EECS 4313

Software Engineering Testing

Topic 07:
Path Testing and Test Coverage
Zhen Ming (Jack) Jiang

Relevant Readings

m [Jorgensen] chapter 8
m [Ammann & Offutt] chapter 7

Structural Testing
(White-box Testing)

m Also known as glass/white/open box testing

m A software testing technique whereby explicit
knowledge of the internal workings of the item
being tested are used to select the test data

m Black-box testing uses program specification

m White-box testing is based on specific
knowledge of the source code to define the test
cases and to examine outputs.

White-box Testing

m White-box testing methods are very
amenable to:
— Rigorous definitions
« Control flow, data flow, coverage criteria
— Mathematical analysis
« Graphs, path analysis

— Precise measurement
* Metrics, coverage analysis

Program Graph - Definition

m Glven a program written in an imperative
programming language, Its program
graph is a directed graph in which nodes
are statement fragments, and edges
represent flow of control

m A complete statement is also considered a
statement fragment

=1 O U LD b e

o ~1 O = LD e

Program graphs for four structured
programming constructs

[f-Then—Else

If <condition>
Then
<then statements>
Else
<else statements>
End If

<next statement>

Case/Switch

Casenof 3
n=1:

<case 1 statements>
n=2: o
<case 2 statements> @
n=>3: e

<case 3 statements>
End Case

Pretest loop

1 While «<condition>

2 <repeated body>
3 End While

4 <next statement>

Posttest loop

1 Do

2 <repeated body>
3 Until <condition>

4 <next statement>

D Q) O @O«

Control Flow Graphs (CFGS)

A CFG models all executions of a method by
describing control structures

Nodes:

— Statements or sequences of statements (basic blocks)

Edges:

— Transfers of control

Basic Block:

— A sequence of statements such that if the first statement is
executed, all statements will be (no branches)

CFGs are sometimes annotated with extra information

— branch predicates
— defs
— uses

Rules for translating statements into graphs ...

Def and Use

m Definition (def):
— A location where a value for a variable Is stored into
memory

m Use:
— A location where a variable’s value is accessed

Must have an entry point and (at least one) exit node

Z = X*2 Defs: def (1) ={ X }

X = 47 def 5)={ Z }
def (6) ={ Z }

Uses:use (5) ={ X }

Z = X-8 use (6) ={ X }

The values given in defs should reach at least one, some, or
all possible uses

CFG : The If Statement

if (x<vy)

{
y=0;
X=X+1;

}

else

{
}

X=Y;

if (x<vy)

y =0;
X=X+1;

CFG : The if-Return Statement

if (x <)
{

}
print (X);
return;

return;

No edge from node 2 to 3.
The return nodes must be distinct.

return

|

A4

X>=y

print (X)
return

Loops
m Loops require “extra” nodes to be added

m Nodes that do not represent statements or
basic blocks

CFG : while and for Loops

X =0;
while (X <)
{

y=1f(xy);

X=X+1;

}

X =
dummy node

X>=y implicitly initializes
loop

y =f(x,y)
X=x+1

for (X =0; X <y, x++)
{ y=
y=f(xy)
}

implicitly increments
loop

CFG: do Loop, break and continue

X =0;
do
{
y=1(Y);
X=X+1;
} while (x <vy);
printin (y)

X =0;
while (x <)
{
y=f(Yy)
if (y ==0)
{
break;
}else if (y <0)
{
y:WZ
continue;
}
X=X+1;
}
print (y);

)4
print (y)‘

|

@ -

y = y*2
continue

CFG: The case (switch) Structure

read (C) ;
switch (¢)
{ |
case ‘N’:
z =25;
case Y’:
X = 50;
break;
default: 7 =25 X =0:

X =0;
break;

read (c);

default

}
print (X);

Cases without breaks fall
through to the next case

CFG : Exceptions (try-catch)

try
{

s = br.readLine();
if (s.length() > 96)
throw new Exception
(“too long”);
if (s.length() == 0)
throw new Exception
(“too short”);
} (catch IOException e) {
e.printStackTrace();
} (catch Exception e) {
e.getMessage();

}

return (s);

s = br.readLine()

|OExcepti

e.printStack Yrace()

.getMessage()

return (s)

Example Control Flow — Stats

public static void computeStats (int [] numbers)

{

int length = numbers.length;
double med, var, sd, mean, sum, varsum:

sum = 0;
for (inti = 0; i < length; i++)

{
}

med = numbers [length/ 2];
mean = sum / (double) length;

sum += numbers[i];

varsum = 0;
for (inti = 0; i < length; i++)
{

varsum = varsum + ((numbers [1] - mean) * (numbers [|] - mean));

}

var = varsum / (length - 1.0);
sd = Math.sqgrt (var);

System.out.printin ("length: " + length);
System.out.printin ("mean: " + mean);
System.out.println ("median: "+ med);
System.out.printin ("variance: " + var);

System.out.println ("standard deviation: " + sd);

