
EECS 4313
Software Engineering Testing

Topic 11:

Test Code Patterns

- How to design your test code

Zhen Ming (Jack) Jiang

Testing and Inheritance

■ Should you retest inherited methods?

■ Can you reuse superclass tests for

inherited and overridden methods?

■ To what extent should you exercise

interaction among methods of all

superclasses and of the subclass under

test?

Inheritance

■ In the early years people thought that

inheritance will reduce the need for testing

– Claim 1: “If we have a well-tested superclass, we can

reuse its code (in subclasses, through inheritance)

with confidence and without retesting inherited code”

– Claim 2: “ A good-quality test suite used for a

superclass will also be sufficient for a subclass”

■ Both claims are wrong.

Inheritance-related bugs

■ Missing Override

– A subclass omits to provide a specialized
version of a superclass method

– Subclass objects will have to use the
superclass version, which might not be
appropriate

– E.g., method equals in Object tests for
reference equality. In a given class, it might
be right to override this behaviour

Inheritance-related bugs

■ Direct access to superclass fields from the
subclass code
– Changes to the superclass implementation can create

subclass bugs

– Subclass bugs or side effects can cause failure in
superclass methods

– If a superclass is changed, all subclasses need to be
tested

– If a subclass is changed, superclass features used in
the subclass must be retested

Testing of Inheritance

■ Principle: inherited methods should be

retested in the context of a subclass

■ Example 1: if we change some method m

in a superclass, we need to retest m inside

all subclasses that inherit it

Example 2

■ If we add a new method m2 that has a bug and
breaks the invariant, method m is incorrect in the
context of B even though it is correct in A

– Therefore, m should be tested in B

class A {

 int x; // invariant: x > 100

 void m() { // correctness depends on

 // the invariant } }

class B extends A {

 void m2() { x = 1; } }

Example 3

■ If inside B we override a method from A, this indirectly affects other

methods inherited from A

– e.g., method m calls B.m2, not A.m2: so, we cannot be sure that m is correct

anymore and we need to retest it inside B

■ Test cases developed for a method m defined in class A are not

necessarily sufficient for retesting m in subclasses of A

– e.g., if m calls m2 in A and then some subclass overrides m2 we have a

completely new interaction that may not be covered well by the old test cases for

m

■ Still it is essential to run all superclass tests on a subclass

– Goal: check behavioral conformance of the subclass w.r.t. the superclass (LSP)

class A {

void m() { …; m2(); … }

void m2() { … } }

class B extends A {

 void m2() { … } }

Inheritance-related bugs

■ Square Peg in a Round Hole

– Design Problem

– A subclass is incorrectly located in a hierarchy

– Liskov Substitution Principle (LSP):

Functions that use references to base classes

must be able to use objects of derived classes

without knowing it.

An example

■ Consider class Rectangle below

■ Assume that the system containing Rectangle needs to deal

with squares as well

■ Since a square is a rectangle, it seems to make sense to

have a new class Square that extends Rectangle

■ That very “reasonable” design can cause some significant

problems

class Rectangle{

 public void setWidth(double w) {itsWidth=w;}

 public void setHeight(double h) {itsHeight=h;}

 public double getHeight() {return itsHeight;}

 public double getWidth() {return itsWidth;}

 private double itsWidth;

 private double itsHeight;

};

Problems with this design

■ Do not need both itsHeight and itsWidth

■ setWidth and setHeight can bring a

Square object to a corrupt state (when

height is not equal to width)

class Square{

 setWidth(double w){

 super.setWidth(w);

 super.setHeight(w);

 }

 // Similar for setHeight

}

One

solution

Not really a solution

■ Consider this client code

■ The problem is definitely not with the client

code

Rectangle r;

…

r.setWidth(5);

r.setHeight(4);

assert(r.getWidth() * r.getHeight()) == 20);

What went wrong?

■ The Liskov Substitution Principle was violated

– If you are expecting a rectangle, you can not accept a

square

■ The overridden versions of setWidth and

setHeight broke the post-conditions of their

superclass versions

■ Isn’t a square a rectangle?

