
EECS 4313
Software Engineering Testing

Topic 01:

Limits and objectives of software testing

Zhen Ming (Jack) Jiang

Acknowledge

■ Some of the contents are from Prof. Alex

Orso, Bil Tzerpos and Gunnar Gotshalks

Relevant Readings

■ [Jorgensen] chapter 1 & 2 (for background), chapter 5,

section 23.3

Waterfall Development Process

Requirement
Engineering

Architecture
Analysis

Design &
Implement.

Testing

Software Requirements
Specification (SRS)

Architecture Doc

Source Code

Maintenance

Design

Implement.

What kind of problems do we have for

the Waterfall process?

Software bugs are costing the US Economy

an estimated $60 billion each year.

Improvements in verification and validation

could reduce this cost by about a third (i.e.,

$20 billion).

[NIST Estimated Planning Report 2002 – 10]

Software is Buggy!

■ On average, 1-5 errors per 1 KLOC

■ Windows 2000

– 35 MLOC

– 63,000 known bugs at the time of release

– On average, 2 bugs for every 1,000 lines

■ For mass market software 100% correct is
infeasible, but we must verify the software
as much as possible

Failure, fault, error and incident

■ Failure
– Observable incorrect behavior of a program. Conceptually relate

to the behavior of the program, rather than its code
• A failure occurs when a fault executes

■ Fault (bug)
– Related to the code. Necessary (not sufficient) condition for the

occurrence of a failure
• A fault is the result of an error

• A fault won’t yield a failure without the conditions that trigger it.

• Example: if the program yields 2+2=5 on the 10th time you use it, you
won’t see the error before or after the 10th use.

■ Error
– Cause of a fault. Usually a human error (conceptual, typo, etc.)

• “People make errors”

■ Incident
– the symptom associated with a failure that alerts the user to the

occurrence of a failure

An Example of

the failure, fault, error

1. int double (int param) {

2. int result;

3. result = param * param;

4. return result;

5. }

A call to double(3) returns 9

• Result 9 represents a failure

• Such failure is due to the fault at line 3

• The error is a typo (hopefully)

Approach to Verification

■ Testing
– Exercising software to try and generate failures

■ Static verification
– Identify (specific) problems statically, that is

considering all possible executions

■ Inspection/review/walkthrough
– Systematic group review of program text to detect

faults

■ Formal proof
– Proving that the program text implements the

program specification

Comparison

■ Testing
– Pros: no false positives

– Cons: incomplete

■ Static verification
– Pros: complete (consider all program behavior)

– Cons: false positive (main issue), expensive

■ Inspection
– Pro: systematic, thorough

– Cons: informal, subjective

■ Formal proof (of correctness)
– Pro: strong guarantees

– Cons: complex, expensive (requires a specification)

“50% of my company employees are

testers and the rest spends 50% of their

time testing”

Bill Gates, Microsoft

Today, QA is mostly testing

Program Behaviour

Specification Program

Extra Functionality

Correct Portion

Missing Functionality

Correctness

■ Impossible to demonstrate

■ Better viewpoint

– Program P is correct with respect to

specification S

■ Do the specification and the program meet

the customer/user’s expectations?

■ Test can never reveal the absence of a

fault

Testing Program Behaviour

Specification
Program

Test Cases

What is testing?

■ Testing
– Execute a program with a sample of the input data

■ Dynamic technique
– Program must be executed

■ Test cases
– Test method is a repeatable way to generate test

cases

■ Optimistic approximation
– The program under test is exercised with a (very

small) subset of all the possible input data

– We assume that the behavior with any other input is
consistent with the behavior shown for the selected
subset of input data

Writing software with the WRONG specification!

