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Test automation 

■ Test automation is software that 

automates any aspect of testing 

– Generating test inputs and expected results 

– Running test suites without manual 

intervention 

– Evaluating pass/no pass 

■ Testing must be automated to be effective 

and repeatable 



Automated testing steps 

■ Exercise the implementation with the automated 
test suite 

■ Repair faults revealed by failures 

■ Rerun the test suite on the revised 
implementation 

■ Evaluate test suite coverage 

■ Enhance the test suite to achieve coverage 
goals 

■ Rerun the automated test suite to support 
regression testing 



Automated testing advantages 

■ Permits quick and efficient verification of bug fixes 

■ Speeds debugging and reduces “bad fixes” 

■ Allows consistent capture and analysis of test results 

■ Its cost is recovered through increased productivity and better 

system quality 

■ More time to design better tests, rather than entering and 

reentering tests 

■ Unlike manual testing, it is not error-prone and tedious 

■ Only feasible way to do regression testing 

■ Necessary to run long and complex tests 

■ Easily evaluates large quantities of output 

 



Limitations and caveats 

■ A skilled tester can use his experience to 
react to manual testing results by 
improvising effective tests 

■ Automated tests are expensive to create 
and maintain 

■ Some of the test results cannot be easily 
checked automatically 

■ If the implementation is changing 
frequently, maintaining the test suite might 
be hard 



XP approach to testing 

■ In the Extreme Programming approach 

– Tests are written before the code itself 

– If the code has no automated test cases, it is 

assumed not to work 

– A testing framework is used so that automated testing 

can be done after every small change to the code 

• This may be as often as every 5 or 10 minutes 

– If a bug is found after development, a test is created 

to keep the bug from coming back 



Introduction to the Agile 

Development Process  



Waterfall Development Process 

Requirement  
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What kind of problems do we have for 

the Waterfall process? 



The cost of change grows exponentially 

with time 

- Barry Boehm 
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The agile methods  

aim at flat cost 

■ Focus on the code 

■ People over process 

■ Iterative approach 

■ Customer involvement 

■ Expectation that requirements will change 

■ Simplicity  



The Agile Iterative Software  

Development Process 

 



XP 

“XP is a lightweight methodology for small 

to medium sized teams developing 

software in the face of vague or rapidly 

changing requirements” 

- Kent Beck 

• Lightweight 

• Humanistic (focus on people) 

• Discipline 

• Software development 



XP’s practices 

■ Incremental planning 

■ Small releases 

■ Simple design 

■ Test first 

■ Refactoring 

■ Pair programming 

■ Continuous integration  

■ On-site customer 

… 



Incremental planning 

Select 
user 

stories for 
this 

release 

Break 
stories into 

tasks 

Plan 
release 

Develop, 
integrate 
and test 

Release 
software 

Evaluate 
system 

and 
iteration 



XP’s practices 

■ Incremental planning 

■ Small releases 
– Accomplishment, reduce risk, quickly adapt to 

change, etc. 

■ Simple design 

■ Test first 

■ Refactoring 

■ Pair programming 

■ Continuous integration  

■ On-site customer 

… 



XP’s practices 

■ Incremental planning 

■ Small releases 

■ Simple design 
– Enough to meet the requirements 

– No duplicated functionality  

– Fewest possible classes and methods 

■ Test first 

■ Refactoring 

■ Pair programming 

■ Continuous integration  

■ On-site customer 

… 



XP’s practices 

■ Incremental planning 

■ Small releases 

■ Simple design 

■ Test first 
– Create test cases before implementation 

– Test Driven Development (TDD) 

■ Refactoring 

■ Pair programming 

■ Continuous integration  

■ On-site customer 

… 



XP’s practices 

■ Incremental planning 

■ Small releases 

■ Simple design 

■ Test first 

■ Refactoring 
– Refactoring on demand 

■ Pair programming 

■ Continuous integration  

■ On-site customer 

… 



XP’s practices 

■ Incremental planning 

■ Small releases 

■ Simple design 

■ Test first 

■ Refactoring 

■ Pair programming 
– Programming <=> Strategizing  

■ Continuous integration  

■ On-site customer 

… 



Continuous Integration 

Programming Local test Integrate System test 



Apache Jenkins 

 



