
EECS 4313
Software Engineering Testing

Topic 02:

Reporting and analyzing bugs
- How to communicate efficiently to developers

Zhen Ming (Jack) Jiang

Failure, fault, error and incident

■ Failure
– Observable incorrect behavior of a program. Conceptually relate

to the behavior of the program, rather than its code
• A failure occurs when a fault executes

■ Fault (bug)
– Related to the code. Necessary (not sufficient) condition for the

occurrence of a failure
• A fault is the result of an error

• A fault won’t yield a failure without the conditions that trigger it.

• Example: if the program yields 2+2=5 on the 10th time you use it, you
won’t see the error before or after the 10th use.

■ Error
– Cause of a fault. Usually a human error (conceptual, typo, etc.)

• “People make errors”

■ Incident
– the symptom associated with a failure that alerts the user to the

occurrence of a failure

Bug reporting

■ Testers report bugs to programmers

■ Problem Report forms are commonly used

■ If the report is not clear and understandable, the bug

will not get fixed

■ To write a fully effective report you must:

– Explain how to reproduce the problem

– Analyze the problem so that it can be described with a

minimum number of steps

– Write a report that is complete, easy to understand, and non-

antagonistic

What kind of error to report?
■ Report all the following types of problems, but

keep straight in your mind, and on the bug report,
which type you’re reporting.
– Coding Error: The program does not do what the

programmer would expect it to do.

– Design Issue: It’s doing what the programmer intended,
but a reasonable customer would be confused or
unhappy with it.

– Requirements Issue: The program is well designed and
well implemented, but it won’t meet one of the
customer’s requirements.

– Documentation / Code Mismatch: Report this to the
programmer (via a bug report) and to the writer (usually
via a memo or a comment on the manuscript).

– Specification / Code Mismatch: Sometimes the spec is
right; sometimes the code is right and the spec should
be changed.

Bug Reports

■ A bug report is a tool that you use to sell the
programmer on the idea of spending his/her
time and energy to fix a bug.

■ Bug reports are your primary work product as
a tester. This is what people outside of the
testing group will most notice and most
remember of your work.

■ The best tester is not the one who finds the
most bugs or who embarrasses the most
programmers. The best tester is the one who
gets the most bugs fixed.

Selling Bugs

■ Time is in short supply. If you want to convince
the programmer to spend his time fixing your
bug, you may have to sell him on it.

■ Selling revolves around two fundamental
objectives:
– Motivate the buyer (Make him WANT to fix the bug.)

– Overcome objections (Get past his excuses and
reasons for not fixing the bug.)

Motivating the Bug Fixer

■ Some things that will often make programmers want to
fix the bug:

– It looks really bad.

– It looks like an interesting puzzle and piques the
programmer’s curiosity.

– It will affect lots of people.

– Getting to it is trivially easy.

– It has embarrassed the company, or a bug like it
embarrassed a competitor.

– Management (that is, someone with influence) has said
that they really want it fixed.

Motivating the Bug Fix

■ When you run a test and find a failure, you are
looking at a symptom, not at the underlying fault.
You may or may not have found the best
example of a failure that can be caused by the
underlying fault.

■ Therefore you should do some follow-up work to
try to prove that a defect:

– is more serious than it first appears.

– is more general than it first appears.

Look for follow-up errors

■ When you find a coding error, you have the
program in a state that the programmer did not
intend and probably did not expect. There might
also be data with supposedly impossible values.

■ The program is now in a vulnerable state. Keep
testing it and you might find that the real impact
of the underlying fault is a much worse failure,
such as a system crash or corrupted data.

Types of follow-up testing

■ Vary the behaviour (change the conditions

by changing what the test case does)

■ Vary the options and settings of the program

(change the conditions by changing

something about the program under test).

■ Vary the configuration (software and

hardware environment).

1. Vary Your Behaviour
■ Keep using the program after you see the problem.

■ Bring it to the failure case again (and again). If the program fails
when you do X, then do X many times. Is there a cumulative
impact?

