EECS 4313

Software Engineering Testing

Topic 10:

Mutation Testing
- Breaking the application to test it

Zhen Ming (Jack) Jiang

Relevant Readings

m [Jorgensen] chapter 21

What Is Mutation Testing?

Mutation Testing is a testing technigue that focuses
on measuring the adequacy of test cases

Mutation Testing Is NOT a testing strategy like
Boundary Value or Data Flow Testing. It does not
outline test data selection criteria

Mutation Testing should be used in conjunction with
traditional testing technigues, not instead of them

Goal:
— Mimic (and hence test for) typical mistakes

— Encode knowledge about specific kinds of effective tests in
practice

Mutation Testing

m Faults are iIntroduced Iinto the program by
creating many versions of the program called
mutants

m Each mutant contains a single fault

m Test cases are applied to the original program
and to the mutant program

m The goal Is to cause the mutant program to fall,
thus demonstrating the effectiveness of the test

suite

Test Case Adequacy

m A test case Is adequate Iif it I1s useful In
detecting faults in a program.

m A test case can be shown to be adequate by
finding at least one mutant program that
generates a different output than does the
original program for that test case.

m If the original program and all mutant programs
generate the same output, the test case Is
Inadequate.

Mutant Programs

m Mutation testing involves the creation of
a set of mutant programs of the program
being tested

m Each mutant differs from the original
program by one mutation

m A mutation Is a single syntactic change
that Is made to a program statement

Example Mutation

nt max(int x, int y)

inf mx = x;
if (x > y) {
mx = X;
} else {
mx = vy;
}

return mx;

= OO0ONOCOOIhALWN =

o
(1

nt max(int x, int y)

int mx = x;
if (x < y){
mx = X;
} else {
mx = vy:
}

return mx;

= OOONOCOLWN =

o
—~

Mutation Operators (1)

m Operand Replacement Operators:

— Replace a single operand with another operand or
constant. E.g.,
« if (5>y) Replacing y by constant 5.
 if (x>5) Replacing x by y.
- if (y>x) Replacing x and y with each other.
— E.q., if all operators are {+,-,*,**,/} then the following
expression a =b * (c - d) will generate 8 mutants:
* 4 by replacing *
* 4 by replacing -.

Mutation Operators (2)

m Expression Modification Operators:
— Replace an operator or insert new operators.
E.g.,

c if (X ==Y)
—if (x >=y) Replacing == by >=.
— If (X == ++y) Inserting ++.

Mutation Operators (3)

m Statement Modification Operators:

De
De

Re

ete the else part of an if-else statement.
ete the entire if-else statement.

nlace line 3 by a return statement.

Mutation Operators

m The Mothra mutation system (A Fortran
Language System for Mutation-Based Software
Testing by Offutt et al. 1987) for FORTRANY7
supports 22 mutation operators
— Absolute value insertion
— Constant for array reference replacement
— GOTO label replacement
— Statement deletion
— Unary operator insertion
— Logical connector replacement

Why Does
Mutation Testing Work?

m The operators are limited to simple single
syntactic changes on the basis of the
competent programmer hypothesis

m The Competent Programmer Hypothesis

— Programmers are generally very competent and
do not create “random” programs.

— For a given problem, a programmer, if mistaken,
will create a program that Is very close to a
correct program.

— An Incorrect program can be created from a
correct program by making some minor changes
to the correct program.

Mutation Testing Costs

m The FORTRAN 77 version of the max() program
generated 44 mutants using Mothra.

m Most efforts on mutation testing have focused on
reducing its cost by reducing the number of

mutants while maintaining the effectiveness of
the technique.

Mutation Testing Algorithm

Generate program test cases

Run each test case against the original program

— If the output is incorrect, the program must be modified and re-
tested

— If the output is correct go to the next step ...
Construct mutants using a mutation testing tool

Execute each test case against each alive mutant

— If the output of the mutant differs from the output of the original
program, the mutant is considered incorrect and is killed

* “Good test cases kill the mutants”

— Once we find a test case that kills a mutant, we can forget the
mutant and keep the test case. The mutant is dead

Two kinds of mutants survive:

— Ilz'lljlndCtiona”y equivalent to the original program: Cannot be
ille

— Killable: Test cases are insufficient to kill the mutant. New test
cases must be created.

What test case
can kill the mutant?

1. int foo(int x, int y) 1. int foo(int x, int y)
2. { // original 2. { // mutant

3. if (x>5H){ 3. if (x >bH){

4. return x + y; 4. return x - vy
5. }else{ 5. }else{

6. return x; 6. return x;

7. } 7. }

8.} 8.}

Some mutants can be
uninteresting

m Three kinds of mutants are uninteresting:

— Stillborn: such mutants cannot compile (or
Immediately crash)

— Trivial: killed by almost any test case;

— Equivalent: indistinguishable from original
program

CENOOAWN -

Mutants
Example

. int min(int A, int B)
. { // original

int minVal;
minVal = A;
if (B < A) {

minVal = B;
}

return minVal;

-}

1. int min(int A, int B)
2. { // mutant

3. int minVal;
4.1 minVal = B;

3. if(B < A){

4 minVal = B;

5. 1}

6. return minVal;
7.}

Replace one varirable

with another

. int min(int A, int B)
. { // mutant
int minVal;
minVal = A;
if (B > A) {
minVal = B;
}

return minVal;

VENGUAWN -
=t

.}

Change operator

. int min(int A, int B)
. { // mutant
int minVal;
minVal = A;
. if (B < minVal) {
minVal = B;
}

return minVal;

POPENS OB wN
=t

.}
eplace one varirable
with another

int min(int A, int B)

{ // original

int minVal;

minVal = A;

if (B < A){
minVal =

}

return minVal;

