
EECS 4313
Software Engineering Testing

Topic 10:

Mutation Testing
- Breaking the application to test it

Zhen Ming (Jack) Jiang

Relevant Readings

■ [Jorgensen] chapter 21

What is Mutation Testing?

■ Mutation Testing is a testing technique that focuses
on measuring the adequacy of test cases

■ Mutation Testing is NOT a testing strategy like
Boundary Value or Data Flow Testing. It does not
outline test data selection criteria

■ Mutation Testing should be used in conjunction with
traditional testing techniques, not instead of them

■ Goal:
– Mimic (and hence test for) typical mistakes

– Encode knowledge about specific kinds of effective tests in
practice

Mutation Testing

■ Faults are introduced into the program by
creating many versions of the program called
mutants

■ Each mutant contains a single fault

■ Test cases are applied to the original program
and to the mutant program

■ The goal is to cause the mutant program to fail,
thus demonstrating the effectiveness of the test
suite

Test Case Adequacy

■ A test case is adequate if it is useful in

detecting faults in a program.

■ A test case can be shown to be adequate by

finding at least one mutant program that

generates a different output than does the

original program for that test case.

■ If the original program and all mutant programs

generate the same output, the test case is

inadequate.

Mutant Programs

■ Mutation testing involves the creation of

a set of mutant programs of the program

being tested

■ Each mutant differs from the original

program by one mutation

■ A mutation is a single syntactic change

that is made to a program statement

Example Mutation

1 int max(int x, int y)
2 {
3 int mx = x;
4 if (x > y) {
5 mx = x;
6 } else {
7 mx = y;
8 }
9 return mx;
10 }

1 int max(int x, int y)
2 {
3 int mx = x;
4 if (x < y) {
5 mx = x;
6 } else {
7 mx = y;
8 }
9 return mx;
10 }

Mutation Operators (1)

■ Operand Replacement Operators:
– Replace a single operand with another operand or

constant. E.g.,
• if (5 > y) Replacing y by constant 5.

• if (x > 5) Replacing x by y.

• if (y > x) Replacing x and y with each other.

– E.g., if all operators are {+,-,*,**,/} then the following
expression a = b * (c - d) will generate 8 mutants:

• 4 by replacing *

• 4 by replacing -.

Mutation Operators (2)

■ Expression Modification Operators:

– Replace an operator or insert new operators.

E.g.,

• if (x == y)

– if (x >= y) Replacing == by >=.

– if (x == ++y) Inserting ++.

Mutation Operators (3)

■ Statement Modification Operators:

– Delete the else part of an if-else statement.

– Delete the entire if-else statement.

– Replace line 3 by a return statement.

Mutation Operators

■ The Mothra mutation system (A Fortran

Language System for Mutation-Based Software

Testing by Offutt et al. 1987) for FORTRAN77

supports 22 mutation operators

– Absolute value insertion

– Constant for array reference replacement

– GOTO label replacement

– Statement deletion

– Unary operator insertion

– Logical connector replacement

Why Does

Mutation Testing Work?
■ The operators are limited to simple single

syntactic changes on the basis of the
competent programmer hypothesis

■ The Competent Programmer Hypothesis
– Programmers are generally very competent and

do not create “random” programs.

– For a given problem, a programmer, if mistaken,
will create a program that is very close to a
correct program.

– An incorrect program can be created from a
correct program by making some minor changes
to the correct program.

Mutation Testing Costs

■ The FORTRAN 77 version of the max() program

generated 44 mutants using Mothra.

■ Most efforts on mutation testing have focused on

reducing its cost by reducing the number of

mutants while maintaining the effectiveness of

the technique.

Mutation Testing Algorithm

■ Generate program test cases

■ Run each test case against the original program
– If the output is incorrect, the program must be modified and re-

tested

– If the output is correct go to the next step ...

■ Construct mutants using a mutation testing tool
■ Execute each test case against each alive mutant

– If the output of the mutant differs from the output of the original
program, the mutant is considered incorrect and is killed

• “Good test cases kill the mutants"

– Once we find a test case that kills a mutant, we can forget the
mutant and keep the test case. The mutant is dead

■ Two kinds of mutants survive:
– Functionally equivalent to the original program: Cannot be

killed
– Killable: Test cases are insufficient to kill the mutant. New test

cases must be created.

What test case

can kill the mutant?

1. int foo(int x, int y)
2. { // original
3. if (x > 5) {
4. return x + y;
5. } else {
6. return x;
7. }
8. }

1. int foo(int x, int y)
2. { // mutant
3. if (x > 5) {
4. return x - y;
5. } else {
6. return x;
7. }
8. }

Some mutants can be

uninteresting

■ Three kinds of mutants are uninteresting:

– Stillborn: such mutants cannot compile (or

immediately crash)

– Trivial: killed by almost any test case;

– Equivalent: indistinguishable from original

program

Mutants

Example

1. int min(int A, int B)
2. { // original
3. int minVal;
4. minVal = A;
5. if (B < A) {
6. minVal = B;
7. }
8. return minVal;
9. }

1. int min(int A, int B)
2. { // mutant
3. int minVal;
4.1 minVal = B;
3. if (B < A) {
4. minVal = B;
5. }
6. return minVal;
7. }
Replace one varirable

with another

1. int min(int A, int B)
2. { // mutant
3. int minVal;
4 minVal = A;
5.1. if (B > A) {
6. minVal = B;
7. }
8. return minVal;
9. }

Change operator

1. int min(int A, int B)
2. { // mutant
3. int minVal;
4. minVal = A;
5.1. if (B < minVal) {
6. minVal = B;
7. }
8. return minVal;
9. }
Replace one varirable

with another

1. int min(int A, int B)
2. { // original
3. int minVal;
4. minVal = A;
5. if (B < A) {
6.1. minVal = A;
7. }
8. return minVal;
9. }
Replace one varirable

with another

And many more ….

