
EECS 4313
Software Engineering Testing

Topic 03:

Test automation / JUnit
- Building automatically repeatable test suites

Zhen Ming (Jack) Jiang

Acknowledgement

■ Some slides are from Prof. Alex Orso

Relevant Readings

■ [Jorgensen] chapter 19

Test automation

■ Test automation is software that

automates any aspect of testing

– Generating test inputs and expected results

– Running test suites without manual

intervention

– Evaluating pass/no pass

■ Testing must be automated to be effective

and repeatable

Automated testing steps

■ Exercise the implementation with the automated
test suite

■ Repair faults revealed by failures

■ Rerun the test suite on the revised
implementation

■ Evaluate test suite coverage

■ Enhance the test suite to achieve coverage
goals

■ Rerun the automated test suite to support
regression testing

Automated testing advantages

■ Permits quick and efficient verification of bug fixes

■ Speeds debugging and reduces “bad fixes”

■ Allows consistent capture and analysis of test results

■ Its cost is recovered through increased productivity and better

system quality

■ More time to design better tests, rather than entering and

reentering tests

■ Unlike manual testing, it is not error-prone and tedious

■ Only feasible way to do regression testing

■ Necessary to run long and complex tests

■ Easily evaluates large quantities of output

Limitations and caveats

■ A skilled tester can use his experience to
react to manual testing results by
improvising effective tests

■ Automated tests are expensive to create
and maintain

■ Some of the test results cannot be easily
checked automatically

■ If the implementation is changing
frequently, maintaining the test suite might
be hard

XP approach to testing

■ In the Extreme Programming approach

– Tests are written before the code itself

– If the code has no automated test cases, it is

assumed not to work

– A testing framework is used so that automated testing

can be done after every small change to the code

• This may be as often as every 5 or 10 minutes

– If a bug is found after development, a test is created

to keep the bug from coming back

Introduction to the Agile

Development Process

Waterfall Development Process

Requirement
Engineering

Architecture
Analysis

Design &
Implement.

Testing

Software Requirements
Specification (SRS)

Architecture Doc

Source Code

Maintenance

Design

Implement.

What kind of problems do we have for

the Waterfall process?

The cost of change grows exponentially

with time

- Barry Boehm

Project time

Cost

Requirements

Architecture

analysis

Design &

Implementation

Testing $$$

The agile methods

aim at flat cost

■ Focus on the code

■ People over process

■ Iterative approach

■ Customer involvement

■ Expectation that requirements will change

■ Simplicity

The Agile Iterative Software

Development Process

XP

“XP is a lightweight methodology for small

to medium sized teams developing

software in the face of vague or rapidly

changing requirements”

- Kent Beck

• Lightweight

• Humanistic (focus on people)

• Discipline

• Software development

XP’s practices

■ Incremental planning

■ Small releases

■ Simple design

■ Test first

■ Refactoring

■ Pair programming

■ Continuous integration

■ On-site customer

…

Incremental planning

Select
user

stories for
this

release

Break
stories into

tasks

Plan
release

Develop,
integrate
and test

Release
software

Evaluate
system

and
iteration

XP’s practices

■ Incremental planning

■ Small releases
– Accomplishment, reduce risk, quickly adapt to

change, etc.

■ Simple design

■ Test first

■ Refactoring

■ Pair programming

■ Continuous integration

■ On-site customer

…

XP’s practices

■ Incremental planning

■ Small releases

■ Simple design
– Enough to meet the requirements

– No duplicated functionality

– Fewest possible classes and methods

■ Test first

■ Refactoring

■ Pair programming

■ Continuous integration

■ On-site customer

…

XP’s practices

■ Incremental planning

■ Small releases

■ Simple design

■ Test first
– Create test cases before implementation

– Test Driven Development (TDD)