■ Try things that are related to the task that failed. For example, if
the program unexpectedly but slightly scrolls the display when you
add two numbers, try tests that affect adding or that affect the
numbers. Do X, see the scroll. Do Y then do X, see the scroll. Do
Z, then do X, see the scroll, etc. (If the scrolling gets worse or
better in one of these tests, follow that up, you’re getting useful
information for debugging.)

■ Try things that are related to the failure. If the failure is unexpected
scrolling after adding, try scrolling first, then adding. Try repainting
the screen, then adding. Try resizing the display of the numbers,
then adding.

■ Try entering the numbers more quickly or changing the speed of
your activity in some other way.

■ Also try other exploratory testing techniques. For example, you
might try some interference tests. Stop the program or pause it
just as the program is failing. Or try it while the program is doing a
background save. Does that cause data loss corruption along with
this failure?

2. Vary Options and Settings

■ In this case, the steps to achieve the failure are
taken as given. Try to reproduce the bug when
the program is in a different state:
– Change the values of environment variables.

– Change anything that looks like it might be relevant
that allows you to change as an option.

■ For example, suppose the program scrolls
unexpectedly when you add two numbers.
Maybe you can change the size of the program
window, or the precision (or displayed number
of digits) of the numbers

3. Vary the Configuration

■ A bug might show a more serious failure if you run
the program with less memory, a higher resolution
printer, more device interrupts coming in etc.

– If there is anything involving timing, use a really slow (or
very fast) computer, network connection, printer etc.

– If there is a video problem, try other resolutions on the
video card. Try displaying MUCH more (less) complex
images.

■ We are interested in whether there is a particular configuration
that will show the bug more spectacularly.

■ Returning to the example (unexpected scrolling when you add
two numbers), try things like:

– Different video resolutions

– Different mouse settings if your mouse has a scrolling wheel

Is this bug new to this version?

■ In many projects, an old bug (from a previous
release of the program) might not be taken
very seriously if there were not lots of
customer complaints.
– If you know it’s an old bug, check its history.

– The bug will be taken more seriously if it is new.

– You can argue that it should be treated as new if
you can find a new variation or a new symptom
that did not exist in the previous release. What you
are showing is that the new version ’ s code
interacts with this error in new ways. That’s a new
problem.

Motivating the Bug Fix:

Show it is More General
■ Look for configuration dependence

■ Bugs that do not fail on the programmer’s

machine are much less credible (to that

programmer). If they are configuration

dependent, the report will be much more

credible if it identifies the configuration

dependence directly (and so the programmer

starts out with the expectation that it won’t fail on

all machines).

Configuration dependence
■ In the ideal case (standard in many companies), test on 2

machines

– Do your main testing on Machine 1. Maybe this is your powerhouse:
latest processor, newest updates to the operating system, fancy
printer, video card, USB devices, huge hard disk, lots of RAM, fast
connection etc.

– When you find a defect, use Machine 1 as your bug reporting machine
and replicate on Machine 2. Machine 2 is totally different. Different
processor, different keyboard and keyboard driver, different video,
barely enough RAM, slow, small hard drive, dial-up connection with a
link that makes turtles look fast.

■ Some people do their main testing on the slow machine and use
the more powerful machine for replication.

■ Write the steps, one by one, on the bug form at Machine 1. As you
write them, try them on Machine 2. If you get the same failure, you
have checked your bug report while you wrote it. (A valuable thing
to do.)

■ If you do not get the same failure, you have a configuration
dependent bug. Time to do troubleshooting. But at least you know
that you have to.

Uncorner your corner cases

■ We test at extreme values because these are the most
likely places to show a defect. But once we find the defect,
we do not have to stick with extreme value tests.
– Try mainstream values. These are easy settings that should

pose no problem to the program. Do you replicate the bug? If
yes, write it up, referring primarily to these mainstream
settings. This will be a very credible bug report.

