EECS 4313 Software Engineering Testing

Topic 06: Decision Table-based Testing Zhen Ming (Jack) Jiang

Relevant Readings

[Jorgensen] chapter 7

Decision Tables - Wikipedia

- A precise yet compact way to model complicated logic
- Associate conditions with actions to perform
- Can associate many independent conditions with several actions in an elegant way

Decision Table Terminology

Stub	Rule 1	Rule 2	Rules 3,4	Rule 5	Rule 6	Rules 7,8
c1	Т	Т	Т	F	F	F
c2	Т	Т	F	Т	Т	F
c3	Т	F	-	Т	F	-
a1	X	X		X		
a2	X				X	
a3		X		X		
a4			Х			Х

Condition stubs	condition entries
Action stubs	action entries

Decision Table Terminology

- Condition entries restricted to binary values
 - We have limited entry table
- Condition entries have more than two values
 - We have extended entry table

Printer Troubleshooting DT

	Printer does not print	Y	Y	Y	Y	Ν	Ν	Ν	Ν
Conditions	A red light is flashing	Y	Y	N	N	Y	Y	N	N
	Printer is unrecognized	Y	Ν	Y	Ν	Y	Ν	Y	N
	Check the power cable			Х					
	Check the printer-computer cable	Х		Х					
Actions	Ensure printer software is installed	Х		Х		Х		Х	
	Check/replace ink	Х	Х			Х	Х		
	Check for paper jam		х		х				

Let's try this for the Triangle problem

Triangle Decision Table

						1			
C1: a, b, c form a triangle?	F	Т	Т	Т	Т	Т	Т	Т	Т
C2: a = b?	-	Т	Т	Т	Т	F	F	F	F
C3: a = c?	-	Т	Т	F	F	Т	Т	F	F
C4: b = c?	-	Т	F	Т	F	Т	F	Т	F
A1: Not a Triangle	Х								
A2: Scalene									X
A3: Isosceles					Х		Х	Х	
A4: Equilateral		X							
A5: Impossible			Х	X		Х			

- The choice of conditions can greatly expand the size of a decision table.
- Need to have a more detailed view of the three inequalities of the triangle property (c1).
 - If any of the three fails, <a,b,c> won't constitute sides of a triangle

Refined Triangle Decision Table

C1: a < b+c?	F	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т
C2: b < a+c?	-	F	Т	Т	Т	Т	Т	Т	Т	Т	Т
C3: c < a+b?	-	-	F	Т	Т	Т	Т	Т	Т	Т	Т
C4: a = b?	-	-	-	Т	Т	Т	Т	F	F	F	F
C5: a = c?	-	-	-	Т	Т	F	F	Т	Т	F	F
C6: b = c?	-	-	-	Т	F	Т	F	Т	F	Т	F
A1: Not a Triangle	Х	Х	Х								
A2: Scalene											Х
A3: Isosceles							Х		Х	Х	
A4: Equilateral				Х							
A5: Impossible					Х	X		Х			

How to use decision table in software testing?

- Condition entries in a decision table are interpreted by a computer program as
 - input
 - equivalence classes of inputs
- Action entries in a decision table are interpreted as
 - output
 - major functional processing portions
- The rules are then interpreted as test cases.

Triangle Test Cases

Case ID	а	b	С	Expected Output
DT1	4	1	2	Not a Triangle
DT2	1	4	2	Not a Triangle
DT3	1	2	4	Not a Triangle
DT4	5	5	5	Equilateral
DT5	?	?	?	Impossible
DT6	?	?	?	Impossible
DT7	2	2	3	Isosceles
DT8	?	?	?	Impossible
DT9	2	3	2	Isosceles
DT10	3	2	2	Isosceles
DT11	3	4	5	Scalene

Don't care entries and rule counts

- Limited entry tables with N conditions have 2^N rules
- Don't care entries reduce the number of explicit rules by implying the existence of non-explicitly stated rules
 - Each don't care entry in a rule doubles the count for the rule
 - For each rule determine the corresponding rule count
 - Total the rule counts

Refined Triangle Decision Table

C1: a < b+c?	F	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т
C2: b < a+c?	-	F	Т	Т	Т	Т	Т	Т	Т	Т	Т
C3: c < a+b?	-	-	F	Т	Т	Т	Т	Т	Т	Т	Т
C4: a = b?	-	-	-	Т	Т	Т	Т	F	F	F	F
C5: a = c?	-	-	-	Т	Т	F	F	Т	Т	F	F
C6: b = c?	-	-	-	Т	F	Т	F	Т	F	Т	F
Rule count	32	16	8	1	1	1	1	1	1	1	1

When we add them up, it's 64 (2^6) rules

Count the rules in a decision table

- Less rules than combination rule count
 - Indicates missing rules
- More rules than combination rule count
 - Could indicate redundant rules
 - Could indicate inconsistent table

A example of a redundant decision table

Conditions	1-4	5	6	7	8	9
C1	Т	F	F	F	F	Т
C2	-	Т	Т	F	F	F
C3	-	Т	F	Т	F	F
A1	Х	Х	Х	-	-	Х
A2	-	Х	Х	X	-	-
A3	Х	-	Х	X	Х	Х

Which rule(s) is redundant?

A example of an inconsistent decision table

Conditions	1-4	5	6	7	8	9
C1	Т	F	F	F	F	Т
C2	-	Т	Т	F	F	F
C3	-	Т	F	Т	F	F
A1	X	Х	Х	-	-	-
A2	-	Х	Х	Х	-	X
A3	X	-	Х	Х	X	-

Which rule(s) is inconsistent?

