
EECS 4313 
Software Engineering Testing 

Topic 08: 

Dataflow Testing and Static Analysis 

Zhen Ming (Jack) Jiang 



Relevant Readings 

■ [Jorgensen] chapter 9 

■ [Ammann & Offutt] chapter 7 

 



Dataflow Testing 

■ Testing All-Nodes and All-Edges in a control flow 
graph may miss significant test cases 

■ Testing All-Paths in a control flow graph is often 
too time-consuming 

■ Can we select a subset of these paths that will 
reveal the most faults? 

■ Dataflow Testing focuses on the points at which 
variables receive values and the points at which 
these values are used 

– Goal: try to ensure that values are computed and 
used correctly 



Dataflow Analysis 

■ Dataflow analysis can reveal interesting bugs 

– A variable that is defined but never used 

– A variable that is used but never defined 

– A variable that is defined twice before it is used 

– Sending a modifier message to an object more 

than once between accesses 

– De-allocating a variable before it is used 

• Container problem 

– De-allocating container loses references to items in the 

container, memory leak 



Definitions 
■ A node n  in the program graph is a defining node for 

variable v, written as DEF(v, n), if the value of v is 
defined at the statement fragment in that node 
– Input, assignment, procedure calls 

■ A node in the program graph is a usage node for 
variable v, written as USE(v, n), if the value of v is 
used at the statement fragment in that node 
– Output, assignment, conditionals 

■ A usage node is a predicate use, P-use, if variable v 
appears in a predicate expression 
– Always in nodes with outdegree ≥ 2 

■ A usage node is a computation use, C-use, if variable 
v appears in a computation 
– Always in nodes with outdegree ≤ 1 

■ A node in the program is a kill node for a variable v, 
written as KILL(v, n), if the variable is deallocated at 
the statement fragment in that node 

 



Example 2 – Billing program 

public int calculateBill (int usage) { 

  double bill = 0; 
 

  if (usage > 0) { bill = 40; } 

 

  if (usage > 100) { 

 

    if (usage <= 200) { bill = bill + (usage – 100) *0.5; } 

    else { bill = bill + 50 + (usage – 200) * 0.1; } 

 

    if (bill >= 100) { bill = bill * 0.9; } 

  } 

 

  return bill; 

} 
Kill node for bill 



Definition-Use path 

■ What is a du-path (definition-use path)? 

– A definition-use path, du-path,  with respect to 

a variable v is a path whose first node is a 

defining node for v, and its last node is a 

usage node for v 

■ What is a dc-path (definition-clear path)? 

– A du-path with no other defining node for v is 

a definition-clear path 

 

 
 



1  int max = 0; 

2  int j = s.nextInt(); 

3  while (j > 0) 

4    if (j > max) { 

5      max = j; 

6    } 

7    j = s.nextInt(); 

8  } 

9  System.out.println(max); 

Example 1 –  Max program 

A definition of j 

A C-use of j 

P-uses of j & max 

A definition of j 

Definitions 

of max 

A C-use of max 



Max program  

– DC path analysis for j 

Legend 

A..F Segment name 

d  defining node for j 

u  use node for j 

int max = 0; 

int j = s.nextInt(); 

while (j > 0) 

System.out.println(max); 

max = j; 

if (j > max) 

j = s.nextInt(); 

A 

B 

C 

D 

E 

F 

d 

d 

u 

u 

u 

dc-paths j 

A B 

A B C 

A B C D 

E B 

E B C 

E B C D 



Legend 

A..F Segment name 

d  defining node for max 

u  use node for max 

int max = 0; 

int j = s.nextInt(); 

while (j > 0) 

System.out.println(max); 

max = j; 

if (j > max) 

j = s.nextInt(); 