Control Flow Graph for Stats

L

sum = 0;

int length = numbers.le
double med, var, sd, mean,

L
C

T

med =T rs [leng
mean = sum/ (
varsum :ﬁ/

for(inti = O; i < length; i++)

sum +2aumbers[i];

ble) length;

public static void computeStats (int [] numbers)

v

—

N

/ i
f i+
varsum = varsum + ((numbers [|]- mean) * (numbers

h|

J
—7al — varsum /

sd = Math.sqgrt (var);

System.out.printin ("length:
System.out.printin ("mean:
System.out.println ("median:
System.out.printin ("variance:
System.out.println ("stan

7‘

0);

" + length);
—+ mean);

| < length

" + var);
deviation: " + sd);

I++

| < lend

; Node 1 & 2 CRn certainly
be congbined

o

| >= length

Creating test cases using code
coverage metrics

m In order to increase the coverage of a test
suite, one needs to generate test cases
that exercise certain statements or follow a
specific path
— Define test coverage goals in terms of test

requirements

— This results In test specifications and test
cases

m This Is not always easy to do ...

Code Coverage

Code coverage models

m Statement Coverage

m Segment Coverage

m Branch Coverage

m Condition Coverage

m Branch & Condition Coverage

m Modified Condition/Decision Coverage

Statement coverage

m Achieved when all statements in a method have
been executed at least once

m Take home exercises

— How many test cases do we need to achieve
statement coverage in our example?

Statement Coverage Measure

public void printSum(int a, int b) {
int result = a + b;
if (result > 0) {
System.out.println ("red”, result);
else 1if (result < 0)
System.out.println ("blue”, result);

oy U1 W DN

of executed statements
total # of statements

Statement Coverage =

TC1 TC2
* a=3 « a=-5
* b=9 c b=-8

Coverage =5/7 = 71% Coverage = 100%

Segment coverage

m Segment coverage counts segments rather
than statements

m May produce drastically different numbers
— Assume two segments P and Q
— P has one statement, Q has nine

— Exercising only one of the segments will give 10% or
90% statement coverage

— Segment coverage will be 50% in both cases

Statement coverage In practice

m Statement coverage IS most used In
iIndustry

m Typical coverage target is 80-90%
—Why don’'t we aim at 100%?

Statement coverage problems

m Predicate may be tested for only one value
(misses many bugs)

m Loop bodies may only be iterated once

m Statement coverage can be achieved

without branch coverage. Important cases
may be missed

else 1if (result < 0)
System.out.println ("blue”, result);
[else do nothing]

} Never in here for the above two test cases!

1 public void printSum(int a, 1nt b) { TC1 TC2

2 int result = a + b; e« 3=3|l+ a=-5
3 1f (result > 0)

4 System.out.println ("red”, result);|® b=9|/« b=-8
5

6

~J

Branch coverage

m Achieved when every branch from a node
IS executed at least once

m At least one true and one false evaluation
for each predicate

m Can be achieved with D+1 paths In a
control flow graph with D 2-way branching
nodes and no loops
— Even less if there are loops

Branch Coverage Measure

public void printSum(int a, int b) {
int result = a + b;
1if (result > 0)
System.out.println ("red”, result);
else 1f (result < 0) {
System.out.println ("blue”, result);
[else do nothing]

}

of executed branches
total # of branches

Branch Coverage =

1C1 T1C2 1C3

e a=3 e a=-5 e a=-5
 b=9 b=-8 b=5
Coverage = 1/4 = 25% Coverage = 3/4 = 75% Coverage = 100%

Branch coverage problems
m Short-circuit evaluation means that many
predicates might not be evaluated

m A compound predicate Is treated as a
single statement. If n clauses, 2"
combinations, but only 2 are testeo

m Only a subset of all entry-exit paths Is

tested
public void printResults (int a, int b) {
if ((a ==0) [| (b >20)) fm — _
. - . TC1: (a=5, Db =6)
elseSystem.out.prlntln(red”, b/a); TC2: (a=5. b = -5)
System.out.println ("blue”, b + 2); Branch Coverage = 100%

System.out.printlin ("end”) ;
}
Can we thoroughly test all the conditions?

Condition coverage

m Condition coverage reports the true or
false outcome of each condition.

m Condition coverage measures the
conditions independently of each other.