1.
2.
3.
4
5.
6.1.
7.
8.
9.}
Rep

eplace one varirable
with another

And many more

Example of equivalent mutant

m This Is equivalent mutant, since A = minVal

CENOOAWN -

. int min(int A, int B)

. { // original

int minVal;

minVal = A;

if (B < A){
minVal = B;

}

return minVal;

1. int min(int A, int B)
2. { // mutant

3. int minVal;

4. minVal = A;

5.1. if (B < minVal) {
6. minVal = B;

7. }
8. return minVal;
9.}

Replace one varirable
with another

Mutation Coverage Criteria

m Mutation Coverage (MC)

— For each mutant m, test requirements (TR)
contain a requirement to “kill m”

« Mutation score is the percentage of mutants killed

m The mutation score for a set of test cases Is the
percentage of non-equivalent mutants killed by the
test data

— Mutation Score =100*D /(N - E)
« D: Dead mutants
* N: Number of mutants
* E: Number of equivalent mutants

— A set of test cases is mutation adequate if its mutation
score Is 100%.

Strong and weak mutation

m Strong mutation: a fault must be reachable,
Infect the state, and propagate to output

m Weak mutation: a fault which kills a mutant
need only be reachable and infect the state

m Experiments show that weak and strong
mutation require almost the same number of
test cases to satisfy them

. int min(int A, int B)

. { // original

int minVal;

minVal = A;

if (B < A){
minVal = B;

}

return minVal;

VO NGO AW -

-}

Reachability: unavoidable
Infection: need B = A

Strong Mutation vs. Weak Mutation

1. int min(int A, int B)
2. { // mutant

3. int minVal;

4.1 minVal = B;

. if (B < A){

. minVal = B;
.}

3

4

5

6. return minVal;
7.}

Rep

eplace one varirable
with another

Propagation: wrong minVal needs to return to the caller; that
IS we cannot execute the body of the if statement, so need B

> A

Condition for strongly killing mutation B > A
— TC: (A=5, B=7), return 7 but expected 5
Conditions for weakly killing mutation B!=A
— TC: (A=8, B=2), return 2 and expected 2

Evaluation

m Theoretical and experimental results have
shown that mutation testing is an effective
approach to measuring the adequacy of
test cases.

m The major drawback of mutation testing Is
the cost of generating the mutants and
executing each test case against them.

PIT demo

Adapted from:
https://vimeo.com/105758362
http://blog.xebia.com/mutation-testing-how-good-are-your-unit-tests/

https://vimeo.com/105758362
https://vimeo.com/105758362
https://vimeo.com/105758362
http://blog.xebia.com/mutation-testing-how-good-are-your-unit-tests/
http://blog.xebia.com/mutation-testing-how-good-are-your-unit-tests/
http://blog.xebia.com/mutation-testing-how-good-are-your-unit-tests/
http://blog.xebia.com/mutation-testing-how-good-are-your-unit-tests/
http://blog.xebia.com/mutation-testing-how-good-are-your-unit-tests/
http://blog.xebia.com/mutation-testing-how-good-are-your-unit-tests/
http://blog.xebia.com/mutation-testing-how-good-are-your-unit-tests/
http://blog.xebia.com/mutation-testing-how-good-are-your-unit-tests/
http://blog.xebia.com/mutation-testing-how-good-are-your-unit-tests/
http://blog.xebia.com/mutation-testing-how-good-are-your-unit-tests/
http://blog.xebia.com/mutation-testing-how-good-are-your-unit-tests/
http://blog.xebia.com/mutation-testing-how-good-are-your-unit-tests/
http://blog.xebia.com/mutation-testing-how-good-are-your-unit-tests/
http://blog.xebia.com/mutation-testing-how-good-are-your-unit-tests/
http://blog.xebia.com/mutation-testing-how-good-are-your-unit-tests/
http://blog.xebia.com/mutation-testing-how-good-are-your-unit-tests/

PIT Mutation Testing Tool

Conditionals Boundary Mutator
Negate Conditionals Mutator
Remove Conditionals Mutator

Math Mutator

Increments Mutator

Invert Negatives Mutator

Inline Constant Mutator

Return Values Mutator

Void Method Calls Mutator

Non Void Method Calls Mutator
Constructor Calls Mutator
Experimental Inline Constant Mutator
Experimental Member Variable Mutator
Experimental Switch Mutator

http://pitest.orqg/

http://pitest.org/
http://pitest.org/

PIT Configuration

m PIT can work with many IDE
m In this demo, we will demonstrate PIT with
Eclipse

— Install the PIT eclipse plugin from the Eclipse
Marketplace (under the Help menu)

Run the test

m Can be

— “Run as -> Junit’, or

— run as “Maven test”
m It should pass both tests
m Run PIT

— Right click, “Run as -> PIT Mutation Test”
— Once done click the PIT summary report

Pit Test Coverage Report

Project Summary

Number of Classes Line Coverage Mutation Coverage
1 100% 4/4 75% 3/4

Breakdown by Package

Name Number of Classes Line Coverage Mutation Coverage
eecs4313. MutationDemo. eecs4313MutationDemo 1 100% 4/4 75% 3/4

Report generated by PIT 1.1.5

Fix the Issue

m Uncomment the last method and re-run
PIT mutation test, you should see the
screen as shown below

Pit Test Coverage Report

Project Summary

Number of Classes Line Coverage Mutation Coverage
1 100% 4/4 100% 4/4

Breakdown by Package

Name Number of Classes Line Coverage Mutation Coverage
eecs4313. MutationDemo. eecs4313MutationDemo 1 100% 4/4 100% 4/4

Report generated by PIT 1.1.5

