
EECS 4313
Software Engineering Testing

Topic 07:

Path Testing and Test Coverage

Zhen Ming (Jack) Jiang

Relevant Readings

■ [Jorgensen] chapter 8

■ [Ammann & Offutt] chapter 7

Structural Testing

(White-box Testing)

■ Also known as glass/white/open box testing

■ A software testing technique whereby explicit
knowledge of the internal workings of the item
being tested are used to select the test data

■ Black-box testing uses program specification

■ White-box testing is based on specific
knowledge of the source code to define the test
cases and to examine outputs.

White-box Testing

■ White-box testing methods are very
amenable to:

– Rigorous definitions
• Control flow, data flow, coverage criteria

– Mathematical analysis
• Graphs, path analysis

– Precise measurement
• Metrics, coverage analysis

Program Graph - Definition

■ Given a program written in an imperative

programming language, its program

graph is a directed graph in which nodes

are statement fragments, and edges

represent flow of control

■ A complete statement is also considered a

statement fragment

Program graphs for four structured

programming constructs

Control Flow Graphs (CFGs)

■ A CFG models all executions of a method by
describing control structures

■ Nodes:
– Statements or sequences of statements (basic blocks)

■ Edges:
– Transfers of control

■ Basic Block:
– A sequence of statements such that if the first statement is

executed, all statements will be (no branches)

■ CFGs are sometimes annotated with extra information
– branch predicates

– defs

– uses

■ Rules for translating statements into graphs …

Def and Use
■ Definition (def):

– A location where a value for a variable is stored into
memory

■ Use:
– A location where a variable’s value is accessed

1

3

2

7 4

6

5
X = 42

Z = X-8

Z = X*2 Defs: def (1) = { }

 def (5) = { }

 def (6) = { }

Uses: use (5) = { }

 use (6) = { }

The values given in defs should reach at least one, some, or

all possible uses

X

Z

Z

 X

 X

Must have an entry point and (at least one) exit node

CFG : The if Statement
if (x < y)

{

 y = 0;

 x = x + 1;

}

else

{

 x = y;

} 4

1

2 3

x >= y x < y

x = y
y = 0

x = x + 1

if (x < y)

{

 y = 0;

 x = x + 1;

}

3

1

2
x >= y

x < y

y = 0

x = x + 1

CFG : The if-Return Statement

if (x < y)

{

 return;

}

print (x);

return;

3

1

2
x >= y

x < y

return

print (x)

return

No edge from node 2 to 3.

The return nodes must be distinct.

Loops

■ Loops require “extra” nodes to be added

■ Nodes that do not represent statements or

basic blocks

CFG : while and for Loops

x = 0;

while (x < y)

{

 y = f (x, y);

 x = x + 1;

}

1 x = 0

4 3

y =f(x,y)

x = x + 1

x >= y x < y

for (x = 0; x < y; x++)

{

 y = f (x, y);

}

1

x = x + 1

2

3 5

x >= y x < y

y = f (x, y)

4

2

dummy node

x = 0
implicitly initializes

loop

implicitly increments

loop

CFG: do Loop, break and continue
x = 0;

do

{

 y = f (x, y);

 x = x + 1;

} while (x < y);

println (y)

1 x = 0

3

2

x >= y
x < y

y = f (x, y)

x = x+1

1 x = 0

8

3

x = x + 1

break

y < 0

2

4

5

6

7

y =f(x,y)

y == 0

y = y*2

continue

x = 0;

while (x < y)

{

 y = f (x, y);

 if (y == 0)

 {

 break;

 } else if (y < 0)

 {

 y = y*2;

 continue;

 }

 x = x + 1;

}

print (y);

print (y)

print (y)

y != 0

y > 0

CFG: The case (switch) Structure

read (c) ;

switch (c)

{

 case ‘N’:

 z = 25;

 case ‘Y’:

 x = 50;

 break;

 default:

 x = 0;

 break;

}

print (x);
5

1 read (c);

c == ‘N’

x = 0;

break;

2 4 3

c == ‘Y’ default

x = 50;

break;

z = 25;

print (x);