NextDate Decision Table

- The NextDate problem illustrates the problem of dependencies in the input domain
- Decision tables can highlight such dependencies
- Impossible dates can be clearly marked as a separate action
- Let's try it...

NextDate Equivalence Classes

M1= {month | month has 30 days} M2= {month | month has 31 days} M3= {month | month is February} $D1 = \{ day \mid 1 \le day \le 28 \}$ $D2 = \{ day \mid day = 29 \}$ $D3 = \{ day \mid day = 30 \}$ $D4 = \{ day \mid day = 31 \}$ $Y1 = \{year \mid year = 1900 \text{ or } 2100\}$ Y2= {year | year is a leap year} Y3= {year | year is a common year}

NextDate Decision Table – mutually exclusive conditions

C1: month in M1?	Т	-	-
C2: month in M2?	-	Т	-
C3: month in M3?	-	-	Т
A1: impossible			
A2: Next Date			

Because a month is an equivalence class, we cannot have T for more than one entry. The do not care entries are really "F".

NextDate DT (1st try - partial)

C1: month in M1?	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т
C2: month in M2?												
C3: month in M3?												
C4: day in D1?	Т	Т	Т									
C5: day in D2?				Т	Т	Т						
C6: day in D3?							Т	Т	Т			
C7: day in D4?										Т	Т	Т
C8: year in Y1?	Т			Т			Т			Т		
C9: year in Y2?		Т			Т			Т			Т	
C10: year in Y3?			Т			Т			Т			Т
A1: Impossible										Χ	Х	Χ
A2: Next Date	X	X	X	Х	X	X	X	Х	X			

NextDate DT (2nd try - part 1)

C1: month in	M1	M1	M1	M1	M2	M2	M2	M2
C2: day in	D1	D2	D3	D4	D1	D2	D3	D4
C3: year in	-	-	-	-	-	-	-	-
A1: Impossible				Х				
A2: Increment day	X	Х			Х	Х	Х	
A3: Reset day			X					X
A4: Increment month			Х					?
A5: Reset month								?
A6: Increment year								?

NextDate DT (2nd try - part 2)

C1: month in	M3							
C2: day in	D1	D1	D1	D2	D2	D2	D3	D3
C3: year in	Y1	Y2	Y3	Y1	Y2	Y3	-	-
A1: Impossible				Х		Х	Х	Х
A2: Increment day		Х						
A3: Reset day	Х		Х		Х			
A4: Increment month	Х		Х		Х			
A5: Reset month								
A6: Increment year								

New Equivalence Classes

M1= {month | month has 30 days} M2= {month | month has 31 days, but not Dec.} M3= {month | month is December} M4= {month | month is February} $D1 = \{ day \mid 1 \le day \le 27 \}$ $D2 = \{ day \mid day = 28 \}$ $D3 = \{ day \mid day = 29 \}$ $D4 = \{ day \mid day = 30 \}$ $D5 = \{ day \mid day = 31 \}$ Y1= {year | year is a leap year} Y2= {year | year is a common year}

NextDate DT (3rd try - part 1)

C1: month in	M1	M1	M1	M1	M1	M2	M2	M2	M2	M2
C2: day in	D1	D2	D3	D4	D5	D1	D2	D3	D4	D5
C3: year in	_	-	-	-	-	-	-	-	-	-
A1: Impossible					Х					
A2: Increment day	Х	Х	Х			Х	Х	Х	Х	
A3: Reset day				Х						Х
A4: Increment month				Х						Х
A5: Reset month										
A6: Increment year										

NextDate DT (3rd try - part 2)

C1: month in	M3	M3	M3	M3	M3	M4						
C2: day in	D1	D2	D3	D4	D5	D1	D2	D2	D3	D3	D4	D5
C3: year in	-	-	-	I	-	-	Y1	Y2	Y1	Y2	-	-
A1: Impossible										Х	Х	Х
A2: Increment day	X	Х	Х	Х		X	X					
A3: Reset day					Х			Х	Х			
A4: Increment month								Х	Х			
A5: Reset month					Х							
A6: Increment year					Х							

Decision Table Applicability

- The specification is given or can be converted to a decision table.
- The order in which the predicates are evaluated does not affect the interpretation of the rules or resulting action.
- The order of the rule evaluation has no effect on resulting action.
- Once a rule is satisfied and the action selected, no other rule need be examined.
- The order of executing actions in a satisfied rule is of no consequence.
- In reality, the restrictions do not eliminate many potential applications.
 - In most applications, the order in which the predicates are evaluated is immaterial.
 - Some specific ordering may be more efficient than some other but in general the ordering is not inherent in the program's logic.

Decision Tables - Issues

Before deriving test cases, ensure that

- The rules are complete
 - Every combination of predicate truth values is explicit in the decision table
- The rules are consistent
 - Every combination of predicate truth values results in only one action or set of actions

Guidelines and Observations

- Decision Table testing is most appropriate for programs where
 - There is a lot of decision making
 - There are important logical relationships among input variables
 - There are calculations involving subsets of input variables
 - There are cause and effect relationships between input and output
 - There is complex computation logic (high cyclomatic complexity)

Guidelines and Observations (continued)

- Decision tables do not scale up very well
 - May need to
 - Use extended entry decision tables
 - Algebraically simplify tables
- Decision tables can be iteratively refined
 - The first attempt may be far from satisfactory
- Look for redundant rules
 - More rules than combination count of conditions
 - Actions are the same
 - Too many test cases
- Look for inconsistent rules
 - More rules than combination count of conditions
 - Actions are different for the same conditions
- Look for missing rules
 - Incomplete table