Testing techniques

■ There are a number of techniques. Each
has different processes, artifacts, or
approaches

■ There are no perfect techniques

– Testing is a best effort activity

■ There is no best technique

– Different contexts

– Complementary strengths and weakness

– Trade-offs

Basic Approaches

■ Black Box (Functional Testing)
– based on a description of the software

(specification)

– covers as much specified behavior as possible

– cannot reveal errors due to implementation
details

■ White Box (Structural Testing)
– based on the code

– covers as much coded behavior as possible

– cannot reveal errors due to missing paths

■ Grey Box

Content of a Test Case

■ “Boilerplate”: author, date, propose

(summary), test case ID, reference to

specification, version

■ Pre-conditions (including environment)

■ Inputs

■ Expected Outputs

■ Observed Outputs

■ Pass/Fail

Testing Levels

■ Unit Testing
– assess software with respect to implementation

■ Module Testing
– assess software with respect to detail design

■ Integration Testing
– assess software with respect to subsystem design

• “big bang”

■ System Testing
– assess software with respect to architecture design

• *ility: Reliability, maintainability, usability

■ Acceptance Testing
– assess software with respect to requirements

• Against customer requirements

■ Regression testing
– ensures the new changes not breaking the functionalities of the existing

code

Two unit tests,

zero integration tests

Purpose of Testing

Beizer’s testing levels on test

process maturity

■ There are four levels of maturity!

– Fundamental differences!

• In viewpoint!

• Effect on the individual!

• Effect on the organization!

• Effect on developed systems

Beizer’s testing levels on test

process maturity
■ Level 4

– Testing is a mental discipline that helps all IT professionals
develop higher quality software!

■ Level 3
– Purpose of testing is not to prove anything specific but to

reduce the risk of using the software

■ Level 2
– Purpose of testing is to show that software doesn’t work

■ Level 1
– Purpose of testing is to show that software works

■ Level 0
– No difference between testing and debugging

Level 0

■ No difference between testing and debugging!

– Adopted by undergraduate CS students!
• Get their programs to compile!

• Debug with few arbitrarily chosen inputs or those provided by
the instructor!

■ Does not distinguish between incorrect program
behavior and programming mistakes!

■ Does little to help develop programs that are
reliable or safe

Level 1

■ Purpose of testing is to show that software works
– Significant step up

– But correctness is virtually impossible to either
achieve or demonstrate

• Run test suite with no failures

• Is program correct?

• Do we have bad tests?

■ Test engineers have no strict goal, real stopping
rule or formal test technique

■ Test managers are powerless because they have
no way to quantitatively express or evaluate their
work

Level 2

■ Purpose of testing is to show that the software
doesn’t work
– Valid but negative goal!

– Testers may like it but developers do not
• Level 1 thinking is natural for developers

– Have adversarial relationship
• Bad for team morale

• Conflict of interest if the same person

– What to do if no failures are found?
• Is software good?

• Is testing bad?

– Having confidence when testing is complete is an
important goal

Level 3

■ Purpose of testing is not to prove anything specific
but to reduce the risk of using the software

– Realize that testing can show the presence of failures
but not their absence. (Edsger W. Dijkstra)

– Accept fact that using software incurs some risk
• May be small with unimportant consequences

• May be big with important consequences, or even
catastrophic

– Entire team wants the same thing
• Reduce the risk

• Developers and testers work together

Level 4

■ Testing is a mental discipline that helps all IT

professionals develop higher quality software

– Testing is a mental discipline that increases

quality

– Testers become technical leaders of projects

– Primary responsibility is measuring and improving

software quality

– Improve the ability of developers to produce

quality software

• Testers train developers

Essence of Testing

Information Objectives of

Software Testing

 Find important bugs, to get them fixed

 Check interoperability with other products

 Help managers make ship/no-ship decisions

 Block premature product releases

 Minimize technical support costs

 Assess conformance to specification

 Conform to regulations

 Minimize safety-related lawsuit risk

 Find safe scenarios for use of the product

Different

objectives

require

different

testing strategies

and will yield

different tests,

different test

documentation

and different test

results.