Example of equivalent mutant

■ This is equivalent mutant, since A = minVal

1. int min(int A, int B)
2. { // original
3. int minVal;
4. minVal = A;
5. if (B < A) {
6. minVal = B;
7. }
8. return minVal;
9. }

1. int min(int A, int B)
2. { // mutant
3. int minVal;
4. minVal = A;
5.1. if (B < minVal) {
6. minVal = B;
7. }
8. return minVal;
9. }
Replace one varirable

with another

Mutation Coverage Criteria

■ Mutation Coverage (MC)
– For each mutant m, test requirements (TR)

contain a requirement to “kill m”
• Mutation score is the percentage of mutants killed

■ The mutation score for a set of test cases is the
percentage of non-equivalent mutants killed by the
test data
– Mutation Score = 100 * D / (N - E)

• D: Dead mutants

• N: Number of mutants

• E: Number of equivalent mutants

– A set of test cases is mutation adequate if its mutation
score is 100%.

Strong and weak mutation

■ Strong mutation: a fault must be reachable,

infect the state, and propagate to output

■ Weak mutation: a fault which kills a mutant

need only be reachable and infect the state

■ Experiments show that weak and strong

mutation require almost the same number of

test cases to satisfy them

Strong Mutation vs. Weak Mutation

■ Reachability: unavoidable

■ Infection: need B != A

■ Propagation: wrong minVal needs to return to the caller; that
is we cannot execute the body of the if statement, so need B
> A

■ Condition for strongly killing mutation B > A
– TC: (A=5, B=7), return 7 but expected 5

■ Conditions for weakly killing mutation B!=A
– TC: (A=8, B=2), return 2 and expected 2

1. int min(int A, int B)
2. { // original
3. int minVal;
4. minVal = A;
5. if (B < A) {
6. minVal = B;
7. }
8. return minVal;
9. }

1. int min(int A, int B)
2. { // mutant
3. int minVal;
4.1 minVal = B;
3. if (B < A) {
4. minVal = B;
5. }
6. return minVal;
7. }
Replace one varirable

with another

Evaluation

■ Theoretical and experimental results have

shown that mutation testing is an effective

approach to measuring the adequacy of

test cases.

■ The major drawback of mutation testing is

the cost of generating the mutants and

executing each test case against them.

PIT demo

Adapted from:

https://vimeo.com/105758362

http://blog.xebia.com/mutation-testing-how-good-are-your-unit-tests/

https://vimeo.com/105758362
https://vimeo.com/105758362
https://vimeo.com/105758362
http://blog.xebia.com/mutation-testing-how-good-are-your-unit-tests/
http://blog.xebia.com/mutation-testing-how-good-are-your-unit-tests/
http://blog.xebia.com/mutation-testing-how-good-are-your-unit-tests/
http://blog.xebia.com/mutation-testing-how-good-are-your-unit-tests/
http://blog.xebia.com/mutation-testing-how-good-are-your-unit-tests/
http://blog.xebia.com/mutation-testing-how-good-are-your-unit-tests/
http://blog.xebia.com/mutation-testing-how-good-are-your-unit-tests/
http://blog.xebia.com/mutation-testing-how-good-are-your-unit-tests/
http://blog.xebia.com/mutation-testing-how-good-are-your-unit-tests/
http://blog.xebia.com/mutation-testing-how-good-are-your-unit-tests/
http://blog.xebia.com/mutation-testing-how-good-are-your-unit-tests/
http://blog.xebia.com/mutation-testing-how-good-are-your-unit-tests/
http://blog.xebia.com/mutation-testing-how-good-are-your-unit-tests/
http://blog.xebia.com/mutation-testing-how-good-are-your-unit-tests/
http://blog.xebia.com/mutation-testing-how-good-are-your-unit-tests/
http://blog.xebia.com/mutation-testing-how-good-are-your-unit-tests/

PIT Mutation Testing Tool

■ Conditionals Boundary Mutator

■ Negate Conditionals Mutator

■ Remove Conditionals Mutator

■ Math Mutator

■ Increments Mutator

■ Invert Negatives Mutator

■ Inline Constant Mutator

■ Return Values Mutator

■ Void Method Calls Mutator

■ Non Void Method Calls Mutator

■ Constructor Calls Mutator

■ Experimental Inline Constant Mutator

■ Experimental Member Variable Mutator

■ Experimental Switch Mutator

http://pitest.org/

http://pitest.org/
http://pitest.org/

PIT Configuration

■ PIT can work with many IDE

■ In this demo, we will demonstrate PIT with

Eclipse

– Install the PIT eclipse plugin from the Eclipse

Marketplace (under the Help menu)

Run the test
■ Can be

– “Run as -> Junit”, or

– run as “Maven test”

■ It should pass both tests

■ Run PIT
– Right click, “Run as -> PIT Mutation Test”

– Once done click the PIT summary report

Fix the issue

■ Uncomment the last method and re-run

PIT mutation test, you should see the

screen as shown below