■ Refactoring

■ Pair programming

■ Continuous integration

■ On-site customer

…

XP’s practices

■ Incremental planning

■ Small releases

■ Simple design

■ Test first

■ Refactoring
– Refactoring on demand

■ Pair programming

■ Continuous integration

■ On-site customer

…

XP’s practices

■ Incremental planning

■ Small releases

■ Simple design

■ Test first

■ Refactoring

■ Pair programming
– Programming <=> Strategizing

■ Continuous integration

■ On-site customer

…

Continuous Integration

Programming Local test Integrate System test

Apache Jenkins

XP’s practices

■ Incremental planning

■ Small releases

■ Simple design

■ Test first

■ Refactoring

■ Pair programming

■ Continuous integration

■ On-site customer
– The customer is an actual member of the team

• Sits with the team

• Brings requirements

…

XP consequences

■ Fewer bugs

■ More maintainable code

■ The code can be refactored without fear

■ Continuous integration

– During development, the program always
works

– It may not do everything required, but what it
does, it does right

James Whittaker

JUnit

JUnit

■ JUnit is a framework for writing tests
– Written by Erich Gamma (of Design Patterns fame)

and Kent Beck (creator of XP methodology)

– Uses Java 5 features such as annotations and static
imports

– JUnit helps the programmer:
• define and execute tests and test suites

• formalize requirements

• write and debug code

• integrate code and always be ready to release a working
version

Terminology

■ A test fixture sets up the data (both objects and
primitives) that are needed for every test
– Example: If you are testing code that updates an

employee record, you need an employee record to
test it on

■ A unit test is a test of a single class

■ A test case tests the response of a single
method to a particular set of inputs

■ A test suite is a collection of test cases

■ A test runner is software that runs tests and
reports results

Structure of a JUnit test class

■ To test a class named Fraction

■ Create a test class FractionTest

import org.junit.*;

import static org.junit.Assert.*;

public class FractionTest

{

 …

}

Test fixtures

■ Methods annotated with @Before will

execute before every test case (@test)

■ Methods annotated with @After will

execute after every test case (@test)

@Before

public void setUp() {…}

@After

public void tearDown() {…}

Class Test fixtures

■ Methods annotated with @BeforeClass
will execute once before all test cases

■ Methods annotated with
@AfterClass will execute once
after all test cases

■ These are useful if you need to allocate
and release expensive resources (e.g.,
connect/disconnect to a database) once

Test cases

■ Methods annotated with @Test are

considered to be test cases

@Test

public void testadd() {…}

@Test

public void testToString() {…}

JUnit annotations

http://www.vogella.com/tutorials/JUnit/article.html

http://www.vogella.com/tutorials/JUnit/article.html
http://www.vogella.com/tutorials/JUnit/article.html

What JUnit does

■ For each test case t:

– JUnit executes all @Before methods

• Their order of execution is not specified

– JUnit executes t

• Any exceptions during its execution are
logged

– JUnit executes all @After methods

• Their order of execution is not specified

■ A report for all test cases is presented

Within a test case

■ Call the methods of the class being tested

■ Assert what the correct result should be with one
of the provided assert methods

■ These steps can be repeated as many times as
necessary

■ An assert method is a JUnit method that
performs a test, and throws an AssertionError if
the test fails
– JUnit catches these exceptions and shows you the

results

List of assert methods 1

■ assertTrue(boolean b)
assertTrue(String s, boolean b)

– Throws an AssertionError if b is False

– The optional messages is included in the
Error

■ assertFalse(boolean b)
assertFalse(String s, boolean b)

– Throws an AssertionError if b is True

– All assert methods have an optional message

Example: Counter class

■ Consider a trivial “counter” class
– The constructor creates a counter and sets it

to zero

– The increment method adds one to the
counter and returns the new value

– The decrement method subtracts one from
the counter and returns the new value

– The corresponding JUnit test class…

public class CounterTest {
Counter counter1;

@Before

 public void setUp() { // creates a (simple) test fixture
 counter1 = new Counter();
}