■ If the mainstream values don’t yield failure, but the
extremes do, then do some troubleshooting around the
extremes.
– Is the bug tied to a single setting (a true corner case)?
– Or is there a small range of cases? What is it?
– In your report, identify the narrow range that yields failures.

The range might be so narrow that the bug gets deferred.
That might be the right decision. Your reports help the
company choose the right bugs to fix before a release, and
size the risks associated with the remaining ones.

Overcoming Objections:

Analysis of the Failure
■ Things that will make programmers resist

spending their time on the bug:
– The programmer cannot replicate the defect.

– Strange and complex set of steps required to induce
the failure.

– Not enough information to know what steps are
required, and it will take a lot of work to figure them
out.

– The programmer does not understand the report.

– Unrealistic (e.g., “corner case”)

– It’s a feature.

Non-Reproducible Errors (1)

■ Always report non-reproducible errors. If you report them
well, programmers can often figure out the underlying
problem.

■ You must describe the failure as precisely as possible. If
you can identify a display or a message well enough, the
programmer can often identify a specific point in the
code that the failure had to pass through.

■ When you realize that you can’t reproduce the bug, write
down everything you can remember. Do it now, before
you forget even more.

■ As you write, ask yourself whether you’re sure that you
did this step (or saw this thing) exactly as you are
describing it. If not, say so. Draw these distinctions right
away. The longer you wait, the more you will forget.

Non-Reproducible Errors (2)

■ Maybe the failure was a delayed reaction to
something you did before starting this test or
series of tests. Before you forget, note the tasks
you did before running this test.

■ Check the bug tracking system. Are there similar
failures? Maybe you can find a pattern.

■ Find ways to affect timing of the program or
devices, slow down, speed up.

■ Talk to the programmer and/or read the code.

Non-Reproducible bugs

are reproducible

■ Failures occur under certain conditions

■ If you know the conditions, you can

recreate a failure

■ If you don’t know the critical conditions,

you cannot recreate the failure

■ What are some reasons you cannot

reproduce a failure?

Reasons for non-reproducible bugs (1)

■ Some problems have delayed effects:

– a memory leak might not show up until after you
cut and paste 20 times.

– stack corruption might not turn into a stack
overflow until you do the same task many times.

– a wild pointer might not have an easily
observable effect until hours after it was mis-set.

■ If you suspect that you have time-delayed failures,
use tools such as videotape/screen recording,
capture programs, debuggers, debug-loggers, or
memory meters to record a long series of events
over time.

Reasons for non-reproducible bugs (2)

■ The bug depends on the value of a hidden input variable.
In any test, there are the variables that we think are
relevant, and there is everything else. If the data you
think are relevant don’t help you reproduce the bug, ask
what other variables were set, and what their values
were.

■ Some conditions are hidden and others are invisible.
You cannot manipulate them and so it is harder to
recognize that they’re present. You might have to talk
with the programmer about what state variables or flags
get set in the course of using a particular feature.

Reasons for non-reproducible bugs (3)

■ Some conditions are catalysts. They make
failures more likely to be seen. Example: low
memory for a leak; slow machine for a race. But
sometimes catalysts are more subtle, such as
use of one feature that has a subtle interaction
with another.

■ Some bugs are predicated on corrupted data.
They don’t appear unless there are impossible
configuration settings in the config files or
impossible values in the database. What could
you have done earlier today to corrupt this data?

Reasons for non-reproducible bugs (4)

■ The bug might appear only at a specific time of day or
day of the month or year. Look for week-end, month-
end, quarter-end and year-end bugs, for example.

■ Programs have various degrees of data coupling.
When two modules use the same variable, oddness
can happen in the second module after the variable is
changed by the first. In some programs, interrupts
share data with main routines in ways that cause bugs
that will only show up after a specific interrupt.

Reasons for non-reproducible bugs (5)

■ The program may depend on one version of a DLL.

A different program loads a different version of the

same DLL into memory. Depending on which

program is run first, the bug appears or does not.