A 

B 

C 

D 

E 

F 

d 

u 

d 

dc-paths max 

A B F 

A B C 

D E B C 

D E B F 

u 

Max program  

– DC path analysis for max 



Dataflow Coverage Metrics 

■ Based on these definitions we can define a 

set of coverage metrics for a set of test cases 

■ We have already seen 

– All-Nodes 

– All-Edges 

– All-Paths 

■ Dataflow has additional test metrics for a set 

T of paths in a program graph 

– All assume that all paths in T are feasible 



All-Defs Criterion 

■ The set T satisfies the All-Def criterion iff 

– For every variable v in V, T contains a dc-path from every 

defining node for v to at least one usage node for v 

• Not all use nodes need to be reached 

 

• T is the set of paths in the program graph  

• V is the set of variables 



All-Uses Criterion 
 

■ The set T satisfies the All-Uses criterion iff  
– For every variable v in V, T contains dc-paths 

that start at every defining node for v, and 
terminate at every usage node for v 

 

 
 

 

■ We cannot take the cross product of DEF 
and USE to define du-paths:   
– DEF(v, n)  USE(v, n) 

– Because it can result in infeasible paths 

 

• T is the set of paths in the program graph  

• V is the set of variables 



All-P-uses / Some-C-uses 

Criterion 
 

■ The set T satisfies the All-P-uses/Some-C-uses 
criterion iff 
– For every variable v in V for the program P, T 

contains a dc-path from every defining node of v 
to every P-use node for v 

– If a definition of v has no P-uses, a dc-path leads 
to at least one C-use node for v 

• T is the set of paths in the program graph  

• V is the set of variables 



All-C-uses / Some-P-uses 

■ The test set T satisfies the All-C-
uses/Some-P-uses criterion iff 
– For every variable v in V for the program P, T 

contains a dc-path from every defining node of 
v to every C-use of v 

– If a definition of v has no C-uses, a dc-path 
leads to at least one P-use 

• T is the set of paths in the program graph  

• V is the set of variables 



Miles-per-gallon Program 

public void miles_per_gallon (int miles, int gallons, int price) { 
 

  if (gallons == 0) { 
 

    // Watch for division by zero!! 
 

    System.out.println(“You have “ + gallons + “gallons of gas”);  

  } else if (miles/gallons > 25) { 
 

    System.out.println( “Excellent car.  Your mpg is “ + miles/gallon); 
 

  } else { 

    System.out.println( “You must be going broke.  Your mpg is “ 

                    + miles/gallon + “ cost “ + gallons * price); 
 

  } 

} 

• We want du- and dc-paths 

• What do we do next then? 



Mile-per-gallon (MPG) 

Program Segmented 
public void miles_per_gallon (int miles,  int gallons, int price) { A 

     if (gallons == 0) { B 

        // Watch for division by zero!! 

        System.out.println(“You have “ + gallons + “gallons of gas”);  

C 

     } else if (miles/gallons > 25) { D 

        System.out.println( “Excellent car.  Your mpg is “ + miles/gallon); E 

     } else { 

        System.out.println( “You must be going broke.  Your mpg is “ 

                                        + miles/gallon + “ cost “ + gallons * price); 

F 

     } 

} 

G 

• We want du- and dc-paths 

• What do we do next then? 



MPG program graph 

What do you do now? 



MPG program graph 
Def miles, 

gallons, price 

P-use 

gallons 

P-use 

 miles, 

gallons 

C-use gallons 

C-use miles, gallons, price 

C-use miles, gallons 

C-use miles, gallons 

But not common practice? 

• We want du- and dc-paths 

• What do we do next then? 



Example du-paths 

■ For each variable in the miles_per_gallon 
program, create the test paths for the 
following dataflow path sets 

– All-Defs (AD) 

– All-C-uses (ACU) 

– All-P-uses (APU) 

– All-C-uses/Some-P-uses (ACU+P) 

– All-P-uses/Some-C-uses (APU+C) 

– All-uses 



MPG  

du-Paths for Miles 
■ All-Defs 

– Each definition of each variable for at least one use of the definition 
• A B D (or ABDE, or ABDF) 

■ All-C-uses 
– At least one path of each variable to each c-use of the definition 

• A B D E             A B D F             A B D   

■ All-P-uses 
– At last one path of each variable to each p-use of the definition 

• A B D 

■ All-C-uses/Some-P-uses 
– At least one path of each variable definition to each c-use of the variable.  