XP’s practices 

■ Incremental planning 

■ Small releases 

■ Simple design 

■ Test first 

■ Refactoring 

■ Pair programming 

■ Continuous integration  

■ On-site customer 
– The customer is an actual member of the team 

• Sits with the team 

• Brings requirements 

… 



XP consequences 

■ Fewer bugs 

■ More maintainable code 

■ The code can be refactored without fear 

■ Continuous integration 

– During development, the program always 
works 

– It may not do everything required, but what it 
does, it does right 

 



 



 

James Whittaker 



JUnit 



JUnit 

■ JUnit is a framework for writing tests 
– Written by Erich Gamma (of Design Patterns fame) 

and Kent Beck (creator of XP methodology) 

– Uses Java 5 features such as annotations and static 
imports 

– JUnit helps the programmer: 
• define and execute tests and test suites 

• formalize requirements 

• write and debug code 

• integrate code and always be ready to release a working 
version 



Terminology 

■ A test fixture sets up the data (both objects and 
primitives) that are needed for every test 
– Example: If you are testing code that updates an 

employee record, you need an employee record to 
test it on 

■ A unit test is a test of a single class 

■ A test case tests the response of a single 
method to a particular set of inputs 

■ A test suite is a collection of test cases 

■ A test runner is software that runs tests and 
reports results 



Structure of a JUnit test class 

■ To test a class named Fraction 

■ Create a test class FractionTest 

import org.junit.*;  

import static org.junit.Assert.*; 

public class FractionTest 

{ 

  … 

} 



Test fixtures 

■ Methods annotated with @Before will 

execute before every test case (@test) 

■ Methods annotated with @After will 

execute after every test case (@test) 

@Before 

public void setUp() {…} 

@After 

public void tearDown() {…} 



Class Test fixtures 

■ Methods annotated with @BeforeClass 
will execute once before all test cases 

■ Methods annotated with 
@AfterClass will execute once 
after all test cases 

■ These are useful if you need to allocate 
and release expensive resources (e.g., 
connect/disconnect to a database) once 



Test cases 

■ Methods annotated with @Test are 

considered to be test cases 

@Test 

public void testadd() {…} 

@Test 

public void testToString() {…} 



JUnit annotations 

 

http://www.vogella.com/tutorials/JUnit/article.html 

 

http://www.vogella.com/tutorials/JUnit/article.html
http://www.vogella.com/tutorials/JUnit/article.html


What JUnit does 

■ For each test case t: 

– JUnit executes all @Before methods  

• Their order of execution is not specified 

– JUnit executes t 

• Any exceptions during its execution are 
logged 

– JUnit executes all @After methods  

• Their order of execution is not specified 

■ A report for all test cases is presented 

 



Within a test case 

■ Call the methods of the class being tested 

■ Assert what the correct result should be with one 
of the provided assert methods 

■ These steps can be repeated as many times as 
necessary 

■ An assert method is a JUnit method that 
performs a test, and throws an AssertionError if 
the test fails 
– JUnit catches these exceptions and shows you the 

results 



List of assert methods 1 

■ assertTrue(boolean b) 
assertTrue(String s, boolean b) 

– Throws an AssertionError if b  is False 

– The optional messages is included in the 
Error 

■ assertFalse(boolean b) 
assertFalse(String s, boolean b) 

– Throws an AssertionError if b is True 

– All assert methods have an optional message 



Example: Counter class 

■ Consider a trivial “counter” class 
– The constructor creates a counter and sets it 

to zero 

– The increment method adds one to the 
counter and returns the new value 

– The decrement method subtracts one from 
the counter and returns the new value 

– The corresponding JUnit test class… 



public class CounterTest { 
Counter counter1; 

  

@Before 

 public void setUp() {   // creates a (simple) test fixture 
 counter1 = new Counter(); 
} 

 

 @Test 

 public void testIncrement() { 
    assertTrue(counter1.increment() == 1); 
    assertTrue(counter1.increment() == 2); 
} 

  