■ The bug depends on you doing related tasks in a

specific order.

■ The bug is caused by an error in error-handling.

You have to generate a previous error message or

bug to set up the program for this one.

Reasons for non-reproducible bugs (6)

■ The program might be showing an initial state

bug, such as:

– The bug appears only the first time after you

install the program (so it happens once on every

machine.)

– The bug appears once after you load the program

but won’t appear again until you exit and reload

the program.

Reasons for non-reproducible bugs (7)

■ You forgot some of the details of the test you
ran, including the critical one(s) or you ran an
automated test that lets you see that a crash
occurred but does not tell you what happened.

■ The bug depends on a crash or exit of an
associated process.

■ The problem might appear only under a peak
load, and be hard to reproduce because you
cannot bring the heavily loaded machine under
debug control (perhaps it is a customer’s
system).

Reasons for non-reproducible bugs (8)

■ On a multi-tasking or multi-user system,

look for spikes in background activity.

■ The bug occurred because a device that it

was attempting to write to or read from

was busy or unavailable.

■ It might be caused by keyboard

keybounce or by other hardware noise.

Reasons for non-reproducible bugs (9)

■ The apparent bug is a side-effect of a hardware
failure.
– A flaky power supply creates irreproducible failures.

– One prototype system had a high rate of
irreproducible firmware failures. Eventually, these
were traced to a problem in the building’s air
conditioning. The test lab was not being cooled, no
fan was blowing on the unit under test, and prototype
boards in the machine ran very hot. The machine was
failing at high temperatures.

Incomprehensible bug reports

■ Programmers will not spend time on a bug

if the bug report:

– Has a strange and complex set of steps

required to induce the failure.

– Does not have enough information to know

what steps are required, and it will take a lot

of work to figure them out.

– Is hard to understand.

Reporting Errors

■ As soon as you run into a problem in the software, fill
out a Problem Report form. In a well-written report,
you:

– Explain how to reproduce the problem.

– Analyze the error so you can describe it in a minimum
number of steps.

– Include all the steps.

– Make the report easy to understand.

– Keep your tone neutral and non-antagonistic.

– Keep it simple: one bug per report.

– If a sample test file is essential to reproducing a
problem, reference it and attach the test file.

The Problem Report Form (1)

■ A typical form includes many of the following
fields
– Problem report number: must be unique

– Reported by: original reporter’s name. Some forms
add an editor’s name.

– Date reported: date of initial report

– Program (or component) name: the visible item
under test

– Release number: like Release 2.0

– Version (build) identifier: like version C or version
20000802a

The Problem Report Form (2)

– Configuration(s): h/w and s/w configurations under
which the bug was found and replicated

– Report type: e.g., coding error, design issue,
documentation mismatch, suggestion, query

– Can reproduce: yes / no / sometimes / unknown.
(Unknown can arise, for example, when the
configuration is at a customer site and not available to
the lab).

– Severity: assigned by tester. Some variation on small
/ medium / large

The Problem Report Form (3)

– Priority: assigned by programmer/project
manager

– Problem summary: 1-line summary of the
problem

– Keywords: use these for searching later, anyone
can add to key words at any time

– Problem description and how to reproduce it:
step by step reproduction description

– Suggested fix: leave it blank unless you have
something useful to say

– Status: Tester fills this in. Open / closed / resolved

The Problem Report Form (4)

– Resolution: The project manager owns this field. Common
resolutions include:
• Pending: the bug is still being worked on.

• Fixed: the programmer says it’s fixed. Now you should check it.

• Cannot reproduce: The programmer can’t make the failure
happen. You must add details, reset the resolution to Pending, and
notify the programmer.

• Deferred: It’s a bug, but we’ll fix it later.

• As Designed: The program works as it’s supposed to.

• Need Info: The programmer needs more info from you. She has
probably asked a question in the comments.

