EECS 4313Software Engineering Testing

Topic 04:
Boundary Value Testing
Zhen Ming (Jack) Jiang

Relevant Reading

[Jorgenson] Chapter 5

Introduction

- Input domain testing is the most commonly taught (and perhaps the most commonly used) software testing technique
- We will see a number of approaches to input domain testing
- We will then study some of its limitations

Boundary Value Analysis

- Many programs can be viewed as a function F that maps values from a set A (its domain) to values in another set B (its range)
- The input variables of F will have some (possibly unstated) boundaries:

$$F: A \to B$$

$$a \le x_1 \le b \qquad c \le x_2 \le d$$

Boundary value analysis

- For each variable, select five values
 - Minimum (min)
 - Just above the minimum (min+)
 - Nominal (nom)
 - Just below the maximum (max-)
 - Maximum (max)

Single fault assumption

- Failures are only rarely the result of the simultaneous occurrence of two (or more) faults
- Generate test cases as such for all i
 - Values of all but one variable x_i at nominal
 - x_i assumes all 5 values from the previous slide (min, min+, nom, max-, max)
- What is the number of test cases?

Two-variable function test cases

Boundary value analysis (BVA) - Advantages

- Independent variables
 - Single fault assumption
- Physical quantities

Boundary value analysis (BVA) - Limitations

- Does not work well for Boolean variables
 - Why are these not suitable?
- Does not work well for logical variables
 - PIN, transaction type
 - Why are these not suitable?
- When variables are not independent i.e., are dependent

Extensions to the (normal) boundary value testing

- Robustness testing
- Worst case testing
- Robust worst case testing
- Special value testing
- Random testing

Robustness testing

- A simple extension to boundary value analysis
- Add two more values per variable
 - Slightly greater than the maximum (max+)
 - Slightly less than the minimum (min-)
- What is the expected output?
 - Hopefully error message, system recovers
- Implementing these test cases may not be possible

Worst-Case Testing

- Rejects the single fault assumption and tests all combinations of values
- Instead of 4n+1 test cases, we have 5ⁿ
- Often leads to a large number of test cases with low bug-finding power
- Usually better to apply Special Value Testing: test cases based on the tester's intuition

Robust Worst-Case Testing

- Add the values min— and max+ to the possible variable values
- Now take all combinations of variable values
- What is the number of test cases?

Other extensions to the boundary value testing

- Special value testing
 - Use best engineering judgment
 - Intuition
 - Domain knowledge
 - Experience
 - Soft spots
- Random testing
 - Select random values for each variable