@Test 

 public void testDecrement() { 
    assertTrue(counter1.decrement() == -1); 
} 

} Note that each test begins with a brand new counter 

This means you don’t have to worry about the order in which the tests are run 



List of assert methods 2 

■ assertEquals(Object expected, 
             Object actual) 
 

■ Uses the equals method to compare the two 
objects 

■ Primitives can be passed as arguments thanks 
to autoboxing 

■ Casting may be required for primitives 

■ There is also a version to compare arrays 



List of assert methods 3 

■ assertSame(Object expected, 
           Object actual) 

– Asserts that two references are attached 
to the same object (using ==) 
 

■ assertNotSame(Object expected, 
              Object actual) 

– Asserts that two references are not 
attached to the same object  



List of assert methods 4 

■ assertNull(Object object) 

– Asserts that a reference is null 

■ assertNotNull(Object object) 

– Asserts that a reference is not null 

■ fail() 

– Causes the test to fail and throw an 
AssertionError 

– Useful as a result of a complex test, or 
when testing for exceptions 



Testing for exceptions 

■ If a test case is expected to raise an 

exception, it can be noted as follows 

@Test(expected = Exception.class) 

public void testException() { 

  //Code that should raise an exception 

  fail("Should raise an exception"); 

} 



public void testAnIOExceptionIsThrown { 

  try 

  { 

    // Code that should raise an IO exception 

    fail("Expected an IO exception"); 

  }  

  catch (IOException e)  

  { 

    // This is the expected result, so 

    // leave it empty so that the test 

    // will pass. If you care about  

    // particulars of the exception, you 

    // can test various assertions about 

    // the exception object 

  } 

} 

Testing for exceptions - example 



The assert statement 

■ A statement such as 

 assert boolean_condition; 

 will also throw an AssertionError if the 

boolean_condition  is false 

■ Can be used instead of the JUnit 

assertTrue method 



Ignoring test cases 

■ Test cases that are not finished yet can be 

annotated with @Ignore 

■ JUnit will not execute the test case but will 

report how many test cases are being 

ignored 



Automated testing issues 

■ It is not easy to see how to unit test GUI 

code 

■ JUnit is designed to call methods and 

compare the results they return against 

expected results 

– This works great for methods that just return 

results, but many methods have side effects 



Automated testing issues 

■ To test methods that do output, you have 
to capture the output 

– It’s possible to capture output, but it’s an 
unpleasant coding chore 

■ To test methods that change the state of 
the object, you have to have code that 
checks the state 

– It’s a good idea to have methods that test 
state invariants 



First steps toward solutions 

■ You can redefine System.out to use a 
different PrintStream with 
System.setOut(PrintStream) 

 

■ You can “automate” GUI use by “faking” 
events 

– We will see this in more detail later 



JUnit in Eclipse 

■ JUnit can be downloaded from http://junit.org/ 
– JUnit 4.x, which supports Java 5 or higher 

– JUnit 5.x, which supports Java 8 or higher 

– For this course’s assignment, you should use 
JUnit 4.x   

■ If you use Eclipse, as in this course, you do 
not need to download anything 

■ Eclipse contains wizards to help with the 
development of test suites with JUnit 

■ JUnit results are presented in an Eclipse 
window 

http://junit.org/
http://junit.org/


JUnit Demo # 1 

- HelloWorld 



Hello World demo 

■ Run Eclipse 

– Change the configuration file to increase the Eclipse 

memory if necessary 

■ File -> New -> Project, choose Java Project, and 

click Next. Type in a project name, e.g., 

ProjectWithJUnit. 

– Click Next 

– Click Create New Source Folder, name it test 

– Click Finish 

■ Click Finish 



Create a class 

■ Right-click on ProjectWithJUnit 

Select New -> Package 

Enter package name, e.g., code 

Click Finish 

■ Right-click on code 

Select New -> Class 

Enter class name, e.g., HelloWorld 

Click Finish 



Create a class - 2 

■ Add a dummy method such as 

public String say() { return null; } 

■ Right-click in the editor window and select 

Save 

 



Create a test class 

■ Right-click on the HelloWorld class 

Select New -> JUnit Test Case 

■ Make sure pick JUnit 4 test (not JUnit 3) 

