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Abstract Execution logs are debug statements that developers insert into their code. Exe-
cution logs are used widely to monitor and diagnose the health of software applications.
However, logging comes with costs, as it uses computing resources and can have an impact
on an application’s performance. Compared with desktop applications, one additional
critical computing resource for mobile applications is battery power. Mobile application
developers want to deploy energy efficient applications to end users while still maintain-
ing the ability to monitor. Unfortunately, there is no previous work that study the energy
impact of logging within mobile applications. This exploratory study investigates the energy
cost of logging in Android applications using GreenMiner, an automated energy test-bed
for mobile applications. Around 1000 versions from 24 Android applications (e.g., CAL-
CULATOR, FEEDEX, FIREFOX, and VLC) were tested with logging enabled and disabled.
To further investigate the energy impacting factors for logging, controlled experiments on
a synthetic application were performed. Each test was conducted multiple times to ensure
rigorous measurement. Our study found that although there is little to no energy impact
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when logging is enabled for most versions of the studied applications, about 79% (19/24) of
the studied applications have at least one version that exhibit medium to large effect sizes
in energy consumption when enabling and disabling logging. To further assess the energy
impact of logging, we have conducted a controlled experiment with a synthetic application.
We found that the rate of logging and the number of disk flushes are significant factors of
energy consumption attributable to logging. Finally, we have examined the relation between
the generated OS level execution logs and mobile energy consumption. In addition to the
common cross-application log events relevant to garbage collection and graphics systems,
some mobile applications also have workload-specific log events that are highly correlated
with energy consumption. The regression models built with common log events show mixed
performance. Mobile application developers do not need to worry about conservative log-
ging (e.g., logs generated at rates of≤ 1 message per second), as they are not likely to impact
energy consumption. Logging has a negligible effect on energy consumption for most of the
mobile applications tested. Although logs have been used effectively to diagnose and debug
functional problems, it is still an open problem on how to leverage software instrumentation
to debug energy problems.

Keywords Logging · Energy consumption · Android

1 Introduction

Execution logs are generated by output statements (e.g., System.out.println or
printf) that developers insert into their source code. Execution logs record the run-time
behavior of the application ranging from scenario executions (e.g., “Browsing scenario
purchase for user Tom”) to error messages (e.g., “Database deadlock encountered”) and
resource utilization (e.g., “20 out 150 worker threads idle”). Software developers, testers
and operators leverage logs extensively to monitor the health of their applications (Xu et al.
2009a), to verify the correctness of their tests (Jiang et al. 2008) and to debug execution
failures (Yuan et al. 2010; Yuan et al. 2011). To cope with these tasks, there are many open
source and commercial log analysis and monitoring frameworks available for large-scale
server applications (e.g., Chukwa 2015, Splunk 2015, and Logstash 2015).

Excessive logging could cause additional overhead inducing higher resource utilization
or worse run-time performance (Grabner 2012). For example, Google has shown that turn-
ing on the full logging would slow down their systems’ run-time by 16.7% (Sigelman et al.
2010). Developers, testers, and system administrators are concerned about the impact of
logging on their applications (Fedotyev 2014). This is also the case for mobile application
developers (JoJo 2015; Jay http://tinyurl.com/ncf2nl9; Jay 2015). Compared with desktop
applications, one of the additional critical computing resources for mobile applications is
battery power. Mobile application developers (short for app developers) want to deploy
energy efficient applications to end users while still maintaining the ability to monitor and
debug their applications using logs. However, the energy impact of logging on mobile appli-
cations is not clear to the developers. When one app developer asked whether logging would
drain the battery for Android phones, on the Stack Overflow forum (Sandalone 2015), he
received three conflicting responses: “yes”, “no”, and “it depends”. This lack of defini-
tive response is similar to the disagreement between practitioners on energy consumption
questions observed by Pinto et al. (2014).

http://tinyurl.com/ncf2nl9
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In this paper, we have studied the energy impact of logging on Android applications using
the GreenMiner (Hindle et al. 2014). The GreenMiner is an automated test-bed for studying
the energy consumption of mobile applications. It automatically tests the mobile appli-
cations while physically measuring the energy consumption of mobile devices (Android
phones). The measurements are automatically reported back to developers and researchers.
Using the GreenMiner the following three research questions are studied to assess the
energy impact of logging on mobile applications:

– RQ1: What is the difference in energy consumption for Android applications with
and without logging?

This research question investigates whether the energy consumption of an Android
application would be different when enabling and disabling logging. Around 1000 ver-
sions from 24 real-world Android applications, including Calculator, FeedEx,
Firefox, and VLC, were studied.

– RQ2: What are the factors impacting the energy consumption of logging on
Android applications?

This research question aims to identify the important factors in logging that impact
software energy consumption. Controlled experiments were conducted to investigate
two factors of logging energy consumption: log message rate and log message size. In
addition, the relationship between energy consumption and the number of disk flushes
was analyzed.

– RQ3: Is there any relationship between the logging events and the energy con-
sumption of mobile applications?

This research question explores the relationship between log events and software
energy consumption to see if some log events are more correlated with energy con-
sumption than others. Data analyzes, like correlation and multiple linear regression,
were carried out to study the relationship between events recorded in logs and mobile
energy consumption.

The contributions of this paper are summarized as follows.

1. To the best of our knowledge, this is the first work that proposes a systematic approach
to study the energy impact of logging on mobile applications.

2. The findings of this paper were based on an extensive set of measurements/experiments
(approximately 70 days of testing time), which includes a wide variety of Android
applications with logging enabled and disabled, and a controlled experiment with vary-
ing logging rates and message sizes. Each experiment was repeated multiple times to
avoid measurement bias and errors.

3. We provide evidence for developers that they need not worry about impacting energy
consumption of their mobile applications if they conservatively employ logging.

4. To encourage replication and further study on this important topic, we have disclosed
our dataset and source code for our analysis in our replication package. We believe
such data can be very useful for software engineering researchers and app developers
(Replication Package Android Logcat Energy Study 2017).

The rest of this paper is organized as follows: Section 2 provides some background infor-
mation on logging and the GreenMiner. Sections 3, 4 and 5 discuss the research questions
RQ1, RQ2, and RQ3, respectively. Section 6 discusses the threats to validity. Section 7
explains the prior works in the area of mobile energy analysis and execution logs. Section 8
concludes this paper.
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2 Background

This section provides the background information on software logging. It is broken down
into three parts. First, we discuss the general approaches for software instrumentation. Then,
we explain how logging is realized in Android applications. Finally, a brief description of
our automated energy test-bed for mobile applications, GreenMiner, is provided.

2.1 General Approaches for Software Instrumentation

Execution logs are generated by the instrumentation code that developers insert into the
source code. Execution logs are widely available for software systems to support remote
issue resolution and to cope with legal compliance (Sarbanes-Oxley Act 2002). There are
three types of instrumentation approaches (Woodside et al. 2007):

– Ad-hoc logging: Developers insert logging in an ad-hoc manner using output methods
such as print statements like System.err.println. Although this is the easiest
approach to instrument, unexpected side effects might happen if one is not careful. For
example, logs lines can be garbled if there are multiple threads trying to output log lines
to the same file using I/O methods that are not thread-safe.

– Systematic logging: The general purpose instrumentation frameworks (e.g., Log4j
2015) address the limitations of the ad-hoc logging approach, as the frameworks sup-
port thread-safe logging. In addition, these frameworks provide better control of the
types of information outputted. For example, the Log4J framework provides multiple
verbosity levels: ERROR, WARN, INFO, DEBUG, and VERBOSE. Each of these ver-
bosity levels can be used for different software development activities. For example,
implementation level details can be logged using DEBUG or VERBOSE level, whereas
critical errors should be logged under the ERROR level. When deploying a particu-
lar application, a verbosity level should be set. For example, if the verbosity level is
set to be DEBUG, all the logs instrumented with DEBUG and higher (a.k.a., ERROR,
WARN, INFO) are printed whereas lower level logs (a.k.a., VERBOSE) are discarded.