Our Goal

- Learning objectives

■ Learn testing techniques and the situations in

which they apply

■ Apply real-world testing tools and frameworks

■ Learn how to file bug reports

■ Understand and apply different manual and

automated software testing techniques

■ Understand the importance of systematic

testing

Tools - Eclipse

■ IDE for Java development

■ Works seamlessly with JUnit for unit

testing

■ Open source – Download from

www.eclipse.org

■ In the lab, do: eclipse

■ Try it with your own Java code

http://www.eclipse.org/

Tools - JUnit

■ A framework for automated unit testing of
Java code

■ Written by Erich Gamma (of Design
Patterns fame) and Kent Beck (creator of
XP methodology)

■ Uses Java features such as annotations
and static imports

■ Download from www.junit.org

■ Integrated with Eclipse

http://www.junit.org

A first example

 Test ADDER:

Adds two numbers

within (-100,100) that

the user enters

Each number should

be one or two digits

 The program echoes

the entries, then prints

the sum.

Press <ENTER> after

each number

■ Screen for a test run

? 2

? 3

5

?

Immediate issues

■ Nothing shows what this program is. You

don’t even know you run the right program.

■ No on-screen instructions.

■ How do you stop the program?

■ The 5 should probably line up with the 2

and 3.

A first set of test cases

99 + 99 -99 + -99

99 + 56 56 + 99

99 + -14 -14 + 99

38 + -99 -99 + 38

-99 + -43 -43 + -99

9 + 9 0 + 0

0 + 23 -23 + 0

Choosing test cases

 Not all test cases are significant.

 Impossible to test everything (this simple
program has 39,601 possible different test
cases).

 If you expect the same result from two tests,
they belong to the same class. Use only one of
them.

When you choose representatives of a class for
testing, pick the ones most likely to fail.

Further test cases

100 + 100

<Enter> + <Enter>

123456 + 0

1.2 + 5

A + b

<CTRL-C> + <CTRL-D>

<F1> + <Esc>

Other things to consider

■ Storage for the two inputs or the sum

– 198 or -198 can be an important boundary

case

■ Test cases with extra whitespace

■ Test cases involving <Backspace>

■ The order of the test cases might matter

– E.g., <Enter> + <Enter>

An object-oriented example

- The triangle problem

 Input: Three integers, a, b, c, the lengths

of the side of a triangle

Output: Scalene, isosceles, equilateral,

invalid

Test case classes

■ Valid scalene, isosceles, equilateral triangle

■ All permutations of two equal sides

■ Zero or negative lengths

■ All permutations of a + b < c

■ All permutations of a + b = c

■ All permutations of a = b and a + b = c

■ MAXINT values

■ Non-integer inputs

Example implementation

class Triangle{

 public Triangle(LineSegment a, LineSegment b,

 LineSegment c)

 public boolean is_isosceles()

 public boolean is_scalene()

 public boolean is_equilateral()

 public void draw()

 public void erase()

}

class LineSegment {

 public LineSegment(int x1, int y1,

 int x2, int y2)

}

Extra tests

 Is the constructor correct?

 Is only one of the is_* methods true in
every case?

Do results repeat, e.g., when running
is_scalene twice or more, do they have
the same results?

Results change after draw or erase?

Segments that do not intersect or form an
interior triangle

Inheritance tests

 Tests that apply to all

Figure objects must still

work for Triangle

objects

 Tests that apply to all

ClosedFigure objects

must still work for

Triangle objects
Triangle

Figure

ClosedFigure

Testing limits

■ Dijkstra: “Program Testing can be used to
show the presence of defects, but never
their absence”.

■ It is impossible to fully test a software
system in a reasonable amount of time or
money

■ “When is testing complete?” … “When you
run out of time or money.”

Software is never finished

Complete testing

■ What do we mean by "complete testing"?
– Complete "coverage": Tested every line/path?

– Testers not finding new bugs?

– Test plan complete?

■ Complete testing must mean that, at the end of
testing, you know there are no remaining
unknown bugs.

■ After all, if there are more bugs, you can find
them if you do more testing. So testing couldn't
yet be "complete."

Complete coverage?

■ What is coverage?

– Extent of testing of certain attributes or pieces
of the program, such as statement coverage
or branch coverage or condition coverage.

– Extent of testing completed, compared to a
population of possible tests.

■ Why is complete coverage impossible?

– Domain of possible inputs is too large.

– Too many possible paths through the
program.

Measuring and achieving

high code coverage

■ Coverage measurement is a good tool to

show how far you are from complete

testing.