 @Test

 public void testIncrement() {
 assertTrue(counter1.increment() == 1);
 assertTrue(counter1.increment() == 2);
}

@Test

 public void testDecrement() {
 assertTrue(counter1.decrement() == -1);
}

} Note that each test begins with a brand new counter

This means you don’t have to worry about the order in which the tests are run

List of assert methods 2

■ assertEquals(Object expected,
 Object actual)

■ Uses the equals method to compare the two
objects

■ Primitives can be passed as arguments thanks
to autoboxing

■ Casting may be required for primitives

■ There is also a version to compare arrays

List of assert methods 3

■ assertSame(Object expected,
 Object actual)

– Asserts that two references are attached
to the same object (using ==)

■ assertNotSame(Object expected,
 Object actual)

– Asserts that two references are not
attached to the same object

List of assert methods 4

■ assertNull(Object object)

– Asserts that a reference is null

■ assertNotNull(Object object)

– Asserts that a reference is not null

■ fail()

– Causes the test to fail and throw an
AssertionError

– Useful as a result of a complex test, or
when testing for exceptions

Testing for exceptions

■ If a test case is expected to raise an

exception, it can be noted as follows

@Test(expected = Exception.class)

public void testException() {

 //Code that should raise an exception

 fail("Should raise an exception");

}

public void testAnIOExceptionIsThrown {

 try

 {

 // Code that should raise an IO exception

 fail("Expected an IO exception");

 }

 catch (IOException e)

 {

 // This is the expected result, so

 // leave it empty so that the test

 // will pass. If you care about

 // particulars of the exception, you

 // can test various assertions about

 // the exception object

 }

}

Testing for exceptions - example

The assert statement

■ A statement such as

 assert boolean_condition;

 will also throw an AssertionError if the

boolean_condition is false

■ Can be used instead of the JUnit

assertTrue method

Ignoring test cases

■ Test cases that are not finished yet can be

annotated with @Ignore

■ JUnit will not execute the test case but will

report how many test cases are being

ignored

Automated testing issues

■ It is not easy to see how to unit test GUI

code

■ JUnit is designed to call methods and

compare the results they return against

expected results

– This works great for methods that just return

results, but many methods have side effects

Automated testing issues

■ To test methods that do output, you have
to capture the output

– It’s possible to capture output, but it’s an
unpleasant coding chore

■ To test methods that change the state of
the object, you have to have code that
checks the state

– It’s a good idea to have methods that test
state invariants

First steps toward solutions

■ You can redefine System.out to use a
different PrintStream with
System.setOut(PrintStream)

■ You can “automate” GUI use by “faking”
events

– We will see this in more detail later

JUnit in Eclipse

■ JUnit can be downloaded from http://junit.org/
– JUnit 4.x, which supports Java 5 or higher

– JUnit 5.x, which supports Java 8 or higher

– For this course’s assignment, you should use
JUnit 4.x

■ If you use Eclipse, as in this course, you do
not need to download anything

■ Eclipse contains wizards to help with the
development of test suites with JUnit

■ JUnit results are presented in an Eclipse
window

http://junit.org/
http://junit.org/

JUnit Demo # 1

- HelloWorld

Hello World demo

■ Run Eclipse

– Change the configuration file to increase the Eclipse

memory if necessary

■ File -> New -> Project, choose Java Project, and

click Next. Type in a project name, e.g.,

ProjectWithJUnit.