– Specialized logging: There are also instrumentation frameworks available to facilitate
special purpose logging. For example, it is easier to instrument the system using the
ARM (Application ResponseMeasurement) framework (Group ) to gather performance
information from the running application, than to manually instrument the system.

2.2 Android Logging

Android handles application logs similar to how UNIX handles syslog logs. Calls to the
Android logging API (Android Open Source Project 2015) write logs to a circular buffer
in memory. This buffer can be ignored or dumped to disk. Periodic writing of logs can
lead to log rotation where old logs are renamed and kept until too many logs are allocated.
While running the Android applications, the circular buffer could be filled causing it to
periodically dump the logging data to the disk, these dumps or writes are referred to as
disk flushes. Different mobile phones can have different buffer sizes (e.g., 256 KB or 512
KB). To collect and filter logs for Android applications, there is a utility called logcat
(2015). Similar to Log4j, the Android API for logging (Android Open Source Project 2015)
provides multiple verbosity levels. Table 1 shows a set of sample log lines from the Android
CALCULATOR application. At the beginning of each log line, there is a letter (e.g., “I/” or
“D/”). These letters correspond to different verbosity levels. “I/” corresponds to the INFO
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Table 1 Sample log events from the CALCULATOR application

# LOG LINES

1 I/ActivityManager(387): START u0 flg = 0×10000000 cmp = com.android2.

calculator3/.Calculator from pid 21740

2 D/dalvikvm(21750): GC CONCURRENT freed 177K, 3% free 8922K/9128K,

paused 2 ms + 3 ms, total 18 ms

3 D/libEGL (21750): loaded /vendor/lib/egl/libEGL-POWERVR-SGX540-120.so

4 D/OpenGLRenderer(21750): Enabling debug mode 0

5 I/ActivityManager(387): Displayed com.android2.calculator3/.Calculator: + 643 ms

6 I/WindowState(387): WIN DEATH: Window(41e6d7c8 u0 com.android2.

calculator3/.Calculator)

7 I/ActivityManager(387): Force stopping package com.android2.calculator3

appid = 10062 user = 0

level logs and “D/” to the DEBUG level logs. The words after the verbosity level show the
components where the logs are generated. For example, the first log line is generated by the
ActivityManager component from the calculator application. The second log line is
generated by the dalvikvm component, which is the Java Virtual Machine used by the
Android operating system.

When released, ERROR, WARN, and INFO level logs are printed for Android applica-
tions. Logging for Android applications can also be completely disabled. The following are
mechanisms to enable and disable logging for Android applications:

– Logging Enabled: First, the log buffer is cleared with the command logcat -c
(2015). Then, the following command is invoked to redirect the log output of a
particular application to a log file (logcat.txt) on the SD card.

logcat -d | grep -e $PID -e \
net.fred.feedex > /sdcard/logcat.txt

– Logging Disabled: The configuration shown below was added to the build.prop
file in the /system folder of the smartphones. The /dev/log folder was removed,
along with all its contents.

logcat.live = disable

2.3 GreenMiner

To measure the energy consumption of the selected Android applications, we used the
GreenMiner framework (Hindle et al. 2014). The GreenMiner has been widely used and
accepted in the software energy research community. There are many published works on
energy research that used the GreenMiner as their energy measurement tool (Hasan et al.
2016; Chowdhury et al. 2016; Chowdhury and Hindle 2016b; Hindle et al. 2014; Romansky
and Hindle 2014; Aggarwal et al. 2014, 2015).

The GreenMiner is a hardware-based energy measurement system that operates 4
Android Galaxy Nexus phones in parallel. Table 2 shows the detailed hardware and software
specifications for these phones. These phones are used as the systems under test and are
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Table 2 Specs of the Samsung
Galaxy Nexus phones used for
the experiments

Component Specs

OS Ice Cream Sandwich, 4.4.2

CPU Dual-core 1.2 GHz Cortex-A9

GPU PowerVR SGX540

Memory 16 GB, 1 GB RAM

Display AMOLED, 4.65 inches

WLAN Wi-Fi 802.11 a/b/g/n

controlled by 4 different Raspberry Pi model B computers. Each Pi acts as a test manager
for one single phone. It deploys and runs tests, collects energy measurements, and uploads
the results to a central server. When a batch of tests are submitted to the GreenMiner, one
of the four phones are selected randomly to execute a test. In this way four tests can be exe-
cuted in parallel, enabling the expedient evaluation of experiments, reducing data collection
time significantly. It is important to note that after completing a test for an app, the Green-
Miner uninstalls the app and deletes app related data. This is to make sure that each test run
is independent and is not affected by any of the previous test runs.

A constant voltage of 4.1 V, from a YiHua YH-305D power supply, was first passed
through an Adafruit INA219 breakout board, and then to an attached phone. The pins, where
the phone’s battery is usually attached, were wired to receive energy from the power supply.
This voltage and amperage were reported to an Arduino Uno by the INA219. The INA219
(Texas Instruments, Dallas, USA 2015) relies on a shunt resistor to measure changes in
amperage. The Arduino Uno then delivers the readings to a Pi through a serial USB connec-
tion. Figure 1 depicts the innards of the GreenMiner (one out of the four identical settings).
For a more detailed GreenMiner methodology and architecture, please refer to Hindle et al.
(2014) and Rasmussen et al. (2014).

As energy measurements can vary slightly between different runs for the same tests, it
has been a common practice in software energy research to run each test at least 10 times, to
achieve acceptable statistical power, and to report average measurements (Chowdhury and
Hindle 2016b; Chowdhury et al. 2016; Aggarwal et al. 2014; Hasan et al. 2016).

We measure energy consumption by the integration of power (watts) over time. This
energy measurement is called joules (J). Joules are typically stored within a mobile device
battery when it charges, and are expended for computation, communication, and peripherals
while the device is in operation. 1 joule is 1 watt-second. The phones we use typically
consume 0.7 J per second while idle with the screen on, and 1.5 J to 3 J per second when
very busy with the screen on. Thus the difference of 10 J between 2 test runs could be
due to 14 seconds of runtime or a few seconds of high CPU workload difference. All the
measurements of energy consumption in this paper are in joules.

3 RQ1: What is the Difference in Energy Consumption for Android
Applications With and Without Logging?

3.1 Motivation

On one hand, execution logs can bring insights about the run-time behavior of mobile appli-
cations. On the other hand, should app developers be concerned about the potential energy
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Fig. 1 GreenMiner consists of an Arduino, a breadboard with INA219 chip, a Raspberry Pi, a USB hub,
and a Galaxy Nexus phone connected to a Power Supply. Photo used with permission from the Green Miner
paper (Hindle et al. 2014)

overhead of logging on their applications? The energy impact of execution logs on 24
real-world Android applications is examined in this section.

3.2 Experiments

In order to draw a reliable conclusion on how logging impacts energy consumption of
existing apps, we experimented with 24 Android applications from different domains (e.g.,
Games, Entertainment, Communication, News, and Utility). To capture the general behavior
of each studied application, multiple versions for each application are studied. One version
in this paper refers to one binary compiled from one distinct commit from a source code
repository, or one compiled binary released by the project. For example, we have studied
46 code commit versions (a.k.a., 46 versions) for the VLC app. The source code for the
multiple versions of these 24 applications are part of the GreenOracle dataset collected by
Chowdhury and Hindle (2016b).

Software changes over time. The logging changes of some versions of an app may con-
sume much more energy than the other versions. Hence, it is worthwhile to study a number
of versions for the same application. Another important aspect of studying the energy impact
of logging is that writing test cases manually is difficult. But if we use multiple versions
of the same app (versions with identical user interface) then writing a single test script is
enough for all the versions. This can enlarge the size of our measurements and thus allows
more reliable analysis. Out of the 24 Android applications in GreenOracle dataset, we had
to exclude YELP from our analysis, as this particular application disables logging inter-
nally. We included one more application (FEEDEX with 35 versions) in our dataset as a
compensation. Table 3 shows the details of the studied Android applications.