Cases without breaks fall

through to the next case

CFG : Exceptions (try-catch)

1
s = br.readLine()

8

try

{

 s = br.readLine();

 if (s.length() > 96)

 throw new Exception

 (“too long”);

 if (s.length() == 0)

 throw new Exception

 (“too short”);

} (catch IOException e) {

 e.printStackTrace();

} (catch Exception e) {

 e.getMessage();

}

return (s);

2 3

4 5

6

7

IOException

e.printStackTrace()
length > 96

length <= 96

return (s)

throw

length == 0
length != 0

throw

e.getMessage()

© Ammann & Offutt

Example Control Flow – Stats
public static void computeStats (int [] numbers)
{
 int length = numbers.length;
 double med, var, sd, mean, sum, varsum;

 sum = 0;
 for (int i = 0; i < length; i++)
 {
 sum += numbers [i];
 }
 med = numbers [length / 2];
 mean = sum / (double) length;

 varsum = 0;
 for (int i = 0; i < length; i++)
 {
 varsum = varsum + ((numbers [I] - mean) * (numbers [I] - mean));
 }
 var = varsum / (length - 1.0);
 sd = Math.sqrt (var);

 System.out.println ("length: " + length);
 System.out.println ("mean: " + mean);
 System.out.println ("median: " + med);
 System.out.println ("variance: " + var);
 System.out.println ("standard deviation: " + sd);
}

© Ammann & Offutt

Control Flow Graph for Stats
public static void computeStats (int [] numbers)
{
 int length = numbers.length;
 double med, var, sd, mean, sum, varsum;

 sum = 0;
 for (int i = 0; i < length; i++)
 {
 sum += numbers [i];
 }
 med = numbers [length / 2];
 mean = sum / (double) length;

 varsum = 0;
 for (int i = 0; i < length; i++)
 {
 varsum = varsum + ((numbers [I] - mean) * (numbers [I] - mean));
 }
 var = varsum / (length - 1.0);
 sd = Math.sqrt (var);

 System.out.println ("length: " + length);
 System.out.println ("mean: " + mean);
 System.out.println ("median: " + med);
 System.out.println ("variance: " + var);
 System.out.println ("standard deviation: " + sd);
}

i = 0

i >= length

i < length

i++

i >= length
i < length

i = 0

i++

1

2

3

5
4

6

8 7

Node 1 & 2 can certainly

be combined

Creating test cases using code

coverage metrics

■ In order to increase the coverage of a test

suite, one needs to generate test cases

that exercise certain statements or follow a

specific path

– Define test coverage goals in terms of test

requirements

– This results in test specifications and test

cases

■ This is not always easy to do …

Code Coverage

Code coverage models

■ Statement Coverage

■ Segment Coverage

■ Branch Coverage

■ Condition Coverage

■ Branch & Condition Coverage

■ Modified Condition/Decision Coverage

Statement coverage

■ Achieved when all statements in a method have
been executed at least once

■ Take home exercises
– How many test cases do we need to achieve

statement coverage in our example?

Statement Coverage Measure

1 public void printSum(int a, int b) {

2 int result = a + b;

3 if (result > 0) {

4 System.out.println(red, result);

5 else if (result < 0)

6 System.out.println(blue, result);

7 }

𝑆𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 =
𝑜𝑓 𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑑 𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡𝑠

𝑡𝑜𝑡𝑎𝑙 # 𝑜𝑓 𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡𝑠

TC1

• a = 3

• b = 9

Coverage = 5/7 = 71%

TC2

• a = -5

• b = -8

Coverage = 100%

Segment coverage

■ Segment coverage counts segments rather
than statements

■ May produce drastically different numbers
– Assume two segments P and Q

– P has one statement, Q has nine

– Exercising only one of the segments will give 10% or
90% statement coverage

– Segment coverage will be 50% in both cases

Statement coverage in practice

■ Statement coverage is most used in

industry

■ Typical coverage target is 80-90%

– Why don’t we aim at 100%?