• Duplicate: This is just a repeat of another bug report (XREF it on
this report.) Duplicates should not close until the duplicated bug
closes.

• Withdrawn: The tester withdrew the report.

The Problem Report Form (5)

– Resolution version: build identifier

– Resolved by: programmer, project manager,
tester (if withdrawn by tester), etc.

– Resolution tested by: originating tester, or a
tester if originator was a non-tester

– Change history: date-stamped list of all
changes to the record, including name and
fields changed.

The Problem Report Form (6)

– Comments: free-form, arbitrarily long field, typically
accepts comments from anyone on the project.
Testers, programmers, tech support (in some
companies) and others have an ongoing discussion of
reproduction conditions etc., until the bug is resolved.
Closing comments (why a deferral is OK, or how it
was fixed for example) go here.
• This field is especially valuable for recording progress and

difficulties with difficult or politically charged bugs.

• Write carefully. It’s easy to read a joke or a remark as a
flame. Never flame.

Important Parts of the Report:

Problem Summary
■ This one-line description of the problem is the

most important part of the report.

– The project manager will use it when reviewing

the list of bugs that haven’t been fixed.

– Executives will read it when reviewing the list of

bugs that won’t be fixed. They might only spend

additional time on bugs with “interesting”

summaries.

Problem Summary

■ The ideal summary gives the reader enough

information to help her decide whether to ask for more

information. It should include:

– A brief description that is specific enough that the reader

can visualize the failure.

– A brief indication of the limits or dependencies of the bug

(how narrow or broad are the circumstances involved in

this bug)?

– Some other indication of the severity (not a rating but

helping the reader envision the consequences of the bug.)

Can You Reproduce The Bug?

■ You may not see this on your form, but you should
always provide this information.

– Never say it’s reproducible unless you have recreated the
bug. (Always try to recreate the bug before writing the
report.)

– If you have tried and tried but you can’t recreate the bug,
say “No” . Then explain what steps you tried in your
attempt to recreate it.

– If the bug appears sporadically and you don’t yet know
why, say “Sometimes” and explain.

– You may not be able to try to replicate some bugs.
Example: customer-reported bugs where the setup is too
hard to recreate.

How to Reproduce the Bug (1)

■ First, describe the problem. Don’t rely on the
summary to do this - some reports will print this
field without the summary.

■ Next, go through the steps that you use to recreate
this bug.
– Start from a known place (e.g. boot the program)

– Then describe each step until you hit the bug.

– NUMBER THE STEPS. Take it one step at a time.

– If anything interesting happens on the way,
describe it. (You are giving people directions to a
bug. Especially in long reports, people need
landmarks.)

How to Reproduce the Bug (2)

■ Describe the erroneous behaviour and, if

necessary, explain what should have happened.

(Why is this a bug? Be clear.)

■ List the environmental variables (e.g.,

configuration) that are not covered elsewhere in

the bug tracking form.

■ If you expect the reader to have any trouble

reproducing the bug (special circumstances are

required), be clear about them.

How to Reproduce the Bug (3)

■ It is essential to keep the description focused

■ The first part of the description should be the
shortest step-by-step statement of how to get to the
problem.

■ Add “Notes” after the description such as:
– Comment that the bug won’t show up if you do step X

between step Y and step Z.

– Comment explaining your reasoning for running this test.

– Comment explaining why you think this is an interesting
bug.

– Comment describing other variants of the bug.

Keeping the Report Simple

■ If you see two failures, write two reports.
■ Combining failures creates problems:

– The summary description is typically vague. You say
words like “fails” or “doesn’t work” instead of describing
the failure more vividly. This weakens the impact of the
summary.

– The detailed report is typically lengthened and contains
complex logic like: “Do this unless that happens in
which case don’t do this unless the first thing, and then
the testcase of the second part and sometimes you
see this but if not then that”.

– Even if the detailed report is rationally organized, it is
longer (there are two failures and two sets of
conditions, even if they are related) and therefore more
intimidating.

