EECS 4313
 Software Engineering Testing

Topic 06:
Decision Table-based Testing
Zhen Ming (Jack) Jiang

Relevant Readings

[Jorgensen] chapter 7

Decision Tables - Wikipedia

■ A precise yet compact way to model complicated logic

- Associate conditions with actions to perform
■ Can associate many independent conditions with several actions in an elegant way

Decision Table Terminology

Stub	Rule 1	Rule 2	Rules $\mathbf{3 , 4}$	Rule 5	Rule 6	Rules $\mathbf{7 , 8}$
c 1	T	T	T	F	F	F
c 2	T	T	F	T	T	F
c 3	T	F	-	T	F	-
a 1	X	X		X		
a 2	X				X	
a 3		X		X		
a 4			X			X

Condition stubs	condition entries
Action stubs	action entries

Decision Table Terminology

$■$ Condition entries restricted to binary values

- We have limited entry table
- Condition entries have more than two values
- We have extended entry table

Printer Troubleshooting DT

Conditions	Printer does not print	Y	Y	Y	Y	N	N	N	N
	A red light is flashing	Y	Y	N	N	Y	Y	N	N
	Printer is unrecognized	Y	N	Y	N	Y	N	Y	N
Actions	Check the power cable			X					
	Check the printer-computer cable	X		X					
	Ensure printer software is installed	X		X		X		X	
	Check/replace ink	X	X			X	X		
	Check for paper jam		X		X				

Let's try this for the Triangle problem

Triangle Decision Table

$\mathrm{C} 1: \mathrm{a}, \mathrm{b}, \mathrm{c}$ form a triangle?	F	T	T	T	T	T	T	T	T
$\mathrm{C} 2: \mathrm{a}=\mathrm{b}$?	-	T	T	T	T	F	F	F	F
$\mathrm{C} 3: \mathrm{a}=\mathrm{c}$?	-	T	T	F	F	T	T	F	F
$\mathrm{C} 4: \mathrm{b}=\mathrm{c}$?	-	T	F	T	F	T	F	T	F
$\mathrm{A} 1:$ Not a Triangle	X								
A2: Scalene									X
A3: Isosceles					X		X	X	
A4: Equilateral		X							
A5: Impossible			X	X		X			

- The choice of conditions can greatly expand the size of a decision table.
- Need to have a more detailed view of the three inequalities of the triangle property (c1).
- If any of the three fails, <a,b,c> won't constitute sides of a triangle

Refined Triangle Decision Table

C1: $a<b+c$?	F	T		T	T		T	T	T			T	T		T
C2: $\mathrm{b}<\mathrm{a}+\mathrm{c}$?	-	F		T	T		T	T	T			T	T		T
C3: $\mathrm{c}<\mathrm{a}+\mathrm{b}$?	-	-		F	T		T	T	T			T	T		T
C4: $\mathrm{a}=\mathrm{b}$?	-	-		-	T		T	T	T			F	F		F
C5: $\mathrm{a}=\mathrm{c}$?	-	-			T		T	F	F			T	F		F
C6: $\mathrm{b}=\mathrm{c}$?	-	-			T		F	T	F			F	T		F
A1: Not a Triangle	X	X		X											
A2: Scalene															x
A3: Isosceles									X			X	X		
A4: Equilateral					X										
A5: Impossible							X	X			X				

How to use decision table in software testing?

- Condition entries in a decision table are interpreted by a computer program as
- input
- equivalence classes of inputs
- Action entries in a decision table are interpreted as
- output
- major functional processing portions
- The rules are then interpreted as test cases.