– Yes, but not when it pertains to its behaviour

Effect of Inheritance on

Testing?

■ Does not reduce the volume of test cases

■ Rather, number of interactions to be

verified goes up at each level of the

hierarchy

Polymorphic Server Test

■ Consider all test cases that exercise
polymorphic methods

■ According to LSP, these should apply at
every level of the inheritance hierarchy

■ Expand each test case into a set of test
cases, one for each polymorphic variation

An example

class TestAccount {

 Account a;

 @Before

 public void setUp(){

 a = new Account();

 }

 @Test

 public final void testDeposit(){

 a.deposit(100);

 assertTrue(a.getBalance()==100);

 }

}

An example

class TestSavingsAccount extends TestAccount{

 SavingsAccount sa;

 @Before

 public void setUp(){

 a = new SavingsAccount();

 sa = new SavingsAccount();}

 @Test

 public void testInterest(){

 sa.deposit(100);

 sa.applyInterest(0.01);

 assertEquals("The balance does not match", 101.0,

 sa.getBalance(), 0);

 }

}

Testing abstract classes

■ Abstract classes cannot be instantiated

■ However, they define an interface and behaviour

(contracts) that implementing classes will have

to adhere to

■ We would like to test abstract classes for

functional compliance

– Functional Compliance is a module's compliance with

some documented or published functional

specification

Functional vs. syntactic

compliance
■ The compiler can easily test that a class is

syntactically compliant to an interface
– All methods in the interface have to be implemented

with the correct signature

■ Tougher to test functional compliance
– A class implementing the interface
java.util.List may be implementing

get(int index) or isEmpty() incorrectly

■ Think LSP…

Abstract Test Pattern

■ This pattern provides the following

– A way to build a test suite that can be reused

across descendants

– A test suite that can be reused for future as-

yet-unidentified descendants

• Especially useful for writers of APIs.

An example

■ Consider a statistics application that uses

the Strategy design pattern

public interface StatPak

 {

 public void reset();

 public void addValue(double x);

 public double getN();

 public double getMean();

 public double getStdDev();

 }

Abstract Test Rule 1

■ Write an abstract test class for every

interface and abstract class

■ An abstract test should have test cases

that cannot be overridden

■ It should also have an abstract Factory

Method for creating instances of the class

to be tested.

Example abstract test class

public abstract TestStatPak {

 private StatPak statPak;

 @Before

 public final setUp() throws Exception {

 statPak = createStatPak();

 assertNotNull(statPak);

 }

 // Factory Method. Every test class of a

 // concrete subclass K must override this

 // to return an instance of K

 public abstract StatPak createStatPak();

 //Continued in next slide…

Example abstract test class

(continued)
 @Test

 public final void testMean() {

 statPak.addValue(2.0);

 statPak.addValue(3.0);

 statPak.addValue(4.0);

 statPak.addValue(2.0);

 statPak.addValue(4.0);

 assertEquals("Mean value of test data should be 3.0",

 3.0,statPak.getMean());

 }

 @Test

 public final void testStdDev() { ... }}

Abstract Test Rule 2

■ Write a concrete test class for every

implementation of the interface (or

abstract class)

■ The concrete test class should extend the

abstract test class and implement the

factory method

Example concrete test class

public class TestSuperSlowStatPak

 extends TestStatPak {

 public StatPak createStatPak()

 {

 return new SuperSlowStatPak();

 }

}

Only a few lines of code and all the test cases for

the interface have been reused

Guideline

■ Tests defining the functionality of the interface

belong in the abstract test class

■ Tests specific to an implementation belong in a

concrete test class

– We can add more test cases to
TestSuperSlowStatPak that are specific to its

implementation

Crash Test Dummy

■ Most software systems contain a large

amount of error handling code

■ Sometimes, it is quite hard to create the

situation that will cause the error

– Example: Error creating a file because the file

system is full

■ Solution: Fake it!

import java.io.File;

import java.io.IOException;

class FullFile extends File {

 public FullFile(String path) {

 super(path);

 }

 public boolean createNewFile() throws IOException {

 throw new IOException();