Figure 2 illustrates the process for this study. For each version of the selected applica-
tions, we measured the energy consumption with logging enabled and disabled with one
realistic test case per app. A test scenario for an application, which is automated by a test
script written in Android adb shell, simulates how an average user would use the appli-
cation. For example, the FEEDEX first adds RSS feeds from Google News. Then it emulates
a normal user opening and reading the first two RSS feeds. The CALCULATOR application
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Table 3 The applications under test, selected from the GreenOracle (Chowdhury and Hindle 2016b) dataset

Categories App App # of Versions and Repo

Names Descriptions Committed time

Games 2048 Puzzle game 44 GitHub

(03/2014–08/2015)

24game Arithmetic game 1 F-Droid

(01/2015–01/2015)

Agram Anagrams 3 F-Droid

(03/2015–10/2015)

Blockinger Tetris game 74 GitHub

(04/2013–08/2013)

Bomber Bombing game 79 GitHub

(05/2012–11/2012)

Vector Pinball Pinball game 54 GitHub

(06/2011–03/2015)

News FeedEx Reading news feeds 35 GitHub

(05/2013–04/2014)

Exodus Browse 8chan 3 GitHub

(01/2010–04/2015)

Eye in the Sky Weather app 1 Google Play

(09/2015–09/2015)

Entertainment Acrylic Paint Finger painting 40 GitHub

(03/2012–09/2015)

Memopad Free-hand Drawing 52 GitHub

(10/2011–02/2012)

Paint Electric Sheep Drawing app 1 Google Play

(09/2015–09/2015)

VLC Video player 46 GitHub

(04/2014–06/2014)

References AndQuote Reading quotes 21 GitHub

(07/2012–06/2013)

Wikimedia Wikipedia mobile 58 GitHub

(08/2015–09/2015)

Communication ChromeShell Web Browser 50 APK repository

(03/2015–03/2015)

Face Slim Connect to Facebook 1 F-Droid

(11/2015–11/2015)

Firefox Web browser 156 APK repository

(08/2011–08/2013)

Business Budget Manage income/expenses 59 GitHub

(08/2013–08/2014)

Calculator Calculations 97 GitHub

(01/2013–05/2013)

GnuCash Money Management 16 GitHub

(05/2014–08/2015)
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Table 3 (continued)

Categories App App # of Versions and Repo

Names Descriptions Committed time

Temaki To do list 66 GitHub

(09/2013–07/2014)

System Utilities DalvikExplorer System information 13 code.google

(06/2012–01/2014)

Sensor Readout Read sensor data 37 GitHub

(03/2012–03/2014)

test converts miles to kilo-meters, calculates tax amounts, and solves an equation using the
quadratic formula.

Table 4 shows the list of test scenarios for all the applications. The test scenarios and the
test duration are the same across different versions of the same application. For example, a
single FEEDEX test (with or without logging), lasts for 100 seconds. Table 4 also shows the
average number of log lines per test run, the average test duration in seconds, the average
logging rate (events per second), and the joules consumed with logcat enabled (logging
enabled) and logcat disabled (logging disabled).

For both logging conditions (logging enabled and disabled), the experiments were
repeated 10 times (for each version) to address measurement error and random noise
(Georges et al. 2007; Kalibera and Jones 2013). For an approximate average test duration
of five minutes (including uploading data to a server after each test), it took around 70 days
to run and collect all the measurements from GreenMiner. All of these measurements were
then used to compare the energy consumption between logging enabled and disabled.

3.3 Analysis

For the logging enabled tests, the log files have on average 142 log lines, ranging from 12
messages to 1080 messages per test run. The average test duration can last from 52 sec-
onds (ANDQUOTE) to 210 seconds (FIREFOX). We will perform a two-step analysis on the
energy measurement data. First, we will perform a hypothesis testing to examine whether
the energy consumption with and without logging for each version of the app is different.

Mobile
App

Execute 
Scenario

Deploy
App

Calculate 
Effect Sizes

Version 
1

Execute 
Scenario

Enable Logging

Disable Logging.
.
.

Mobile
App

Execute 
Scenario

Report 
Findings

Deploy
App

Calculate 
Effect Sizes

Version 
n

Execute 
Scenario

Enable Logging

Disable Logging

Fig. 2 Process to investigate the energy impact of logging (RQ1)
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Table 4 Test scenarios and test results for the selected Android applications

App Test Avg # of Avg Test Avg Rate Avg Energy(J) with

Names Scenarios log lines Duration of Logging logcat logcat

Enabled Disabled

2048 Makes some 15.737 60.008 0.262 58.369 59.057

random moves

24game Randomly tries 110.000 80.014 1.375 85.816 84.407

different numbers

Acrylic Paint Draws a hexagon 24.621 95.011 0.259 82.838 83.998

with legs

Agram Generates anagrams 46.447 77.006 0.603 75.299 74.985

(single and multiple)

AndQuote Reads a series 24.265 52.003 0.467 44.671 44.473

of famous quotes

Blockinger Repositions/rotates 58.715 150.002 0.391 197.315 197.984

blocks randomly

Bomber Drops bombs 194.091 130.008 1.493 170.483 170.826

at fixed intervals

Budget Inserts and calculates 101.684 125.010 0.813 113.017 113.007

expenses

Calculator Converts units, calculates 24.413 125.008 0.195 107.781 107.062

taxes, and solves equations

ChromeShell Opens a webpage 153.224 100.010 1.532 106.621 107.049

and scrolls

DalvikExplorer Reads the system’s 20.799 80.004 0.260 65.750 65.591

information

Exodus Reads threads from 239.297 84.012 2.848 96.981 96.001

different topics

Eye in the Sky Looks for the current 182.583 130.008 1.404 116.768 119.310

temperature in Edmonton

Face Slim Connects to Facebook 24.500 60.009 0.408 65.935 66.571

homepage and access

the help page

FeedEx Adds and reads feeds 94.451 100.000 0.945 95.430 92.956

from Google News

Firefox Opens a webpage 75.325 210.004 0.359 213.679 211.544

and scrolls

GnuCash Creates an account 90.810 75.012 1.211 76.150 76.713

and saves transactions

Memopad Draws a hexagon 17.966 95.011 0.189 79.649 79.908

with legs

Paint Electric Draws a hexagon 30.000 60.007 0.500 56.296 57.601

Sheep with legs
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Table 4 (continued)

App Test Avg # of Avg Test Avg Rate Avg Energy(J) with

Names Scenarios log lines Duration of Logging logcat logcat

Enabled Disabled

Sensor Readout Shows graphs for 166.220 182.998 0.908 176.278 177.226

different sensor reads

Temaki Makes a TODO 12.244 75.010 0.163 72.373 72.189

list, updates and

deletes the list

Vector Pinball Throws the ball 17.340 120.009 0.144 116.359 116.700

several times and

tires to hit the

ball randomly

VLC Plays a fireworks 1,079.676 110.010 9.814 116.464 117.460

.3gp video

Wikimedia Searches for the 169.783 120.011 1.415 160.015 160.171

Bangladesh page

and scrolls

Then we will study the magnitude of the differences (a.k.a., effect sizes) to help quantify
the size of the differences.

Comparing the Differences Between Two Groups Some of the measured energy dis-
tributions are not always normally distributed, according to the Shapiro-Wilk normality test.
Hence, we will use non-parametric tests throughout this paper. Different from parametric
tests, non-parametric tests do not have any underlying assumptions of the distribution of
the data being analyzed. For each version of the mobile applications, the Wilcoxon Rank
Sum test is performed to check whether the differences in energy consumption between the
cases of logging enabled and disabled are statistically significant. Table 5 shows the results
of these tests.