Statement coverage problems
■ Predicate may be tested for only one value

(misses many bugs)

■ Loop bodies may only be iterated once

■ Statement coverage can be achieved

without branch coverage. Important cases

may be missed
1 public void printSum(int a, int b) {

2 int result = a + b;

3 if (result > 0)

4 System.out.println(red, result);

5 else if (result < 0)

6 System.out.println(blue, result);

 [else do nothing]

7 }

Never in here for the above two test cases!

TC1

• a = 3

• b = 9

TC2

• a = -5

• b = -8

Branch coverage

■ Achieved when every branch from a node
is executed at least once

■ At least one true and one false evaluation
for each predicate

■ Can be achieved with D+1 paths in a
control flow graph with D 2-way branching
nodes and no loops
– Even less if there are loops

Branch Coverage Measure

public void printSum(int a, int b) {

 int result = a + b;

 if (result > 0)

 System.out.println(red, result);

 else if (result < 0) {

 System.out.println(blue, result);

 [else do nothing]

}

𝐵𝑟𝑎𝑛𝑐ℎ 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 =
𝑜𝑓 𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑑 𝑏𝑟𝑎𝑛𝑐ℎ𝑒𝑠

𝑡𝑜𝑡𝑎𝑙 # 𝑜𝑓 𝑏𝑟𝑎𝑛𝑐ℎ𝑒𝑠

TC1

• a = 3

• b = 9

Coverage = 1/4 = 25%

TC2

• a = -5

• b = -8

Coverage = 3/4 = 75%

TC3

• a = -5

• b = 5

Coverage = 100%

Branch coverage problems

■ Short-circuit evaluation means that many

predicates might not be evaluated

■ A compound predicate is treated as a

single statement. If n clauses, 2n

combinations, but only 2 are tested

■ Only a subset of all entry-exit paths is

tested
public void printResults(int a, int b) {

 if ((a == 0) || (b > 0))

 System.out.println(red, b/a);

 else

 System.out.println(blue, b + 2);

 System.out.printlin(end);

}

TC1: (a = 5, b = 6)

TC2: (a = 5, b = -5)

Branch Coverage = 100%

Can we thoroughly test all the conditions?

Condition coverage

■ Condition coverage reports the true or

false outcome of each condition.

■ Condition coverage measures the

conditions independently of each other.

Condition Coverage Measure

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 =
𝑜𝑓 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 𝑡ℎ𝑎𝑡 𝑎𝑟𝑒 𝑏𝑜𝑡ℎ 𝑇 𝑎𝑛𝑑 𝐹

𝑡𝑜𝑡𝑎𝑙 # 𝑜𝑓 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠

TC1: (a = 0, b = -5)

TC2: (a = 5, b = 5)

Branch coverage = 50%

Condition coverage = 100%

public void printResults(int a, int b) {

 if ((a == 0) || (b > 0))

 System.out.println(red, b/a;

 else

 System.out.println(blue, y + 2);

 System.out.printlin(end);

}

Branch & Condition Coverage

■ Sometimes branch and condition coverage

is also called as “Decision Coverage”

– It is computed by considering both branch and

individual condition coverage measures

Decision Coverage Measure
- How to achieve 100% in this example?

TC1: (a = 0, b = -5)

TC2: (a = 5, b = 5)

TC3: (a = 3, b = -2)

public void printResults(int a, int b)

 if ((a == 0) || (b > 0))

 System.out.println(red, y/x);

 else

 System.out.println(blue, y + 2);

 System.out.printlin(end);

}

Modified Condition/Decision Coverage

(MC/DC)

■ Key idea: test important combinations of
conditions and limiting testing costs
– Extend branch and decision coverage with the

requirement that each condition should affect the
decision outcome independently

– In other words, each condition should be
evaluated one time to "true" and one time to
"false", and this with affecting the decision's
outcome.