 }

}

public void testFileSystemFull() {

 File f = new FullFile("foo");

 try {

 saveAs(f);

 fail();

 }

 catch (IOException e)

 {}

 }

How do we ensure the file system is full,

so that it will throw the IOException?

 public void testFileSystemFull() {

 File f = new FullFile("foo") {

 public boolean createNewFile() throws IOException {

 throw new IOException();

 }

 };

 try {

 saveAs(f);

 fail();

 }

 catch (IOException e)

 {}

 }

It is much better to use the Mocking framework

Method Stubbing

using Mockito

The Mockito materials are adapted from:

https://dzone.com/articles/getting-started-mocking-java

http://examples.javacodegeeks.com/core-java/mockito/junit-mockito-example/

https://dzone.com/articles/getting-started-mocking-java
https://dzone.com/articles/getting-started-mocking-java
https://dzone.com/articles/getting-started-mocking-java
https://dzone.com/articles/getting-started-mocking-java
https://dzone.com/articles/getting-started-mocking-java
https://dzone.com/articles/getting-started-mocking-java
https://dzone.com/articles/getting-started-mocking-java
https://dzone.com/articles/getting-started-mocking-java
http://examples.javacodegeeks.com/core-java/mockito/junit-mockito-example/
http://examples.javacodegeeks.com/core-java/mockito/junit-mockito-example/
http://examples.javacodegeeks.com/core-java/mockito/junit-mockito-example/
http://examples.javacodegeeks.com/core-java/mockito/junit-mockito-example/
http://examples.javacodegeeks.com/core-java/mockito/junit-mockito-example/
http://examples.javacodegeeks.com/core-java/mockito/junit-mockito-example/
http://examples.javacodegeeks.com/core-java/mockito/junit-mockito-example/
http://examples.javacodegeeks.com/core-java/mockito/junit-mockito-example/

Create Maven Project

■ Create a new Maven project:

– File -> new project -> Maven project and enter

information similar as below

Create a Book class under the src folder

package eecs4313.demo.mockitoExample;

import java.util.List;

/** Model class for the book details.*/

public class Book {

 private String isbn;

 private String title;

 private List<String> authors;

 private String publication;

 private Integer yearOfPublication;

 private Integer numberOfPages;

 private String image;

 public Book(String isbn,

 String title,

 List<String> authors,

 String publication,

 Integer yearOfPublication,

 Integer numberOfPages,

 String image) {

 this.isbn = isbn;

 this.title = title;

 this.authors = authors;

 this.publication = publication;

 this.yearOfPublication = yearOfPublication;

 this.numberOfPages = numberOfPages;

 this.image = image;

 }

 public String getIsbn() {

 return isbn;

 }

 public String getTitle() {

 return title;

 }

 public List<String> getAuthors() {

 return authors;

 }

 public String getPublication() {

 return publication;

 }

 public Integer getYearOfPublication() {

 return yearOfPublication;

 }

 public Integer getNumberOfPages() {

 return numberOfPages;

 }

 public String getImage() {

 return image;

 }

}

Create a BookDAL class under the src folder

package eecs4313.demo.mockitoExample;

import eecs4313.demo.mockitoExample.Book;

import java.util.ArrayList;

import java.util.Arrays;

import java.util.Collections;

import java.util.List;

/**

* API layer for persisting and retrieving the Book objects.

*/

public class BookDAL {

 private static BookDAL bookDAL = new BookDAL();

 public List<Book> getAllBooks(){

 return Collections.EMPTY_LIST;

 }

 public Book getBook(String isbn){

 return null;

 }

 public String addBook(Book book){

 return book.getIsbn();

 }

 public String updateBook(Book book){

 return book.getIsbn();

 }

 public static BookDAL getInstance(){

 return bookDAL;

 }

}

The DAL layer has no functional and we

want to unit test the piece of code.

In addition, DAL might later

communicate with an ORM Mapper or

Database API, which we are not

concerned with yet.