– Click Next

– Click Create New Source Folder, name it test

– Click Finish

■ Click Finish

Create a class

■ Right-click on ProjectWithJUnit

Select New -> Package

Enter package name, e.g., code

Click Finish

■ Right-click on code

Select New -> Class

Enter class name, e.g., HelloWorld

Click Finish

Create a class - 2

■ Add a dummy method such as

public String say() { return null; }

■ Right-click in the editor window and select

Save

Create a test class

■ Right-click on the HelloWorld class

Select New -> JUnit Test Case

■ Make sure pick JUnit 4 test (not JUnit 3)

■ Change the source folder to test as opposed to

src

■ Check to create a setup method

■ Click Next

Create a test class

■ Check the checkbox for the say method

– This will create a stub for a test case for this method

■ Click Finish

■ Click OK to “Add JUnit 4 library to the build path”

■ The HelloWorldTest class is created

■ The first version of the test suite is ready

Run the test class - 1st try

■ Right click on the HelloWorldTest class

■ Select Run as -> JUnit Test

■ The results appear in the left

■ The automatically created test case fails

Create a better test case

■ Import the class under test
 import code.HelloWorld;

■ Declare an attribute of type HelloWorld
HelloWorld hi;

■ The setup method should create a
HelloWorld object
hi = new HelloWorld();

■ Modify the testSay method body to
assertEquals("Hello World!",

 hi.say());

Run the test class - 2nd try

■ Save the new version of the test class and
re-run

■ This time the test fails due to expected
and actual not being equal

■ The body of the method say has to be
modified to
return “Hello World!”;
for the test to pass

JUnit Demo # 2

- Currency

Currency Demo

■ Run Eclipse

– Change the configuration file to increase the Eclipse

memory if necessary

■ File -> New -> Project, choose Java Project, and

click Next. Type in a project name “currency”.

– Click Next

– Click Create New Source Folder, name it test

– Click Finish

■ Click Finish

Create source code class

■ Right-click on currency
Select New -> Package
Enter package name, e.g. code
Click Finish

■ Right-click on code
Select New -> Class
Enter class name, e.g. Currency
Click Finish

■ The content of the Currency class can be
found on the class webpage

Create a test class

■ Right-click on the Currency class

Select New -> JUnit Test Case

■ Make sure pick JUnit 4 test (not JUnit 3)

■ Change the source folder to test as opposed to

src

■ Check to create a setup method

■ Click Next

Create a test class

■ Check the checkbox for the times and equals

method

– This will create a stub for a test case for this method

■ Click Finish

■ Click OK to “Add JUnit 4 library to the build path”

■ The CurrencyTest class is created

■ The first version of the test suite is ready

Run the test class - 1st try

■ Right click on the CurrencyTest class

■ Select Run as -> JUnit Test

■ The results appear in the left

■ The automatically created test case fails

Create fill in the test cases

■ Modify the testEqualsObject method body to
assertEquals(5,5);

 assertTrue(new Currency(5,

"Currency").equals(new Currency(5,

"Currency")));

 assertFalse(new Currency(5,

"Currency").equals(new Currency(6,

"Currency")));

 assertTrue(new Currency(5, "Euro").equals(new

Currency(5, "Euro")));

 assertFalse(new Currency(5, "Euro").equals(new

Currency(6, "Euro")));

 assertFalse(new Currency(5, "Euro").equals(new

Currency(5, "Currency")));

Create fill in the test cases

■ Modify the testTimes method body to
assertEquals(5,5);

 Currency five = new Currency(5, "Dollar");

 assertEquals(new Currency(15, "Dollar"),

 five.times(3));

Run the test class - 2nd try

■ Save the new version of the TestMoney
class and re-run, this time both tests
should pass

TestMoney2 class

■ Create a new JUnitTest class called
TestMoney2

■ Pick dollar and euro from the Currency class to
test

■ Fill in the testDollar method with this content:
assertEquals("Dollar", Currency.dollar(1).type);

■ Fill in the testEuro method with this content:
assertEquals("Euro", Currency.euro(1).type);

■ Run this TestMoney2 as JUnitTest and ensure
both test cases pass

Create a test suite

■ Right-click on the code package in the test

source folder -> New -> Other -> Java,

under Java, pick JUnit, then pick JUnit test

suite

■ Name this class AllTest

■ include both “TestMoney” and

“TestMoney2”

■ Click Finish