■ Change the source folder to test as opposed to 

src 

■ Check to create a setup method 

■ Click Next 



Create a test class 

■ Check the checkbox for the say method 

– This will create a stub for a test case for this method 

■ Click Finish 

■ Click OK to “Add JUnit 4 library to the build path” 

■ The HelloWorldTest class is created 

■ The first version of the test suite is ready 



Run the test class - 1st try 

■ Right click on the HelloWorldTest class 

■ Select Run as -> JUnit Test 

■ The results appear in the left 

■ The automatically created test case fails 

 

 



Create a better test case 

■ Import the class under test 
 import code.HelloWorld; 

■ Declare an attribute of type HelloWorld 
HelloWorld hi;  

■ The setup method should create a 
HelloWorld object 
hi = new HelloWorld(); 

■ Modify the testSay method body to 
assertEquals("Hello World!", 

              hi.say()); 



Run the test class - 2nd try 

■ Save the new version of the test class and 
re-run 

■ This time the test fails due to expected 
and actual not being equal 

■ The body of the method say has to be 
modified to 
return “Hello World!”; 
for the test to pass 



JUnit Demo # 2 

- Currency 



Currency Demo 

■ Run Eclipse 

– Change the configuration file to increase the Eclipse 

memory if necessary 

■ File -> New -> Project, choose Java Project, and 

click Next. Type in a project name “currency”. 

– Click Next 

– Click Create New Source Folder, name it test 

– Click Finish 

■ Click Finish 



Create source code class 

■ Right-click on currency 
Select New -> Package 
Enter package name, e.g. code 
Click Finish 

■ Right-click on code 
Select New -> Class 
Enter class name, e.g. Currency 
Click Finish 

■ The content of the Currency class can be 
found on the class webpage 



Create a test class 

■ Right-click on the Currency class 

Select New -> JUnit Test Case 

■ Make sure pick JUnit 4 test (not JUnit 3) 

■ Change the source folder to test as opposed to 

src 

■ Check to create a setup method 

■ Click Next 



Create a test class 

■ Check the checkbox for the times and equals 

method 

– This will create a stub for a test case for this method 

■ Click Finish 

■ Click OK to “Add JUnit 4 library to the build path” 

■ The CurrencyTest class is created 

■ The first version of the test suite is ready 



Run the test class - 1st try 

■ Right click on the CurrencyTest class 

■ Select Run as -> JUnit Test 

■ The results appear in the left 

■ The automatically created test case fails 

 

 



Create fill in the test cases 

■ Modify the testEqualsObject method body to 
assertEquals(5,5); 

  assertTrue(new Currency(5, 

"Currency").equals(new Currency(5, 

"Currency"))); 

  assertFalse(new Currency(5, 

"Currency").equals(new Currency(6, 

"Currency"))); 

  assertTrue(new Currency(5, "Euro").equals(new 

Currency(5, "Euro"))); 

  assertFalse(new Currency(5, "Euro").equals(new 

Currency(6, "Euro"))); 

  assertFalse(new Currency(5, "Euro").equals(new 

Currency(5, "Currency"))); 



Create fill in the test cases 

■ Modify the testTimes method body to 
assertEquals(5,5);     

  Currency five = new Currency(5, "Dollar"); 

  assertEquals(new Currency(15, "Dollar"),    

       five.times(3)); 



Run the test class - 2nd try 

■ Save the new version of the TestMoney 
class and re-run, this time both tests 
should pass 



TestMoney2 class 

■ Create a new JUnitTest class called 
TestMoney2 

■ Pick dollar and euro from the Currency class to 
test 

■ Fill in the testDollar method with this content: 
assertEquals("Dollar", Currency.dollar(1).type); 

■ Fill in the testEuro method with this content: 
assertEquals("Euro", Currency.euro(1).type); 

■ Run this TestMoney2 as JUnitTest and ensure 
both test cases pass 

 



Create a test suite 

■ Right-click on the code package in the test 

source folder -> New -> Other -> Java, 

under Java, pick JUnit, then pick JUnit test 

suite 

■ Name this class AllTest 

■ include both “TestMoney” and 

“TestMoney2” 

■ Click Finish 