Given α = 0.05, p ≤ 0.05 means that there is a statistical difference in the energy
consumption between the logging enabled and logging disabled tests, whereas p > 0.05
means otherwise. We also correct for multiple comparisons/hypotheses using the Benjamini
and Hochberg method (Benjamini and Hochberg 1995) which attempts to control the false
discovery rate. Most applications (e.g., 2048 and ANDQUOTE) do not have statistical differ-
ences in terms of energy consumption in any of their versions between the logging enabled
and disabled tests. However, for some other applications (e.g., FEEDEX and ACRYLIC

PAINT), many of their versions exhibit statistical differences between the logging enabled
and disabled tests. Figure 3 depicts the p-values per application per version comparing log-
ging enabled (logcat enabled) and logging disabled tests. Only 4 out of 24 applications
exhibit cases where their energy consumption in the logging enabled and disabled tests are
statistically significantly different after correction for multiple hypotheses.
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Table 5 Wilcoxon Rank Sum Tests (α = 0.05) comparing energy consumption between logging enabled
versus disabled per version

App % versions Mean Effect sizes

Names with p ≤ 0.05 Cliff’s δ % Negligible % Small % Medium % Large

2048 0.000 − 0.165 40.909 31.818 20.455 6.818

24game 0.000 − 0.077 100.000 0.000 0.000 0.000

Acrylic Paint 7.500 − 0.439 5.000 17.500 35.000 42.500

Agram 0.000 0.038 33.333 66.667 0.000 0.000

AndQuote 0.000 0.127 47.619 23.810 19.048 9.524

Blockinger 0.000 − 0.085 41.892 37.838 14.865 5.405

Bomber 0.000 − 0.120 34.177 46.835 13.924 5.063

Budget 0.000 − 0.080 40.678 44.068 8.475 6.780

Calculator 3.093 0.352 21.649 22.680 22.680 32.990

ChromeShell 0.000 − 0.159 32.000 42.000 22.000 4.000

DalvikExplorer 0.000 − 0.073 53.846 38.462 0.000 7.692

Exodus 0.000 0.340 33.333 0.000 33.333 33.333

Eye in the Sky 0.000 − 0.375 0.000 0.000 100.000 0.000

Face Slim 0.000 − 0.319 0.000 100.000 0.000 0.000

FeedEx 54.286 0.612 8.571 5.714 14.286 71.429

Firefox 0.000 0.152 34.615 37.179 19.872 8.333

GnuCash 0.000 − 0.147 37.500 18.750 37.500 6.250

Memopad 0.000 − 0.187 34.615 36.538 17.308 11.538

Paint Electric Sheep 0.000 − 0.597 0.000 0.000 0.000 100.000

Sensor Readout 0.000 − 0.085 43.243 37.838 16.216 2.703

Temaki 0.000 − 0.028 43.939 39.394 12.121 4.545

Vector Pinball 0.000 − 0.047 40.741 35.185 20.370 3.704

VLC 4.348 − 0.294 15.217 45.652 13.043 26.087

Wikimedia 0.000 − 0.123 43.103 36.207 12.069 8.621

Overall (paired) p = 0.3748 0.0139 (Negligible)

p ≤ 0.05 means that there is a statistically significant difference in the energy consumption between logging
enabled and disabled, whereas p > 0.05 means otherwise. Cliff’s δ magnitude across applications versions
is from Hlavac (2015)

Effect Sizes Although the Wilcoxon rank sum test can examine whether there is a statis-
tical difference in terms of energy consumption between the logging enabled and disabled
tests, it cannot quantify the magnitude of the differences. Hence, Cliff’s δ (Cliff’s delta)
is used to calculate the differences of energy consumption for logging enabled and dis-
abled tests. Cliff’s δ is a non-parametric effect size measure that quantifies the proportional
difference (or dominance) between two sets of data (Romano et al. 2006). Cliff’s δ has
four categories: negligible effect, small effect, medium effect, and large effect. Effect sizes,
which can be applied regardless of significance of a T-test or a Wilcoxon rank sum test, is
used to characterized the observed differences of the effect in the measurements (Thompson
2000). Reporting effect size is recommended in cases where there is not enough statistical
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Fig. 3 Wilcoxon Rank Sum p-values per application of energy consumed with logging and without log-
ging. p-values less than 0.05 indicate that logging enabled and logging disabled consumed different amounts
of energy. p-values were corrected for multiple hypotheses using Benjamini and Hochberg correction
(Benjamini and Hochberg 1995)

power (Neill 2008). For instance given the number of repeated tests and given the number of
hypotheses—how many times we repeated a statistical test—the critical value will be low.
This means in order to be conservative enough to reduce false positive rates the p-value cor-
rection will make the multiple Wilcoxon rank sum tests quite conservative. This effectively
turns the Wilcoxon rank sum test into a measure of sample size, but the effect still remains.
Thus we report effect sizes to give the reader an idea of the differences between logging and
not logging within the data, regardless of statistical significance.

Table 5 tabulates the effect size values, Cliff’s δ, for different versions of the Android
applications. For example, in Table 5, the values of Cliff’s δ show that 21% of the versions
of the CALCULATOR application have negligible effect, 23% of versions with small effect,
another 23% versions with medium effect, and the remaining 33% of versions with large
effect. In addition to the CALCULATOR application, there are five other applications that
have more than half of their versions exhibit medium to large effect sizes.

Thus based on these observations, we want to statistically verify the effect of logging on
applications. Between applications, aggregated by averaging joules across versions, we find
that with the paired Wilcoxon signed rank test there is no statistically significant difference
between enabling and disabling logcat across these applications (p = 0.3748 and p > α).
The effect size, over all applications, according to Cliff’s δ is negligible (0.0139). The paired
Wilcoxon signed rank test is used because the samples are related and paired (e.g., mean
joules of FIREFOX with logging, and mean joules of FIREFOX without logging).

The results show that the differences in energy consumption are not statistically sig-
nificant for most versions of the studied 24 applications. Furthermore, within the same
applications we find that the effect of enabling or disabling logging is typically statistically
insignificant and of negligible to small magnitude. However, 79% (19/24) of the studied
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applications have at least one version with medium to large effect sizes in terms of the
differences of energy consumption when enabling and disabling logs.

In order to have more insight into the impact of logging on energy consumption, we
select FEEDEX, an application in our dataset, which shows not only statistically differ-
ent energy measurements between logging enabled and disabled tests (in 54% versions),
but also have 71% versions with large effect size. For instance, there is a big difference
(≈ 10 joules) in terms of energy consumption between logging enabled and disabled tests
for the version 1.6.0. Compared to the previous versions, there were 178 more Dalvikvm
WAIT FOR CONCURRENT GC log lines and 224 more Dalvikvm GC CONCURRENT
log lines. These logs are related to the memory management of the applications. This ver-
sion of the FEEDEX app, seemed to suffer from memory bloat issues and produces a larger
log file than its predecessor.

Figure 4 shows the energy consumption of FEEDEX over time, for both logging enabled
and disabled tests. It is clear that the later versions are more energy inefficient than their
predecessors. Figure 5 shows the energy consumption for the FEEDEX versions against the
number of log lines. With few exceptions, we observe a monotonous increase in energy
consumption with the increase in logging. This suggests that with more information in log
files, one could investigate what types of log events can impact the energy consumption, and
thus motivated us for RQ3. However, the energy differences between logging and no log-
ging do not show any consistent pattern with the increase in log messages. With randomly
selected real-world applications, there can be many factors that can significantly impact the
energy consumption (Chowdhury and Hindle 2016b; Pathak et al. 2011; Wang et al. 2014)
of Android applications. Such uncontrolled tests can indicate if logging matters or not, but
cannot offer an accurate estimation of the impact of logging on energy consumption.

