-ase2005-abstract.html
http://pag.csail.mit.edu/~mernst/pubs/dynamic-tutorial-ase2005-abstract.html
http://pag.csail.mit.edu/~mernst/pubs/dynamic-tutorial-ase2005-abstract.html
http://pag.csail.mit.edu/~mernst/pubs/dynamic-tutorial-ase2005-abstract.html
http://pag.csail.mit.edu/~mernst/pubs/dynamic-tutorial-ase2005-abstract.html
http://pag.csail.mit.edu/~mernst/pubs/dynamic-tutorial-ase2005-abstract.html

Measurement Bias

■ Measurement bias is hard to avoid and
unpredictable.

■ Example 1: How come the same application
today runs faster compared with yesterday?

■ Example 2: Why the response time is very
different when running the same binary under
different user accounts?

■ Example 3: Why the code optimization only
works on my computer?

[Mytkowicz et al., ASPLOS 2010]

• Repeated measurement

• Randomize experiment setup

Server processes results & updates internal databases Server selects best task that matches client characteristics Client executes task & returns results Client registers & receives client kit When client becomes available it requests a QA task

return results task request QA task register client kit

[Example] Skoll – A Distributed Continuous

Quality Assurance (DCQA) Infrastructure

Clients

Server(s)

[Memon et al., ICSE 2004]

Performance Regression Testing

under different configurations

[Example] Talos - Mozilla Performance

Regression Testing Framework

[Talbert et al., http://aosabook.org/en/posa/talos.html]

http://aosabook.org/en/posa/talos.html
http://aosabook.org/en/posa/talos.html

Analyzing a Load Test

Load Test

Objectives

Designing

a Load Test

Testing

Load

Executing

a Load Test

Recorded System

Behavior Data

Analyzing

a Load Test

Testing

Results

Analyzing a Load Test

Analyzing a Load Test

Verifying Against

Threshold Values

Detecting Known

Problems

Automatically

Detecting

Anomalous

Behavior

Sample Counters

Sample Execution Logs

Verifying Against

Threshold Values
■ Straight-forward comparison

– E.g., do the throughput values match with the target?

■ Comparison against processed data
– Maximum

– Medium or average

– 90-percentile value

■ Comparison against derived data
– Deriving thresholds

• What is the response time for previous versions?

– Deriving target data
• What will the estimated reliability be?

Detecting Known

Problems Using Patterns

■ Patterns in the memory utilizations

– Memory leak detection

■ Patterns in the logs

– Error keywords

Memory Leaks

Need to wait till system is warmed up (a.k.a., cache filled up)

Deadlocks

Before fix After fix

[Avritzer et al., 2012]

Error Keywords

■ A large-scale enterprise system can

generate 1.6 million log lines in an 8-hour

load test

– 23,000 lines contain “fail” or “failure”

– How many types of failures are there in this

test?

 Events Frequency

Error occurred during purchasing, item=$v 500

Error! Cannot retrieve catalogs for user=$v 300

Authentication error for user=$v 100

[Jiang et al., JSME 2008]

Automated Detection

of Anomalous Behavior

Automatically derive “expect/normal”

behavior and flag anomalous behavior

Queuing Theory Data Mining

Deriving Performance Ranges

Using Control Charts

[Nguyen et al., APSEC 2011]

Normal Operations Suspicious Test

• Derive control charts from the past good tests

• Flag new tests as anomalous if there are many violations

 in the control charts

Automated Derivation of

Performance Rules

■ From past tests, we can extract rules
such as:

• Flags tests where the rule does not hold

Throughput

Medium

DB read/sec

Medium

Request

Queue size

Low

Throughput

Medium

DB read/sec

Medium

Request

Queue size

High

[Foo et al., QSIC 2011]

Counter Analysis Report

[Foo et al., QSIC 2011]

Counter Analysis Report

- Examine the Anomalous Period

[Foo et al., QSIC 2011]

Deriving Performance Signatures

Using Statistical Techniques

Performance

Counters

Principle Component

Analysis (PCA)

Performance

Signature

PC-1

PC-2

PC-3

[Malik et al., CSMR 2011]

Deriving Performance Signatures Using

Statistical Techniques

Dimensionality Reduction using PCA

(e.g., select top PCs with

 Cumulative Variability > 90%)

Selecting Top K Performance Counters

(e.g., 7 out of 18 counters

 ~ 61% data reduction)

Spearman's rank correlation

[Malik et al., CSMR 2011]

Automated Functional Analysis

■ (E2, E3) are always together:

– (acquire_lock, release_lock)

– (open_inbox, close_inbox)

■ If we see (E2, E6), this might be a problem

 E1 E2 E3 E4

E1 E2 E3 E4

E1 E2 E3 E4

E1 E2 E6 E4

Deriving Anomalous

Functional Behavior

[Jiang et al., ICSM 2008]

Load Testing Demo