■ But it’s a lousy tool for investigating how

close you are to completion.

Testers live and breathe

tradeoffs
■ The time needed for test-related tasks is infinitely

larger than the time available.

■ Example: The time you spend on
– Analyzing, troubleshooting, and effectively describing

a failure

■ Is time no longer available for
– Designing tests

– Documenting tests

– Executing tests

– Automating tests

– Reviews, inspections

– Training other staff

The infinite set of tests

■ There are enormous numbers of possible
tests. To test everything, you would have to:
– Test every possible input to every variable.

– Test every possible combination of inputs to
every combination of variables.

– Test every possible sequence through the
program.

– Test every hardware / software configuration,
including configurations of servers not under your
control.

– Test every way in which any user might try to use
the program.

Testing valid inputs (an example)

■ MASPAR is a parallel computer used for mission-critical
and life-critical applications.
– To test the 32-bit integer square root function, all 4,294,967,296

values were checked. This took 6 minutes.

– There were 2 (two) errors, neither of them near any boundary.

• The underlying error was that a bit was sometimes mis-set, but in
most error cases, there was no effect on the final calculated result.

– Without an exhaustive test, these errors probably wouldn’t have
shown up.

– What about the 64-bit integer square root? How could we find the
time to run all of these?

Testing valid inputs

There were 39,601 possible valid inputs in

ADDER

 In the Triangle example, assuming only

integers from 1 to 10, there are 104

possibilities for a segment, and 1012 for a

triangle. Testing 1000 cases per second,

you would need 317 years!

Testing invalid inputs

■ The error handling aspect of the system

must also be triggered with invalid inputs

■ Anything you can enter with a keyboard

must be tried. Letters, control characters,

combinations of these, question marks,

too long strings etc…

Testing edited input

■ Need to test that editing works (if allowed

by the spec)

■ Test that any character can be changed

into any other

■ Test repeated editing

– Long strings of key presses followed by

<Backspace> have been known to crash

buffered input systems

Testing input timing variations

■ Try entering the data very quickly, or very slowly.

■ Do not wait for the prompt to appear

■ Enter data before, after, and during the
processing of some other event, or just as the
time-out interval for this data item is about to
expire.

■ Race conditions between events often leads to
bugs that are hard to reproduce

Combination testing

■ Example 1: Apache webserver has 172 user
configuration parameters (158 binary options).
This system has 1.8 × 1055 possible
configurations to test!

■ Example 2: American Airlines could not print
tickets if a string concatenating the fares
associated with all segments was too long.

■ Example 3: Memory leak in WordStar if text was
marked Bold/Italic (rather than Italic/Bold)

What if you don’t test all

possible inputs?

■ Based on the test cases chosen, an

implementation that passes all tests but

fails on a missed test case can be created.

■ If it can be done on purpose, it can be

done accidentally too.

– A word processor had trouble with large files

that were fragmented on the disk (would

suddenly lose whole paragraphs)

Testing all paths in the system

A

B

C

D

E

F

G

H

I

X EXIT

< 20 times

through the

loop

Here’s an example that shows that there are too many paths to

test in even a fairly simple program. This is from Myers, The Art

of Software Testing.

Number of paths

 One path is ABX-Exit. There are 5 ways to get to X and
then to the EXIT in one pass.

 Another path is ABXACDFX-Exit. There are 5 ways to
get to X the first time, 5 more to get back to X the second
time, so there are 5 x 5 = 25 cases like this.

 There are 51 + 52 + ... + 519 + 520 = 1014 = 100 trillion
paths through the program.

 It would take only a billion years to test every path (if one
could write, execute and verify a test case every five
minutes).

Further difficulties for testers

Testing cannot verify requirements.

Incorrect or incomplete requirements may

lead to spurious tests

Bugs in test design or test drivers are

equally hard to find

Expected output for certain test cases

might be hard to determine

Conclusion

■ Complete testing is impossible

– There is no simple answer for this.

– There is no simple, easily automated,

comprehensive oracle to deal with it.

– Therefore, testers live and breathe tradeoffs.