These results indicate the need for a more controlled experiment—to show how much
logging can be harmful in terms of energy consumption. We did not have control over
the development of these applications and their use of logging. Furthermore, high logging
rates (a.k.a., consistent logging rates faster than 20 msg/sec) were not observed from these
applications and tests. Hence, in the next RQ (Section 4), we will study the factors impacting

Fig. 4 FeedEx Energy consumption over time. Versions 32 to 35 exhibit very different energy profiles
compared to the previous versions
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Fig. 5 Energy consumption against the number of log lines across different FeedEx versions. The graph
depicts 2 measurements and the lines connects between adjacent versions. The line depicts how the FeedEx
versions move through the space of log length and energy consumption. Essentially consecutive FeedEx
versions use more and more energy

the energy consumption of logging on Android applications using controlled experiments
and with various logging rates.

3.4 Summary

Findings: The energy consumption between logging enabled and disabled tests are not
statistically significant for most versions of the studied mobile applications. However,
approximately 79% of the studied applications have at least one versions with effect
sizes larger than or equal to medium. Internal factors such as memory management
issues are the causes behind the energy increases correlated with logging.
Implications: Logging usually does not have a noticeable impact on the energy con-
sumption of Android applications, although in some cases it can. Developers should be
careful when adding additional instrumentation code, yet still leveraging this valuable
debugging tool. Characterizing the best practices on making energy-efficient logging
decisions in mobile applications is still an open research problem.

4 RQ2: What are the Factors Impacting the Energy Consumption
of Logging on Android Applications?

4.1 Motivation

Currently, there are few guidelines regarding logging on mobile devices and logging’s
energy impact for mobile developers to follow. It is not clear to mobile developers howmuch
they can log and how often. This section seeks to provide some insights into this aspect of
logging and energy consumption.
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4.2 Experiments

There are three orthogonal factors that can potentially impact the energy consumption of
logging: (1) the rate of logging, (2) the size of log messages, and (3) the number of disk
flushes. The rate of logging and the size of log messages can be controlled by the individual
applications, but not the number of disk flushes. Depending on the volume of the logs and
the buffer size, the number of disk flushes can vary. The volume of the logs (a.k.a., the size
of the log file) depends both on the rate of logging and the size of log messages. Bigger log
messages and more frequent logging lead to higher volumes of logs. The buffer size varies
depending on the mobile phones. Our test-bed uses Android phones with 256 KB circular
buffer sizes. The disk flush happens when the buffer gets filled up.

It is not easy to investigate the energy impacting logging factors with real-world applica-
tions. First, isolating the pure energy costs for logging is difficult; these applications interact
with other components that also consume energy (e.g., radio and screen). Second, unstable
logging rates and log size with real-world applications hinder controlled experiments.

Hence, we have built a test Android application to assess the energy-impacting factors
for logging. Our test application, which consists of only the MainActivity and a JUnit
test case, performs only one task: generating logs at different rates and with different mes-
sage sizes. For each test, the operations are the same: the MainActivity is launched.
Then the application starts to generate log messages of a specific size at a specific rate for
120 seconds and stops. The duration of 120 seconds is chosen to help stabilize measure-
ments against unexpected CPU frequency switches. By the first 60 seconds of the test, the
CPU frequency should be appropriately set for the logging workload. Table 6 lists the set
of different message rates and message sizes that were run. For each of the specified mes-
sage rates and sizes, the rationale is also included. For example, app developers might be
interested in printing and storing stack traces or packet dumps in a log file. A typical stack
trace is around 8192 bytes (8 KB) and a typical Ethernet packet is 1536 bytes (1.5 KB). If
one loggedUI level events, theUI events are usuallygenerated at a rate of 1 to 5 events per second.

Much like RQ1, each experiment was repeated multiple times (40 times) to avoid mea-
surement errors and random noise (Georges et al. 2007; Kalibera and Jones 2013). It took
70 hours in total to run these tests. The testing results are gathered for further analysis.

4.3 Analysis

The average energy consumption of each test is calculated. The data is grouped according
to the rate of the logging (a.k.a, msg/sec). The average energy consumed for the idle tests

Table 6 Controlled experiments with varying logging rates and message sizes

Logging rate Message size

Rate (msg/sec) Rationale Size (bytes) Rationale

0.01 infrequent logging 64 a single line of text

0.10 browsing UI level logging 512 a medium sized line of text

1.00 UI event level logging 1024 a URL sized line of text

10.00 network traffic level logging 1536 maximum ethernet data frame size

100.00 printf debugging logging 2048 a large log message

1000.00 very frequent logging 8192 an exceptionally large log message
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(a.k.a., generating zero msg/sec) is used as the baseline in order to track the percentage
increase in terms of energy consumption for the log generating tests. Table 7 shows the
results. For example, there is a 0.2% energy increase under 0.01 msg/sec with 64 bytes as
the message size.

In fact, for 10 msg/sec there is a very small energy increase (≤ 2.46%), with the largest
message size. However, the impact is significant with larger message rates. As the logging
rate increases to 100 msg/sec, the increase in the energy consumption ranges from 8.26% to
14.20% for different message sizes. For 1000 msg/sec, the increase of the energy consump-
tion can go up to 75.47%. Another interesting observation is that the energy increase for 10
msg/sec and 8 KB message size is much smaller than 100 msg/sec and 64 byte message size
(2.46% vs. 8.26%), even though the unit volume of the generated logs are much higher (80
KB/sec vs. 6.25 KB/sec). Evidently, logging rate is a more dominant factor than message
size for energy consumption

For further verification, we apply factor analysis to verify the importance of message
size and log rate. Kruskal-Wallis (Kruskal-Wallis X2) tests are performed to check whether
the factors of logging rates and the message sizes have statistically significant impacts on
the energy consumption. Kruskal-Wallis test is a non-parametric statistical test for checking
whether the measurements of 3 or more groups, under different kinds of treatments, come
from the same distribution. We test 2 factors independently: logging rates and logging mes-
sage sizes. We correct for multiple/hypotheses with the Benjamini and Hochberg method
(Benjamini and Hochberg 1995). Logging rate was a significant factor (p < 2.2e − 16) for
energy consumption. Although the message size is also statistically significant factor, the
p-value (p < 0.0471) is very close to our α (α = 0.05). In fact, when we test with the
pairwise Wilcoxon rank sum test between the message sizes, corrected using Benjamini and
Hochberg, we find no statistically significant differences in energy consumption between
distributions of different message sizes (p > α). Yet a pairwise Wilcoxon rank rum test
shows there are statistically significant differences (p ≤ α) for all log rate comparisons
except for 2 comparisons of log rates of 0.01 to 0.1 and log rates of 0.1 to 1.0. The simi-
lar distributions of energy consumption at low frequency log rates also helps to explain the
mild inconsistency in trend observed in energy consumption with the message sizes.

In order to better understand the relationship between the message size and the energy
consumption, we calculate the Pearson correlation coefficient between them—an indicator
of a linear relationship between two random variables. The correlation coefficient is low
(only 0.17 with p ≈ 0) when the message rate is not fixed. However, with fixed and high
message rate (e.g., 100 msg/sec), the correlation is high (0.72 with p ≈ 0). This is also
consistent when the message rate is fixed at 1000 msg/sec. These observations corroborate

Table 7 Percentage growth rates of energy consumption (joules) for the log generating tests. All the
calculations below used the energy consumption of the idle tests as the baseline

msg/sec 64 bytes 512 bytes 1 KB 1.5 KB 2 KB 8 KB

0.01 0.20% 0.21% 0.18% 0.51% 0.28% 0.37%

0.10 0.27% 0.31% 0.38% 0.73% 0.30% 0.61%

1.00 0.65% 0.64% 0.70% 0.99% 0.64% 0.90%

10.00 1.38% 1.59% 1.71% 2.16% 1.91% 2.46%

100.00 8.26% 8.48% 9.23% 10.33% 10.55% 14.20%

1000.00 27.88% 30.66% 36.50% 45.14% 48.26% 75.47%
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the results in RQ1 whereby most differences were not statistically significant as the message
sizes and logging rates in RQ1 were often low.