We want to be able to test the DAL

class without actually configuring the

data source by using the Mocks

Editing the POM file

Create a JUnit test class for

BookDAL

Inject the mock BookDAL and

mock data in the setup
package eecs4313.demo.mockitoExample;

import static org.junit.Assert.*;

import org.junit.After;

import org.junit.Before;

import org.junit.Test;

import org.mockito.*;

public class BookDALTest extends TestCase {

 private static BookDAL mockedBookDAL;

 private static Book book1;

 private static Book book2;

 @Before

 public void setUp(){

 //Create mock object of BookDAL

 mockedBookDAL = Mockito.mock(BookDAL.class); // create a mock object of BookDAL

 //Create few instances of Book class.

 book1 = new Book("8131721019","Compilers Principles",

 Arrays.asList("D. Jeffrey Ulman","Ravi Sethi", "Alfred V. Aho", "Monica S. Lam"),

 "Pearson Education Singapore Pte Ltd", 2008,1009,"BOOK_IMAGE");

 book2 = new Book("9788183331630","Let Us C 13th Edition",

 Arrays.asList("Yashavant Kanetkar"),"BPB PUBLICATIONS", 2012,675,"BOOK_IMAGE");

 //Stubbing the methods of mocked BookDAL with mocked data, such that whenever the API is invoked, the mocked data is returned

 Mockito.when(mockedBookDAL.getAllBooks()).thenReturn(Arrays.asList(book1, book2));

 Mockito.when(mockedBookDAL.getBook("8131721019")).thenReturn(book1);

 Mockito.when(mockedBookDAL.addBook(book1)).thenReturn(book1.getIsbn());

 Mockito.when(mockedBookDAL.updateBook(book1)).thenReturn(book1.getIsbn());

 }

Populating the rest of the methods
 @Test

 public void testGetAllBooks() throws Exception {

 List<Book> allBooks = mockedBookDAL.getAllBooks();

 assertEquals(2, allBooks.size());

 Book myBook = allBooks.get(0);

 assertEquals("8131721019", myBook.getIsbn());

 assertEquals("Compilers Principles", myBook.getTitle());

 assertEquals(4, myBook.getAuthors().size());

 assertEquals((Integer)2008, myBook.getYearOfPublication());

 assertEquals((Integer) 1009, myBook.getNumberOfPages());

 assertEquals("Pearson Education Singapore Pte Ltd", myBook.getPublication());

 assertEquals("BOOK_IMAGE", myBook.getImage());

 }

 @Test

 public void testGetBook(){

 String isbn = "8131721019";

 Book myBook = mockedBookDAL.getBook(isbn);

 assertNotNull(myBook);

 assertEquals(isbn, myBook.getIsbn());

 assertEquals("Compilers Principles", myBook.getTitle());

 assertEquals(4, myBook.getAuthors().size());

 assertEquals("Pearson Education Singapore Pte Ltd", myBook.getPublication());

 assertEquals((Integer)2008, myBook.getYearOfPublication());

 assertEquals((Integer)1009, myBook.getNumberOfPages());

 }

 @Test

 public void testAddBook(){

 String isbn = mockedBookDAL.addBook(book1);

 assertNotNull(isbn);

 assertEquals(book1.getIsbn(), isbn);

 }

 @Test

 public void testUpdateBook(){

 String isbn = mockedBookDAL.updateBook(book1);

 assertNotNull(isbn);

 assertEquals(book1.getIsbn(), isbn);

 }

}

Run the test code

■ Right click “mockitoExample” -> Run as ->

Maven test

Another Example
■ Within this project, create a SimpleService

Java class in the src

SimpleService.java

package eecs4313.demo.mockitoExample;

public class SimpleService {

 public int getUniqueId() {

 return 43;

 }

 public int callMe(int num) {

 invokeSomeMethod("");

 return num;

 }

 public void invokeSomeMethod(String someMethod) {

 callMe(1);

 }

}

Create a JUnit test case for

SimpleService

package eecs4313.demo.mockitoExample;

import static org.junit.Assert.*;

import org.junit.After;

import org.junit.Before;

import org.junit.Ignore;

import org.junit.Test;

import java.util.*;

import org.mockito.*;

public class SimpleServiceTest {

 // Test 1

 @Test

 public void testGetUniqueId() {

 // create mock

 SimpleService test = Mockito.mock(SimpleService.class);

 // define return value for method getUniqueId()

 Mockito.when(test.getUniqueId()).thenReturn(43);

 // use mock in test....

 assertEquals(test.getUniqueId(), 43);

 }

 // Test more than one return value.