If any variable definitions are not covered, use p-use 
• A B D E             A B D F  

■ All-P-uses/Some-C-uses 
– At least one path of each variable definition to each p-use of the variable.  

If any variable definitions are not covered by p-use, then use c-use 
• A B D 

■ All-uses 
– At least one path of each variable definition to each p-use and each c-use 

of the definition 
• A B D             A B D E            A B D F 



MPG  

du-Paths for Gallons 
■ All-Defs 

– Each definition of each variable for at least one use of the definition 
• A B (or ABD, or ABC, or ABDE, or ABDF) 

■ All-C-uses 
– At least one path of each variable to each c-use of the definition 

• A B C         A B D E            A B D F               A B D 

■ All-P-uses 
– At least one path of each variable definition to each p-use of the definition 

• A B  A B D 
■ All-C-uses/Some-P-uses 

– At least one path of each variable definition to each c-use of the variable.  If 
any variable definitions are not covered by c-use, then use p-use 
• A B C        A B D E             A B D F                A B D 

■ All-P-uses/Some-C-uses 
– At least one path of each variable definition to each p-use of the variable.  If 

any variable definitions are not covered use c-use 
• A B  A B D 

■ All-uses 
– At least one path of each variable definition to each p-use and each c-use of 

the definition 
• A B           A B C            A B D         A B D E            A B D F 

 



MPG  

du-Paths for Price 
■ All-Defs 

– Each definition of each variable for at least one use of the definition 
• A B D F 

■ All-C-uses 
– At least one path of each variable to each c-use of the definition 

• A B D F 

■ All-P-uses 
– At least one path of each variable definition to each p-use of the 

definition 
• None 

■ All-C-uses/Some-P-uses 
– At least one path of each variable definition to each c-use of the 

variable.  If any variable definitions are not covered use p-use 
• A B D F 

■ All-P-uses/Some-C-uses 
– At least one path of each variable definition to each p-use of the 

variable.  If any variable definitions are not covered use c-use 
• A B D F 

■ All-uses 
– At least one path of each variable definition to each p-use and each c-

use of the definition 
• A B D F 



Rapps-Weyuker hierarchy of 

data flow coverage metrics 
All-Paths 

All-DU-Paths 

All-Uses 

All-C-uses 

Some-P-uses 

All-Defs All-P-uses 

All-Edges 

All-Nodes 

All-P-uses 

Some-C-uses 



Data flow guidelines 

■ When is dataflow analysis good to use? 

– Data flow testing is good for computationally/control 

intensive programs 

• If P-use of variables are computed, then P-use data flow 

testing is good 

– Define/use testing provides a rigorous, systematic 

way to examine points at which faults may occur. 

■ Aliasing of variables causes serious problems! 

■ Working things out by hand for anything but small 

methods is hopeless 

■ Compiler-based tools help in determining 

coverage values 



Potential Anomalies  

– static analysis questions 

Anomalies Explanation 

~ d first define ??? 

du define-use ??? 

dk define-kill ??? 

~ u first use ??? 

ud use-define ??? 

uk use-kill ??? 

~ k first kill ??? 

ku kill-use ??? 

Data flow node combinations for a variable 

Allowed?  –  Potential Bug? – Serious defect? 



Potential Anomalies  

– static analysis questions (continued) 

Data flow node combinations for a variable 

Allowed?  –  Potential Bug? – Serious defect? 

Anomalies Explanation 

kd kill-define ??? 

dd define-define ??? 

uu use-use ??? 

kk kill-kill ??? 

d ~ define last ??? 

u ~ use last ??? 

k ~ kill last ??? 