Triangle Test Cases

Case ID	a	b	c	Expected Output
DT1	4	1	2	Not a Triangle
DT2	1	4	2	Not a Triangle
DT3	1	2	4	Not a Triangle
DT4	5	5	5	Equilateral
DT5	$?$	$?$	$?$	Impossible
DT6	$?$	$?$	$?$	Impossible
DT7	2	2	3	Isosceles
DT8	$?$	$?$	$?$	Impossible
DT9	2	3	2	Isosceles
DT10	3	2	2	Isosceles
DT11	3	4	5	Scalene

Don't care entries and rule counts

- Limited entry tables with N conditions have 2^{N} rules
- Don't care entries reduce the number of explicit rules by implying the existence of non-explicitly stated rules
- Each don't care entry in a rule doubles the count for the rule
- For each rule determine the corresponding rule count
- Total the rule counts

Refined Triangle Decision Table

$\mathrm{C} 1: \mathrm{a}<\mathrm{b}+\mathrm{c} ?$	F	T	T	T	T	T	T	T	T	T	T
$\mathrm{C} 2: \mathrm{b}<\mathrm{a}+\mathrm{c} ?$	-	F	T	T	T	T	T	T	T	T	T
$\mathrm{C} 3: \mathrm{c}<\mathrm{a}+\mathrm{b} ?$	-	-	F	T	T	T	T	T	T	T	T
$\mathrm{C} 4: \mathrm{a}=\mathrm{b} ?$	-	-	-	T	T	T	T	F	F	F	F
$\mathrm{C} 5: \mathrm{a}=\mathrm{c} ?$	-	-	-	T	T	F	F	T	T	F	F
$\mathrm{C} 6: \mathrm{b}=\mathrm{c} ?$	-	-	-	T	F	T	F	T	F	T	F
Rule count	32	16	8	1	1	1	1	1	1	1	1

When we add them up, it's $64\left(2^{6}\right)$ rules

Count the rules in a decision table

■ Less rules than combination rule count - Indicates missing rules

- More rules than combination rule count
- Could indicate redundant rules
- Could indicate inconsistent table

A example of a redundant decision table

Conditions	$\mathbf{1 - 4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$
C 1	T	F	F	F	F	T
C 2	-	T	T	F	F	F
C 3	-	T	F	T	F	F
A 1	X	X	X	-	-	X
A 2	-	X	X	X	-	-
A 3	X	-	X	X	X	X

Which rule(s) is redundant?

A example of an inconsistent decision table

Conditions	$\mathbf{1 - 4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$
C 1	T	F	F	F	F	T
C 2	-	T	T	F	F	F
C 3	-	T	F	T	F	F
A 1	X	X	X	-	-	-
A 2	-	X	X	X	-	X
A 3	X	-	X	X	X	-

Which rule(s) is inconsistent?

NextDate Decision Table

- The NextDate problem illustrates the problem of dependencies in the input domain
■ Decision tables can highlight such dependencies
- Impossible dates can be clearly marked as a separate action
- Let's try it...

NextDate Equivalence Classes

M1 $=$ \{month | month has 30 days $\}$
$\mathrm{M} 2=\{$ month | month has 31 days $\}$
M3 $=$ \{month | month is February $\}$
D1 $=\{$ day $\mid 1 \leq$ day $\leq 28\}$
D2 $=\{$ day \mid day $=29\}$
D3 $=\{$ day \mid day $=30\}$
D4= \{day | day=31\}
Y1 = \{year | year $=1900$ or 2100 $\}$
$\mathrm{Y} 2=\{$ year | year is a leap year\}
$\mathrm{Y} 3=\{$ year \mid year is a common year $\}$

NextDate Decision Table - mutually exclusive conditions

C1: month in M1?	T	-	-
C2: month in M2?	-	T	-
C3: month in M3?	-	-	T
A1: impossible			
A2: Next Date			

Because a month is an equivalence class, we cannot have T for more than one entry. The do not care entries are really " F ".