 // Demonstrates the return of multiple values

 @Test

 public void testMoreThanOneReturnValue() {

 Iterator i = Mockito.mock(Iterator.class);

 Mockito.when(i.next()).thenReturn("Mockito").thenReturn("is neat!!");

 String result = i.next() + " " + i.next();

 assertEquals("Mockito is neat!!", result);

 }

// Test return value dependent on method parameter.

 @Test

 public void testReturnValueDependentOnMethodParameter() {

 Comparable c = Mockito.mock(Comparable.class);

 Mockito.when(c.compareTo("Mockito")).thenReturn(1);

 Mockito.when(c.compareTo("Eclipse")).thenReturn(2);

 // assert

 assertEquals(1, c.compareTo("Mockito"));

 }

 /**

 * Test return value in dependent on method parameter.

 */

 @Test

 public void testReturnValueInDependentOnMethodParameter() {

 Comparable c = Mockito.mock(Comparable.class);

 Mockito.when(c.compareTo(Mockito.anyInt())).thenReturn(-1);

 assertEquals(-1, c.compareTo(9));

 }

 @Test

 public void testVerify() {

 // create and configure mock

 SimpleService test = Mockito.mock(SimpleService.class);

 Mockito.when(test.getUniqueId()).thenReturn(43);

 // call method testing on the mock with parameter 12

 test.callMe(12);

 test.getUniqueId();

 test.getUniqueId();

 test.invokeSomeMethod("Hello World");

 test.invokeSomeMethod("called at least once");

 test.invokeSomeMethod("called at least twice");

 test.invokeSomeMethod("called five times");

 test.invokeSomeMethod("called at most 3 times");

 // now check if method testing was called with the parameter 12

 Mockito.verify(test).callMe(Matchers.eq(12));

 // was the method called twice?

 Mockito.verify(test, Mockito.times(2)).getUniqueId();

 // other alternatives for verifying the number of method calls for a

method

 Mockito.verify(test, Mockito.never()).invokeSomeMethod("never called");

 Mockito.verify(test, Mockito.atLeastOnce()).invokeSomeMethod("called

at least once");

 // Will all fail because we didn't met the conditions.

 Mockito.verify(test, Mockito.atLeast(2)).invokeSomeMethod("called at

least twice");

 Mockito.verify(test, Mockito.times(5)).invokeSomeMethod("called five

times");

 Mockito.verify(test, Mockito.atMost(3)).invokeSomeMethod("called at

most 3 times");

 }

}

SimpleServiceTest.java

 // now check if method testing was called with the parameter 12

 Mockito.verify(test).callMe(Matchers.eq(12));

 // was the method called twice?

 Mockito.verify(test, Mockito.times(2)).getUniqueId();

 // other alternatives for verifying the number of method calls for a method

 Mockito.verify(test, Mockito.never()).invokeSomeMethod("never called");

 Mockito.verify(test, Mockito.atLeastOnce()).invokeSomeMethod("called at least once");

 // Will all fail because we didn't met the conditions.

 Mockito.verify(test, Mockito.atLeast(2)).invokeSomeMethod("called at least twice");

 Mockito.verify(test, Mockito.times(5)).invokeSomeMethod("called five times");

 Mockito.verify(test, Mockito.atMost(3)).invokeSomeMethod("called at most 3 times");

 }

}

SimpleServiceTest.java

(continued)