– You’ll often see one bug get fixed but not the other.
– When you report related problems on separate reports,

it is a courtesy to cross-reference them.

Keeping it Simple:

Eliminate Unnecessary Steps (1)

■ Sometimes it’s not immediately obvious what steps can be
dropped from a long sequence of steps in a bug.

– Look for critical steps -- Sometimes the first symptoms of a
failure are subtle.

■ You have a list of the steps you took to show the error.
You’re now trying to shorten the list. Look carefully for any
hint of a failure as you take each step -- A few things to look
for:

– Error messages (you got a message 10 minutes ago. The
program did not fully recover from the error, and the
problem you see now is caused by that poor recovery.)

– Delays or unexpectedly fast responses.

– Display oddities, such as a flash, a repainted screen, a
cursor that jumps back and forth, multiple cursors,
misaligned text, slightly distorted graphics, etc.

Keeping it Simple:

Eliminate Unnecessary Steps (2)
– Sometimes the first indicator that the system is working

differently is that it sounds a little different than normal.

– An in-use light or other indicator that a device is in use when
nothing is being sent to it (or a light that is off when it
shouldn’t be).

– Debug messages—turn on the debug monitor on your system
(if you have one) and see if/when a message is sent to it.

■ If you have found what looks like a critical step, try to
eliminate almost everything else from the bug report. Go
directly from that step to the last one (or few) that shows
the bug. If this does not work, try taking out individual
steps or small groups of steps.

Put Variations

After the Main Report

■ Suppose that the failure looks different under slightly
different circumstances. For example, suppose that:

– The timing changes if you do two additional sub-tasks before
hitting the final reproduction step

– The failure won’t show up or is much less serious if you put
something else at a specific place on the screen

– The printer prints different garbage (instead of the garbage you
describe) if you make the file a few bytes longer

■ This is all useful information for the programmer and you
should include it. But to make the report clear:
– Start the report with a simple, step-by-step description of the

shortest series of steps that you need to produce the failure.

– Identify the failure. (Say whatever you have to say about it, such
as what it looks like or what impact it will have.)

– Then add a section that says “ADDITIONAL CONDITIONS” and
describe, one by one, in this section the additional variations and
the effect on the observed failure.

Unrealistic cases

■ Some reports are inevitably dismissed as

unrealistic (having no importance in real use).

– If you’re dealing with an extreme value, do follow-up

testing with less extreme values.

– Check with people who might know the customer

impact of the bug:

-- Technical marketing -- Technical support

-- Human factors -- Documentation

-- Network administrators -- Training

-- In-house power users -- Maybe sales

It’s not a bug, it’s a feature

■ An argument over whether something is or is not
a bug is really an argument about the oracle you
should use to evaluate your test results.

■ An oracle is the principle or mechanism
by which you recognize a problem.

■ "Meets the specification" or "Meets the
requirements" is a heuristic oracle.

■ If you know it’s "wrong" but you don't have a
mismatch to a spec, what can you use?

Some useful oracle heuristics
■ Consistent with History: Present function behaviour is

consistent with past behaviour.

■ Consistent with our Image: Function behaviour is consistent

with an image that the organization wants to project.

■ Consistent with Comparable Products: Function behaviour is

consistent with that of similar functions in comparable products.

■ Consistent with Claims: Function behaviour is consistent with

documented or advertised behaviour.

■ Consistent with User’s Expectations: Function behaviour is

consistent with what we think users want.

■ Consistent within Product: Function behaviour is consistent

with behaviour of comparable functions or functional patterns

within the product.

■ Consistent with Purpose: Function behaviour is consistent

with apparent purpose.

Editing Bug Reports

■ Some groups have a second tester (usually a
senior tester) review reported defects before
they go to the programmer. The second tester:

– checks that critical information is present and
intelligible

– checks whether she can reproduce the bug

– asks whether the report might be simplified,
generalized or strengthened.

■ If there are problems, she takes the bug back to
the original reporter.