We observe that with the increase in logging rate energy consumption also increases; but
the same does not apply for message size. However, in case of heavy logging both the rate
and the size become significant factors toward energy consumption. This also explains the
observed inconsistencies in Table 7. One would expect that with the increase in message
size, the energy consumption would also increase. However, no such trend is observed from
Table 7 when the message rate is low. For instance, the energy increase in joules for 10
msg/sec with 1.5 KB message size is 2.16%, which is higher than 2 KB message size with
the same rate (1.91% increase). This led us to evaluate if the differences in energy consump-
tion with this two settings are really different, because Table 7 only shows the increase in
percentage considering the average of the 40 measurements for each scenario.

To investigate the difference across both factors at once, we run a handful of tests
to investigate trends depicted in Table 7. We apply the Wilcoxon rank sum test (a non-
parametric test), and found that the energy consumption between the above mentioned two
settings (10 msg/sec with 1.5 KB log message size versus 10 msg/sec with 2 KB log mes-
sage size) are not statistically different (p-value > 0.05). The difference is not statistically
significant either (p-value > 0.05) for 0.01 msg/sec with 1.5 KB log message size versus
0.01 msg/sec with 2 KB log message size. However, when the message rate is high, the dif-
ference in energy consumption with different message sizes are significant. For example,
the energy consumption differences are statistically significant (p-value < 0.05) for 1000
msg/sec with 1.5 KB log message size vs. 1000 msg/sec with 2 KB log message size. This is
another confirmation that message size only has a noticeable effect with high message rates.

We also build a linear regression model to estimate the energy consumption using the
message sizes, the logging rates, and the number of disk flushes. This further clarifies
the impact of these factors on energy consumption, as we executed the same application
that does nothing than writing log messages. The logging rates and the message sizes are
obtained from each test configuration (Table 7). The number of disk flushes can be calcu-
lated by dividing the estimated file size with the buffer size. For example, after 120 seconds
of testing, the size of the log file from the 1000 msg/sec and 1536 bytes test would be
180,000 KB. Hence, with 256 KB buffer size, the estimated number of disk flushes would
be 703. The resulting regression model is shown below as Equation 1 and has an adjusted
R-squared value of 0.87.

joules = 0.03370 × message rate

+0.00006 × message size

+0.01328 × number of disk flushes

+112.10958 (1)

This model also confirms that message rate, and subsequently the number of disk flushes
are more significant factors for energy consumption than message size. The rationale is that,
as we have already shown, with very low message rate message size does not impact the
number of disk flushes significantly.

In summary, our results suggest that mobile application developers do not need to pre-
maturely optimize and trade-off energy consumption for logging. Infrequent logging has
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limited impact on the overall energy consumption. However, if there is a need to generate large
amount of logging content, to conserve energy, it is preferable to log infrequently with larger
message sizes rather than logging frequently with smaller message sizes. This is similar to
the earlier findings (Li et al. 2016; Pathak et al. 2011; Jabbarvand et al. 2016) that bundling
smaller packets together reduces significant energy consumption in data communication.

4.4 Summary

Findings: Small amounts of logging ( 10 log messages per second) have little or
no energy impact on the mobile applications. In fact, message size does not have any
significant impact on energy when the logging rate is very low. On the other hand, both
the message rate and size are significant factors toward draining energy under heavy
logging. Under heavy logging, logging large amounts of data infrequently consumes
much less energy than frequently logging smaller amounts of data.
Implications: To conserve energy, developers should strategically instrument their
code. The preferred logging points can contain more contextual information but are less
frequently executed (e.g., avoid logging within loops or commonly called library func-
tions). When heavy logging is needed, developers should group small log messages and
write them together to conserve energy.

5 RQ3: Is There any Relationship Between the Logging Events
and the Energy Consumption of Mobile Applications?

5.1 Motivation

Are the causes of energy consumption, events correlated with energy consumption, apparent
in the log? Measuring energy consumption directly often requires both hardware instrumen-
tation and software instrumentation. It is a time-consuming process as hardware test-beds
instrumented with a power monitor must run tests multiple times to get a statistically reli-
able estimate of power use (Hindle 2013; Romansky and Hindle 2014). Moreover, such a
test-bed might be expensive for many app developers.

The execution logs are debug statements that developers inserted into their code. These
instrumentation locations are strategically selected to debug and monitor the functionalities
of the applications. The key steps (e.g., displaying the hand-drawn objects or performing
email reconciliations) during the executions are often logged and can provide us hints on
the energy consumption patterns of the applications. It would be cheaper and faster for
developers to diagnose their mobile application energy regression problems by analyzing
their log files.

This RQ investigates the feasibility in terms of using the readily available execution
logs to understand the energy consumption of mobile applications. In particular, we want
to check if there is any relationship between the logging events and the energy consump-
tion of the mobile applications. The question is what events, that get recorded in the log,
induce energy consumption. Thus, we are not seeking to truly estimate energy but we seek
to investigate the relationship between common events that get recorded in logs, and energy
consumption.
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5.2 Experiments

We do not perform additional performance testing in this RQ. Rather, we reuse the log files
and the energy measurements from RQ1. In particular, we reuse the measurements of the
log-enabled tests of the 24 Android applications, including all of the versions used.

5.3 Analysis

There are three steps involved in this analysis. First, the free-form log messages are
abstracted into log events. Second, correlations are calculated between individual log events
and energy consumption. Third, we look into the combination of variables using multiple
regression—by exhaustive model building we hope to better understand what log events
work together to consume energy.

5.3.1 Step 1 - Log Abstraction

Execution logs typically do not follow a strict format. Each log line contains a mixture of
static and dynamic information. The static information is the descriptions of the execution
events, whereas the dynamic values indicate the corresponding context of these events. For
example, the last log line in Table 1 contains static information like “I/ActivityManager”,
“Force stopping package com.android2.calculator3”, “appid” and “user”. The numbers
“387”, “10062” and “0” are likely generated during run-time.

Such free-formed log messages need to be abstracted into events so that they can be used
in automated statistical or data mining analysis. We apply the log abstraction technique
proposed by Jiang et al. (2008) to automatically map log messages to log events.

Since the same test scenario was executed for the same version of an application, the
generated log events should be similar or even identical. Hence, test runs on the same ver-
sion are combined into a single log file, by averaging the count of each log event obtained
during the repeated test.

Table 8 summarizes the number of unique log events and log length per application
across all of the different test runs of their multiple versions.

The number of unique log events for each application ranged from 11 unique log events
for ANDQUOTE to 492 unique log events for VLC. The mean number of unique log events
per application is 88, while the median was 46.646.

Now we look into how the prevalence of unique log events varies within log files from
different runs and versions. The total number of unique log events can change across differ-
ent versions of an application. The average standard deviation of total unique log events per
application across versions was 3.597 events with a minimum standard deviation of total log
events was 0.000 unique log events (no change) for ANDQUOTE and AGRAM and a maxi-
mum standard deviation of total unique log events 22.350 for FIREFOX. The statistics about
each application are described in Table 8.

5.3.2 Step 2 - Correlation between Log Events and Energy Consumption

Table 9 depicts the Spearman correlation coefficients between each log event and the energy
measurements for all the 24 applications.