Potential Anomalies  

– static analysis 

Anomalies Explanation 

~ d first define Allowed – normal case 

du define-use Allowed – normal case 

dk define-kill Potential bug 

~ u first use Potential bug 

ud use-define Allowed – redefine 

uk use-kill Allowed – normal case 

~ k first kill Serious defect 

ku kill-use Serious defect 



Potential Anomalies  

– static analysis (continued) 

Anomalies Explanation 

kd kill-define Allowed - redefined 

dd define-define Potential bug 

uu use-use Allowed - normal case 

kk kill-kill Serious defect 

d ~ define last Potential bug 

u ~ use last Allowed- normal case 

k ~ kill last Allowed - normal case 



A Brief Introduction on  

Static Analysis techniques  

Information adapted from slides by Prof. Alex Orso and 

http://examples.javacodegeeks.com/core-java/findbugs-eclipse-example/ 

 

http://examples.javacodegeeks.com/core-java/findbugs-eclipse-example/
http://examples.javacodegeeks.com/core-java/findbugs-eclipse-example/
http://examples.javacodegeeks.com/core-java/findbugs-eclipse-example/
http://examples.javacodegeeks.com/core-java/findbugs-eclipse-example/
http://examples.javacodegeeks.com/core-java/findbugs-eclipse-example/
http://examples.javacodegeeks.com/core-java/findbugs-eclipse-example/
http://examples.javacodegeeks.com/core-java/findbugs-eclipse-example/
http://examples.javacodegeeks.com/core-java/findbugs-eclipse-example/


Static and dynamic verification 
■ Dynamic verification: 

– Concerned with exercising and observing software behaviour 

– The system is executed with test data and its operational behaviour is 

observed 

– Typically, testing 

■ Static verification: 

– Concerned with analysis of a static system representation 

– Various degrees of sophistication 

– Examples: 

• Inspections/reviews/walkthroughs 

• Static program analysis 

■ Different trade-offs between the static and dynamic verification 

– precision vs. recall 

– precision vs. cost 

– … 



Automated Static Analysis 

■ Static analyses look at the program code 
and try to discover potentially erroneous 
conditions 

■ Can be very effective 

■ Typically complementary to testing 

■ Static verification checks that every 
operation of a program will never cause an 
error (e.g., division by zero, buffer overrun, 
deadlock, etc.) 



Static verification example 

1  int a[1000]; 

2  for (i=0; i<1000; i++) { 

3    a[i] = ...; /// 0 <= i <= 999 

4  } 

5  a[i] = ...; // i = 1000; 

Safe operation 

buffer overrun 



Types of static analyses 

■ Control flow analysis 
– Finds unreachable code, compute complexity, etc. 

■ Data-flow analysis 
– Detects uninitialized variables, variables declared but 

never used, etc. 

■ Type analysis 
– Checks the program is type safe 

■ Interface analysis 
– Checks the consistency of routine and procedure 

declarations and their use 

■ Many of the above analysis can be performed by 
compliers nowadays 



Data-flow Analysis 

■ Based on the identification of defs, uses, and data-flow 
anomalies 

■ Possible to define general rules 
– Variables should be defined before used 

– A variable should be used before redefined 

– A variable should be used after being defined 

■ Note: the violation of a rule does not necessarily indicate a 
fault  

■ Possible to extend flow analysis to other resources (e.g., file) 
– Opening (o), closing (c), reading (r), writing (w) 

• r must be preceded by o 

• w must be preceded by o 

• c must be preceded by o 

• … 

– In general, this type of flow analysis can be extended to all cases 
in which a program execution can be looked at as a sequence of 
actions that must occur according to a protocol 



Use of static analysis  

■ Main advantage: exhaustive 

■ Main drawback: false positive 

■ Static analysis tools 

– FindBugs (http://findbugs.sourceforge.net/) 

– PMD (https://pmd.github.io/) 

– Coverity (http://www.coverity.com/) 

 

http://findbugs.sourceforge.net/
http://findbugs.sourceforge.net/
https://pmd.github.io/
https://pmd.github.io/
http://www.coverity.com/
http://www.coverity.com/