■ Often required for the mission-critical
systems

MC/DC Example

a && b && c

 Test

Case

a b c Outcome

1 T T T T

2 T T F F

3 T F T F

4 T F F F

5 F T T F

6 F T F F

7 F F T F

8 F F F F

a

a

b

b c

c

MC/DC (continued)

a && b && c

 Test

Case

a b c Outcome

1 T T T T

2 T T F F

3 T F T F

4 T F F F

5 F T T F

6 F T F F

7 F F T F

8 F F F F

a

a

b

b c

c

Test Criteria Subsumption

Branch and condition

(decision) coverage

Branch

coverage

Statement

coverage

Condition coverage

Modified condition and

decision coverage

Dealing with Loops

■ Loops are highly fault-prone, so they need
to be tested carefully

■ Simple view: Every loop involves a
decision to traverse the loop or not

■ A bit better: Boundary value analysis on
the index variable

■ Nested loops have to be tested separately
starting with the innermost

Test Case Creation

Creating test cases

■ In order to increase the coverage of a test

suite, one needs to generate test cases

that exercise certain statements or follow a

specific path

■ This is not always easy to do …

CFG question

■ What is the control flow graph

 for the following?

if (a < b) { c = a + b ; d = a * b }

else { c = a * b ; d = a + b}

if (c < d) { x = a + c ; y = b + d }

else { x = a * c ; y = b * d }

1

3 4

2

T

T

F

F

A

B

Creating a test case

■ The key question for creating a test for a path is:

– How to make the path execute, if possible.
• Generate input data that satisfies all the conditions on the path

■ The key items you need to generate a test case
for a path:

– Input vector

– Predicate

– Path predicate

– Predicate interpretation

– Path predicate expression

– Create test input from path predicate expression

Input Vector

■ Input vector is:
– A collection of all data entities read by the routine

whose values must be fixed prior to entering the
routine.

■ The members of an input vector are:
– Input arguments to the routine

– Global variables and constants

– Files

– Network connections

– Timers

Predicate
■ A predicate is

– A logical function evaluated at a decision point.

• In the following example, each of a < b and c < d

are predicates

1

3 4

2

T

T

F

F

A

B

if (a < b) { c = a + b ; d = a * b }

else { c = a * b ; d = a + b }

if (c < d) { x = a + c ; y = b + d }

else { x = a * c ; y = b * d }

Path Predicate Expression

■ A path predicate expression is
– An interpreted path predicate

■ A path predicate interpretation is
– A path predicate may contain local variables.

– Local variables cannot be selected independently of the
input variables

– Local variables are eliminated with symbolic execution

■ A symbolic execution is
– Symbolically substituting operations along a path in order

to express the predicate solely in terms of the input vector
and a constant vector.

– A predicate may have different interpretations depending
on how control reaches the predicate.

Attributes of a Path Predicate

Interpretation

■ The attributes of a path predicate

interpretation are:

– No local variables

– A set of constraints in terms of the input

vector, and, maybe, constants

– Path forcing inputs are generated by solving

the constraints

– If a path predicate expression has no solution,

the path is infeasible

Path Predicate

Generating Input Values

■ Path predicate a < b = true  c < d = false

■ Substitute for c and d c = a + b d = a * b

 a < b = true  a + b < a * b = false

 a < b  a + b ≥ a * b

if (a < b) { c = a + b ; d = a * b }

else { c = a * b ; d = a + b }

if (c < d) { x = a + c ; y = b + d }

else { x = a * c ; y = b * d }

Path Predicate Generating Input

Values (Continued)
 a < b  a + b ≥ a * b

■ Solve for a and b a = 0  b = 1

– Solutions are not unique

■ A solution exists

– We have a feasible path

■ No solution to the constraints

– Have an infeasible path

Organizing path predicates

■ We can organize the set of path

predicates using a decision table

– How would a decision table be used?

 A1B3 A1B4 A2B3 A2B4

A < B T T F F

C < D T F T F

A value 2 0 1 5

B value 5 1 0 2

 Paths A1B3 and A2B4 give statement coverage

or Paths A1B4 and A2B3 give statement coverage

Selecting paths

■ A program unit may contain a large number of paths.
– Path selection becomes a problem

– Some selected paths may be infeasible

■ What strategy would you use to select paths?
– Select as many short paths as possible

• Tradeoffs?

– Choose longer paths
• Tradeoffs?

■ What about infeasible paths?
– What would you do about them?

– Make an effort to write program text with fewer or no
infeasible paths.