Condition Coverage Measure

public void printResults (int a, 1int b) {
it ((a == 0) [|I (b > 0))
System.out.println ("red”, b/a;
else
System.out.println ("blue”, v + 2);
System.out.printlin ("end”) ;

}

of conditions that are both T and F

Condition Coverage =
g total # of conditions

E (a = 01 b= _5)
TC2:(a=5,b=5)

Branch coverage = 50%
Condition coverage = 100%

Branch & Condition Coverage

m Sometimes branch and condition coverage
IS also called as "Decision Coverage”

— It Is computed by considering both branch and
iIndividual condition coverage measures

Decision Coverage Measure
- How to achieve 100% In this example?

public void printResults (int a, int b)
if ((a == 20) || (b > 0))
System.out.println ("red”, v/x);
else
System.out.println ("blue”, v + 2);
System.out.printlin ("end”);

}

TC1:(a=0, b =-5)
TC2: (a=5,b=5)
TC3:(a=3,b=-2)

Modified Condition/Decision Coverage
(MC/DC)

m Key Idea: test important combinations of
conditions and limiting testing costs

— Extend branch and decision coverage with the
requirement that each condition should affect the
decision outcome independently

— In other words, each condition should be

evaluated one time to "true" and one time to
"false", and this with affecting the decision's

outcome.

m Often required for the mission-critical
systems

)
-

e MTFFFFFFF

SR

& o

AHu o | © FlWL|{—|Ww|—|Ww|l~|w

X o

LLI o)

AIV Mw o) || W|WwW|—|F|Ww]|Lw

S

MMm © ||| WL|Ww|Ww|Lw

Test
Case
1
2
3
4
5
6
4
8

a&&bé&&c

MC/DC (continued)

C

Outcome

LIl

o 9

I

Q

Test Criteria Subsumption

Modified condition and
decision coverage

Branch and condition
(decision) coverage

Branch
coverage

Statement Condition coverage

coverage

Dealing with Loops

m Loops are highly fault-prone, so they need
to be tested carefully

m Simple view: Every loop Involves a
decision to traverse the loop or not

m A bit better: Boundary value analysis on
the index variable

m Nested loops have to be tested separately
starting with the innermost

Test Case Creation

Creating test cases

m In order to increase the coverage of a test
suite, one needs to generate test cases
that exercise certain statements or follow a
specific path

m This is not always easy to do ...

CFG question

m What is the control flow graph
for the following?

T F
if(a<b){c=a+b;d=a*b} V % 1

else{c=a*b;d=a+Db} |

else{x=a*c;,y=b*d}

fe<d{x=a+tciy=b+d} 1o
1

Creating a test case

m The key question for creating a test for a path is:

— How to make the path execute, if possible.
« Generate input data that satisfies all the conditions on the path

m The key items you need to generate a test case
for a path:

— Input vector

— Predicate

— Path predicate

— Predicate interpretation

— Path predicate expression

— Create test input from path predicate expression

Input Vector

m Input vector Is:

— A collection of all data entities read by the routine
whose values must be fixed prior to entering the
routine.

m The members of an input vector are:
— Input arguments to the routine

— Global variables and constants
— Files

— Network connections

— Timers

Predicate

m A predicate Is

— A logical function evaluated at a decision point.

* In the following example, each of a < b and c < d
are predicates

f @<b){c=a+b;d=a*b} | 2
else{c=a*b;d=a+b} |

f(c<d){x=a+c:y=b+d} Tl_F

else{x=a*c;y=b*d}

Path Predicate Expression

m A path predicate expression is
— An interpreted path predicate

m A path predicate interpretation is
— A path predicate may contain local variables.

— Local variables cannot be selected independently of the
Input variables

— Local variables are eliminated with symbolic execution

m A symbolic execution is

— Symbolically substituting operations along a path in order
to express the predicate solely in terms of the input vector
and a constant vector.

— A predicate may have different interpretations depending
on how control reaches the predicate.

Attributes of a Path Predicate
Interpretation

m The attributes of a path predicate
Interpretation are:
— No local variables

— A set of constraints In terms of the Input
vector, and, maybe, constants

— Path forcing inputs are generated by solving
the constraints

— If a path predicate expression has no solution,
the path is infeasible

Path Predicate
Generating Input Values

f(a<b){c=a+b;d=a*b}
else{c=a*b;d=a+Db}
f(c<d){x=a+c;,y=b+d}
else{x=a*c;y=b*d}

m Path predicate a<b=true Ac<d="false
m Substitute forcandd c=a+b d=a*b

a<b=true A a+b<a*b=false

a<h ANa+bz2a*b

Path Predicate Generating Input
Values (Continued)

a<bara+bz2a*b
m Solve foraandb a=0Ab=1
— Solutions are not unique

m A solution exists
— We have a feasible path

m No solution to the constraints
— Have an infeasible path

Organizing path predicates

m We can organize the set of path
predicates using a decision table

— How would a decision table be used?

Al1B3 AlB4 A2B3 A2B4
T T F F
T = T -

A value 2 0 1 5

B value 5 1 0 2

Paths A1B3 and A2B4 give statement coverage

or Paths A1B4 and A2B3 give statement coverage

Selecting paths

m A program unit may contain a large number of paths.
— Path selection becomes a problem
— Some selected paths may be infeasible

m What strategy would you use to select paths?

— Select as many short paths as possible
* Tradeoffs?

— Choose longer paths
* Tradeoffs?

m What about infeasible paths?
— What would you do about them?

— Make an effort to write program text with fewer or no
Infeasible paths.