Spearman’s ρ correlation is a non-parametric test that assesses the relationship between
two variables. The characterization of the strength of the correlation (trivial, small, medium,
large, very large and near perfect) is proposed by Hopkins (2016). For example, 205 out
of the 492 unique events in VLC exhibit very large correlations with the energy consumption;
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Table 8 Summary of unique log events per application across all the versions

App Total # of Unique Events Standard

Names Versions total minimum median average maximum Deviations

2048 44 15 12 13.000 13.091 14 0.603

24game 1 53 53 53.000 53.000 53

Acrylic Paint 40 19 11 14.000 13.800 17 1.324

Agram 3 15 15 15.000 15.000 15 0.000

AndQuote 21 11 11 11.000 11.000 11 0.000

Blockinger 74 168 23 27.000 27.392 35 1.560

Bomber 79 24 17 20.000 20.152 22 1.292

Budget 59 74 13 37.000 31.525 41 9.482

Calculator 97 53 9 11.000 14.526 23 5.354

ChromeShell 50 105 92 101.000 100.680 104 2.860

DalvikExplorer 13 17 16 16.000 16.308 17 0.480

Exodus 3 88 52 54.000 54.000 56 2.000

Eye in the Sky 1 58 58 58.000 58.000 58

Face Slim 1 18 18 18.000 18.000 18

FeedEx 35 39 14 17.000 17.486 28 4.231

Firefox 156 138 29 44.000 52.340 80 22.350

GnuCash 16 399 39 54.500 54.688 62 5.449

Memopad 52 13 12 13.000 12.712 13 0.457

Paint Electric Sheep 1 21 21 21.000 21.000 21

Sensor Readout 37 12 11 11.000 11.189 12 0.397

Temaki 66 15 8 9.000 9.485 12 1.231

Vector Pinball 54 56 14 16.000 16.463 21 1.342

VLC 46 492 385 390.000 390.022 396 2.679

Wikimedia 58 214 71 96.000 94.000 116 8.840

Average 42 88 42 46.646 46.911 52 3.597

whereas all the log events in FACE SLIM have little or no correlation. The correlation values in
the table show that 79% of the studied applications have at least one log events which exhibit
medium to near perfect correlation values with the energy consumption of the mobile appli-
cations. If only large to near perfect correlations are considered, there are still 50% of the
studied applications that have some log events strongly correlated with energy consumption.

Across most applications (e.g., FIREFOX, AGRAM, ACRYLIC PAINT, and MEMOPAD),
the log events with the highest correlation with energy consumption are often related to the
Dalvik Virtual Machine, DalvikVM. The DalvikVM is the Java Virtual Machine used by
the Android operating system to run mobile applications. The lists of events that are highly
correlated with energy consumption are shown below. Some of them are related to identified
“energy greedy APIs” (Vásquez et al. 2014).

– Dalvikvm: GC CONCURRENT (X1): this event is triggeredwhen theheapstarts to fill up;
– Dalvikvm: GC FOR ALLOC (X5): this event occurs when there is not enough

memory left on the heap to perform an allocation;
– Dalvikvm: GROW HEAP (X6): in order to save memory, Android does not allocate



Empir Software Eng

Table 9 Spearman’s ρ correlation coefficient distribution between log event types and joules per application

App # of % Trivial % Small % Mod- % Large % Very % Near

Names Unique Log erate Large Perfect

Events [0.0, 0.1) [0.1, 0.3) [0.3, 0.5) [0.5, 0.7) [0.7, 0.9) [0.9, 1.0]

2048 15 80.000 13.333 6.667 0.000 0.000 0.000

24game 53 100.000 0.000 0.000 0.000 0.000 0.000

Acrylic Paint 19 36.842 15.789 26.316 21.053 0.000 0.000

Agram 15 80.000 0.000 0.000 6.667 0.000 13.333

AndQuote 11 72.727 27.273 0.000 0.000 0.000 0.000

Blockinger 168 62.500 36.905 0.595 0.000 0.000 0.000

Bomber 24 33.333 25.000 41.667 0.000 0.000 0.000

Budget 74 39.189 22.973 13.514 5.405 18.919 0.000

Calculator 53 18.868 47.170 24.528 9.434 0.000 0.000

ChromeShell 105 22.857 70.476 6.667 0.000 0.000 0.000

DalvikExplorer 17 94.118 0.000 0.000 5.882 0.000 0.000

Exodus 88 21.591 0.000 0.000 21.591 39.773 17.045

Eye in the Sky 58 100.000 0.000 0.000 0.000 0.000 0.000

Face Slim 18 100.000 0.000 0.000 0.000 0.000 0.000

FeedEx 39 38.462 17.949 0.000 35.897 7.692 0.000

Firefox 138 20.290 78.261 1.449 0.000 0.000 0.000

GnuCash 399 21.554 30.576 39.850 7.769 0.251 0.000

Memopad 13 69.231 0.000 0.000 7.692 23.077 0.000

Paint Electric Sheep 21 100.000 0.000 0.000 0.000 0.000 0.000

Sensor Readout 12 91.667 0.000 8.333 0.000 0.000 0.000

Temaki 15 46.667 26.667 26.667 0.000 0.000 0.000

Vector Pinball 56 16.071 23.214 26.786 3.571 30.357 0.000

VLC 492 41.260 13.415 2.236 1.423 41.667 0.000

Wikimedia 214 22.897 1.402 53.738 21.963 0.000 0.000

Each column shows how many log events correlated with the correlation scale proposed by Hopkins (2016)

maximum amount of requested memory to every application automatically. Instead, the
OS waits until the application requests more memory. Then this event is triggered to
give more heap space until the maximum amount of memory is reached.

For these 3 events, the median magnitude of Spearman’s ρ correlation (absolute
value) over all applications with more than 1 version is 0.333 for Dalvikvm: GC
CONCURRENT, 0.308 for Dalvikvm: GC FOR ALLOC, and 0.219 for Dalvikvm:
GROW HEAP. This shows a small to medium relationship between Dalvikvm memory
management and energy consumption.

Not all log events that are correlated with energy consumption are common across
applications. Some of the highly correlated log events are workload specific for a par-
ticular application. For example, in GNUCASH, workload-specific log events regarding
the onCreateView method for the DatePickerDialog class, and a log event about replac-
ing account entries in the database exhibited large positive (ρ = 0.6873) and very large
negative correlations with energy consumption (ρ = −0.7515), respectively. For VECTOR
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PINBALL, trying to load the JNI library for Box2D, a 2D physics library, (DalvikVM
trying to load lib.data.app.lib.com.dozingcatsoftware.bouncy
libgdx.box2d.so) has a very large negative correlation (ρ = −0.7923) with joules.
VLC has very large positive correlation (ρ = 0.8377) with input controls (VLC core
input control stopping input).

5.3.3 Step 3 - Building Energy Consumption Models Using Logs

In this step, the relationship between these log events and energy consumption is further
studied through multiple regression analysis. If an independent variable (i.e., a log event)
reoccurs in numerous models, then we argue that that variable demonstrates a strong rela-
tionship with software energy consumption for different mobile applications. The intent
of this section is not necessarily to build reusable predictors, but to further study the rela-
tionship between energy consumption and common log events. We use multiple linear
regression to study the relationship between different log events (as independent variables)
and the energy consumption (as the dependent variable).

There were 122 log events that commonly occurred across 3 or more applications. When
considering common log events shared by four or more applications, there are only a total of
17 log events. There are 10 log events commonly shared by 6 or more applications. Hence,
in this step, we pick the common log events that are shared by at least four applications, as
we want to derive more general prediction models in order to study the effect of common
log events on software energy consumption. Table 10 shows the 17 selected log events. For
the sake of brevity, a short log event name is shown instead of the fully abstracted log events.