Once done, right click the project folder, Run as -> Maven test

More Mockito

■ Mockito API

– https://mockito.googlecode.com/hg-

history/1.5/javadoc/org/mockito/Mockito.html

■ Unit tests with Mockito

– http://www.vogella.com/tutorials/Mockito/articl

e.html

https://mockito.googlecode.com/hg-history/1.5/javadoc/org/mockito/Mockito.html
https://mockito.googlecode.com/hg-history/1.5/javadoc/org/mockito/Mockito.html
https://mockito.googlecode.com/hg-history/1.5/javadoc/org/mockito/Mockito.html
https://mockito.googlecode.com/hg-history/1.5/javadoc/org/mockito/Mockito.html
https://mockito.googlecode.com/hg-history/1.5/javadoc/org/mockito/Mockito.html
http://www.vogella.com/tutorials/Mockito/article.html
http://www.vogella.com/tutorials/Mockito/article.html
http://www.vogella.com/tutorials/Mockito/article.html

Log String

■ Often one needs to test that the sequence

in which methods are called is correct

■ Solution: Have each method append to a

log string when it is called

– Then, assert that the log string is the correct

one

– Requires changes to the implementation

Accessing private fields

■ Object-oriented design guidelines often
designate that certain fields should be
private / protected

■ This can be a problem for testing since a
tester may need to assert certain
conditions about private fields

■ Making these fields public defeats the
purpose

A solution

■ Using reflection, one can actually call

private methods and access private

attributes!

■ An example

class A {

 private String sayHello(String name) {

 return "Hello, " + name;

 }

}

import java.lang.reflect.Method;

public void testPrivateMethod {

 A test = new A();

 Method[] methods = test.getClass().getDeclaredMethods();

 for (int i = 0; i < methods.length; ++i) {

 if (methods[i].getName().equals("sayHello")) {

 Object params[] = {"Ross"};

 methods[i].setAccessible(true);

 Object ret = methods[i].invoke(test, params);

 System.out.println(ret);

 }

 }

}

Testing Code Smells

Relevant Readings

■ Martin Fowler, Kent Beck, John Brant,
William Opdyke and Don Roberts.
Refactoring – Improving the Design of
Existing Code.

■ Steve McConnel. Code Complete: : A
Practical Handbook of Software Construction.
(Chapter 24)

■ Refactoring test code. Van Deursen et al.
Tech Report. 2001.

■ xUnit Patterns.
– http://xunitpatterns.com/Test%20Smells.html

Problem: "Bit rot"

■ After several months and new versions, many
codebases reach one of the following states:
– rewritten : Nothing remains from the original code.

– abandoned : Original code is thrown out, rewritten from
scratch.

■ Why?
– Systems evolve to meet new needs and add new features

– If the structure of the code does not also evolve, it will "rot"

– This can happen even if the code was initially reviewed
and well-designed at the time of check-in

Software maintenance

■ Software maintenance: Modification or repair of a
software product after it has been delivered.

■ Purposes:

– fix bugs

– improve performance

– improve design

– add features,

– etc.

■ Studies have shown that ~80% of maintenance is
for non-bug-fix-related activities such as adding
functionality (Pigosky 1997).

Maintenance is hard

■ It's harder to maintain code than write your own
new code.

– must understand code written by another developer,
or code you wrote at a different time with a different
mindset

– most developers dislike software maintenance

■ Maintenance is how developers spend much of
their time.

■ It pays to design software well and plan ahead so
that later maintenance will be less painful.

– Capacity for future change must be anticipated

Refactoring

■ Software refactoring is the systematic
practice of improving application code’s
structure without altering its behavior.
– Incurs a short-term time/work cost to reap long-

term benefits

– A long-term investment in the overall quality of
your system.

■ Refactoring is not the same thing as:
– adding features

– debugging code

– rewriting code

A Brief History of Code Refactoring

■ Invented by two computer science

graduate students in the late 1980s:

– Bill Opdyke at University of Illinois at Urbana-

Champaign

– Bill Griswold at University of Washington

■ Canonical reference

Why refactor?

■ Why fix a part of your system that isn't
broken?
■ Each part of your system's code has the following three

purposes. If the code does not do one or more of these, it
is "broken."
1. to execute its functionality,

2. to allow change,

3. to communicate well to developers who read it.

■ Refactoring:
• changes internal structure of the program and improves

software's design

• makes it easier to understand and cheaper to modify

• do not change its observable behaviour

When to refactor?