NextDate DT (1st try - partial)

NextDate DT (2nd try - part 1)

C1: month in	M1	M1	M1	M1	M2	M2	M2	M2
C2: day in	D1	D2	D3	D4	D1	D2	D3	D4
C3: year in	-	-	-	-	-	-	-	-
A1: Impossible				X				
A2: Increment day	X	x			x	x	X	
A3: Reset day			X					X
A4: Increment month			X					$?$
A5: Reset month								$?$
A6: Increment year								$?$

NextDate DT (2nd try - part 2)

C1: month in	M3							
C2: day in	D1	D1	D1	D2	D2	D2	D3	D3
C3: year in	Y 1	Y 2	Y 3	Y 1	Y 2	Y 3	-	-
A1: Impossible				X		X	X	X
A2: Increment day		X						
A3: Reset day	X		X		X			
A4: Increment month	X		X		X			
A5: Reset month								
A6: Increment year								

New Equivalence Classes

$\mathrm{M} 1=$ \{month | month has 30 days $\}$
$\mathrm{M} 2=$ \{month | month has 31 days, but not Dec. $\}$
M3 $=$ \{month | month is December $\}$
M4 $=$ \{month | month is February $\}$
D1 $=\{$ day $\mid 1 \leq$ day $\leq 27\}$
D2 $=\{$ day \mid day $=28\}$
D3 $=\{$ day \mid day $=29\}$
D4 $=\{$ day \mid day $=30\}$
D5 = \{day \mid day=31 $\}$
Y1 = \{year | year is a leap year $\}$
$\mathrm{Y} 2=\{$ year \mid year is a common year $\}$

NextDate DT (3rd try - part 1)

C1: month in	M1	M1	M1	M1	M1	M2	M2	M2	M2	M2
C2: day in	D1	D2	D3	D4	D5	D1	D2	D3	D4	D5
C3: year in	-	-	-	-	-	-	-	-	-	-
A1: Impossible					X					
A2: Increment day	X	X	X			X	X	X	X	
A3: Reset day				X						X
A4: Increment month				X						X
A5: Reset month										
A6: Increment year										

NextDate DT (3rd try - part 2)

C1: month in	M3	M3	M3	M3	M3	M4						
C2: day in	D1	D2	D3	D4	D5	D1	D2	D2	D3	D3	D4	D 5
C3: year in	-	-	-	-	-	-	Y1	Y2	Y1	Y2	-	-
A1: Impossible										X	X	X
A2: Increment day	X	X	X	X		X	X					
A3: Reset day					X			X	X			
A4: Increment month								X	X			
A5: Reset month					X							
A6: Increment year					X							

Decision Table Applicability

- The specification is given or can be converted to a decision table .
- The order in which the predicates are evaluated does not affect the interpretation of the rules or resulting action.
- The order of the rule evaluation has no effect on resulting action.
- Once a rule is satisfied and the action selected, no other rule need be examined.
- The order of executing actions in a satisfied rule is of no consequence.
- In reality, the restrictions do not eliminate many potential applications.
- In most applications, the order in which the predicates are evaluated is immaterial.
- Some specific ordering may be more efficient than some other but in general the ordering is not inherent in the program's logic.

Decision Tables - Issues

Before deriving test cases, ensure that

- The rules are complete
- Every combination of predicate truth values is explicit in the decision table
- The rules are consistent
- Every combination of predicate truth values results in only one action or set of actions

Guidelines and Observations

■ Decision Table testing is most appropriate for programs where

- There is a lot of decision making
- There are important logical relationships among input variables
- There are calculations involving subsets of input variables
- There are cause and effect relationships between input and output
- There is complex computation logic (high cyclomatic complexity)

Guidelines and Observations (continued)

- Decision tables do not scale up very well
- May need to
- Use extended entry decision tables
- Algebraically simplify tables
- Decision tables can be iteratively refined
- The first attempt may be far from satisfactory
- Look for redundant rules
- More rules than combination count of conditions
- Actions are the same
- Too many test cases

■ Look for inconsistent rules

- More rules than combination count of conditions
- Actions are different for the same conditions
- Look for missing rules
- Incomplete table