■ When is it best for a team to refactor their
code?
– best done continuously (like testing) as part of

the process

– hard to do well late in a project (like testing)

■ Refactor when you identify an area of your
system that:
– isn't well designed

– isn't thoroughly tested, but seems to work so far

– now needs new features to be added

Bad smells

If it stinks,

change it

Kent Beck grandma

discussing child-rearing philosophy

Signs you should refactor

- “Code Smells”
■ code is duplicated

■ a routine is too long

■ a loop is too long or deeply nested

■ a class has poor cohesion

■ a class uses too much coupling

■ inconsistent level of abstraction

■ too many parameters

■ to compartmentalize changes (change one place must change
others)

■ to modify an inheritance hierarchy in parallel

■ to group related data into a class

■ a "middle man" object doesn't do much

■ poor encapsulation of data that should be private

■ a weak subclass doesn't use its inherited functionality

■ a class contains unused code

Code Smells
■ Duplicated Code

■ Long Method

■ Large Class

■ Long Parameter List

■ Divergent Change

■ Shotgun Surgery

– (change one place must

change others)

■ Feature Envy

■ Data Clumps

■ Primitive Obsession

■ Switch Statements

■ Parallel Inheritance Hierarchies

■ Lazy Class

■ Speculative Generality

■ Temporary Field

■ Message Chains

■ Middle Man

■ Inappropriate Intimacy

■ Alternative Classes with Different

Interfaces

■ Incomplete Library Class

■ Data Class

■ Refused Bequest

 (subclass doesn't use

inherited members much)

■ Comments

What smells in here?

void funcA()

{

 int x, y = 2;

 x = y * y;

 printf(“%d”, x);

}

void funcB()

{

 int x, y = 4;

 x = y * y;

 funcC(x);

}

Extract Method

void funcA()

{

 …

 x = sqr(y);

 …

}

void funcB()

{

 …

 x = sqr(y);

 …

}

int sqr(int x)

{

 return x * x;

}

Duplicate Code

Duplicated Code

■ Code repeated in multiple places

■ Refactoring

– Extract Method

– Extract Class

– Pull Up Method

– Form Template Method

What smells in here?

void funcA(

 int param1,

 int param2,

 char* param3,

 float param4,

 float param5,

 void* param6)

{

int temp1, temp2,
temp3;

// Do stuff with all

// this data

}

Introduce Parameter
Object

class newObj

{

public:

 int getParam1();

 int getParam2();

 char* getParam3();

 float getParam4();

 float getParam5();

 void* getParam6();

}

void funcA(newObj obj)

{

int temp1, temp2, temp3;

// Do stuff with all

// this data

}

Long Parameter
List

Test Smells

■ Mystery Guest

■ Resource Optimism

■ Test Run War

■ General Fixture

■ Eager Test

■ Lazy Test

■ Assertion Roulette

■ Indirect Testing

■ For Testers Only

■ Sensitive Equality

■ Test Code Duplication

Test Smells

■ Mystery Guest

■ Resource Optimism

■ Test Run War

■ General Fixture

■ Eager Test

■ Lazy Test

■ Assertion Roulette

■ Indirect Testing

■ For Testers Only

■ Sensitive Equality

■ Test Code Duplication

Eager Test

■ When a test method checks several methods of the

object to be tested, it is hard to read and understand,

and therefore more difficult to use as documentation.

Moreover, it makes tests more dependent on each

other and harder to maintain.

■ The solution is simple: separate the test code into test

methods that test only one method using Fowler’s

Extract Method (F:110), using a meaningful name

highlighting the purpose of the test. Note that splitting

into smaller methods can slow down the tests due to

increased setup/teardown overhead.

Test Smells

■ Mystery Guest

■ Resource Optimism

■ Test Run War

■ General Fixture

■ Eager Test

■ Lazy Test

■ Assertion Roulette

■ Indirect Testing

■ For Testers Only

■ Sensitive Equality

■ Test Code Duplication

Lazy Tests

■ This occurs when several test methods

check the same method using the same

fixture (but for example check the values

of different instance variables). Such tests

often only have meaning when considering

them together so they are easier to use

when joined using Inline Method (F:117)