Table 10 OS level log events shared by all the applications

# # applications Event name

X1 25 dalvikvm GC CONCURRENT

X2 24 dalvikvm WAIT FOR CONCURRENT GC

X3 21 libEGL loaded vendor lib egl

libGLESv2 POWERVR SGX540 120

X4 20 OpenGLRenderer Enabling debug mode

X5 19 dalvikvm GC FOR ALLOC

X6 17 dalvikvm heap Grow

X7 14 dalvikvm Late enabling CheckJNI

X8 8 dalvikvm Turning on JNI app bug workarounds

for target SDK version

X9 6 TilesManager Starting TG

X10 6 Choreographer Skipped frames The application may

be doing too much work on its main thread

X11 4 dalvikvm Jit resizing JitTable

X12 4 webviewglue nativeDestroy view

X13 4 GLWebViewState Reinit transferQueue

X14 4 dalvikvm null clazz in OP INSTANCE OF single stepping

X15 4 InputMethodManagerService Focus gain on non focused

X16 4 dalvikvm VFY replacing opcode

X17 4 GLWebViewState Reinit shader
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Many log event counts are highly correlated with other event counts. We have exhaus-
tively tried all subsets of variables in the model and ignored models that included
co-linearity whereby any two independent variables had a Pearson correlation greater than
0.3 or less than −0.3. The models are kept if all the independent variables are reported as
statistically significant to the model (p ≤ 0.05). Models that do not produce a significant
F-statistic (p ≤ 0.05) are not kept.

The final models are the ones with the largest number of significant events. Several
regression models with more than two log events are found. These models are for both the
individual applications and all the applications at once. Table 11 shows the models extracted
and their adjusted R-squared values.

Some applications do not have enough versions, or their common log events do not
correlate well enough to produce a significant linear model (e.g., 24GAME, 2048, and
BLOCKINGER). Each model has the following form:

joules � c0 + c1 × event1 + c2 × event2 + ... + cn × eventn (2)

In general, different models from the same application share similar prediction perfor-
mance. The three models from FEEDEX show that the top common log events can predict
the energy consumption of FEEDEX very well (with Adj-R2 ≥ 0.92) . However, the models
from the CALCULATOR and the FIREFOX applications show moderate prediction perfor-
mance with Adj-R2 ≥ 0.39 and Adj-R2 ≥ 0.22, respectively. The CHROMESHELL app is
not modeled well by the common log events with an Adj-R2 ≥ 0.11, while the VECTOR

PINBALL app performs the best for predictability with models with an Adj-R2 ≥ 0.94.
Across all the studied version of Android applications, typically events X1, X5, and X6

are part of the successful models. These events are related to the Dalvik Virtual Machine.
The listed events are related to memory management operations such as garbage collection
and memory allocations. In the models utilizing all applications and versions, X17 and X4
were also quite significant, as well as X1 and X6. X4 and X17 are OpenGL and graphics
relevant.

5.4 Summary

Findings: Around 80% of the applications have at least one log event whose cor-
relation with the energy consumption are medium or stronger. Memory management
and graphics-related (OpenGL) log events are the most correlated log events related
to mobile software energy consumption. For some applications, there are also some
workload-specific log events which exhibit high correlation with the energy con-
sumption. Models trained on top common log events demonstrate a clear relationship
between those log events and the energy consumption for some but not all mobile
applications.
Implications: App developers should watch out for log events related to garbage
collection and graphics if they are concerned with the energy consumption of their
applications — especially changes in the number of these log events. Furthermore,
although logs have been used effectively to debug and troubleshoot functional prob-
lems, there is still no clear relation between the logging contents and the energy
consumption for some applications. Researchers should investigate into innovative log-
ging approaches which can help debug both energy and other performance-related
problems.
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Table 11 Linear models of energy consumption based on log events across numerous Android applications

Events# Adj-R2 p-value

All applications/Versions X4 + X6 + X17 0.4755 1.1222e-140

X1 + X4 + X6 0.4965 1.4197e-149

X1 + X4 + X6 + X9 0.5233 2.3270e-160

X1 + X4 + X6 + X13 0.5328 9.2390e-165

X1 + X4 + X6 + X17 0.5328 9.2390e-165

Acrylic Paint X3 + X5 0.4870 1.6392e-06

X4 + X5 0.4870 1.6392e-06

X2 + X5 0.5306 3.1700e-07

Bomber X6 + X14 0.2375 3.1351e-06

X4 + X6 0.2375 3.1351e-06

X6 + X13 0.2375 3.1351e-06

Calculator X3 + X5 0.3991 2.3918e-12

X5 + X16 0.3991 2.3918e-12

X5 + X17 0.3991 2.3918e-12

ChromeShell X1 + X15 + X16 0.1076 2.5888e-02

X1 + X13 + X16 0.1076 2.5888e-02

X1 + X2 + X16 0.1112 3.8161e-02

Firefox X2 + X3 + X11 0.2242 1.3689e-09

X2 + X3 + X13 0.2242 1.3689e-09

X2 + X3 + X10 0.2242 1.3689e-09

GnuCash X1 + X5 + X6 0.5914 3.0130e-04

X1 + X4 + X5 0.5914 3.0130e-04

X1 + X3 + X4 0.5914 3.0130e-04

Memopad X1 + X8 + X12 0.6377 5.9170e-12

X1 + X8 + X13 0.6377 5.9170e-12

X1 + X8 + X14 0.6377 5.9170e-12

Sensor Readout X1 + X2 0.4276 2.8786e-05

X1 0.4427 4.2210e-06

Budget X2 + X15 0.8176 7.6227e-22

X1 + X5 0.8262 1.9788e-22

X1 + X6 0.8330 6.4611e-23

Vector Pinball X1 + X5 + X7 + X8 0.9456 3.1336e-32

X1 + X5 + X8 + X16 0.9456 3.1336e-32

X1 + X8 0.9465 1.4174e-33

Temaki X1 + X7 + X15 0.4848 1.2541e-09

X1 + X3 + X7 + X15 0.4848 1.2541e-09

X1 + X7 + X15 + X17 0.4848 1.2541e-09

VLC X1 + X5 + X16 0.6134 5.0341e-10

X1 + X3 + X5 0.6134 5.0341e-10

X1 + X5 + X17 0.6134 5.0341e-10

Wikimedia X3 + X5 0.6396 3.1125e-14

X1 + X5 0.6666 2.8477e-14

X2 + X5 0.7289 9.6649e-17



Empir Software Eng

Table 11 (continued)

Events# Adj-R2 p-value

FeedEx X17 0.9297 8.2694e-21

X16 0.9297 8.2694e-21

X13 0.9297 8.2694e-21

Top three models are shown only if they are significant (p ≤ 0.05)

6 Threats to Validity

In this section, we discuss the threats to validity.

6.1 Construct Validity

6.1.1 Reliability of the Energy Measurement

It is important to ensure reliable performance measurement, as performance measurement is
subject to measurement error and random noise (Georges et al. 2007; Mytkowicz et al. 2009;
Kalibera and Jones 2013). In this paper, we have used two strategies to mitigate this threat:
(1) around 1000 versions from 24 Android applications were studied with both logging
enabled and disabled; and (2) each version of the same application was repeatedly tested and
measured to ensure measurement accuracy. We did not have clear control over laboratory
temperature, but according to the INA219’s specification (Texas Instruments, Dallas, USA
2015), measurements do not deviate much over the range of temperatures expected while
running the tests. Energy measures can suffer from sampling, but the INA219 does sample at
a high rate and output aggregated measurements at a lower rate. This aggregation can induce
error but given the high rate of sampling by the INA219 it is unlikely to have meaningful
effect on test runs. Most importantly energy consumption is a physical process thus one
must measure multiple times as we do in this paper.

6.2 Internal Validity

6.2.1 Controlling Confounding Factors While Assessing the Energy Impact
of Logging on Real-world Android Applications

There are many Android applications that try to log data in a real-world setting. Hence,
while executing our performance tests on real-world Android applications, we make sure
all the applications under test are running in the same Android running environment. In
addition, we also make sure the application under test is the only running user application
during the tests. For each application under test, we have executed two types of performance
tests: logging enabled and logging disabled. All the test configurations are the same for
these two types of tests, except for enabling and disabling logs. We ran the experiments one
after the other. Each experiment takes less than five minutes. Hence, for some applications
that access outside resources (e.g., FIREFOX requesting data from Wikipedia), the chances
of a resource changing during a test (e.g., content updates in the Wikipedia webpage) exists
but would be very low.
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6.2.2 Controlling Various Logging Factors While Investigating the Energy
Consumption of Logging on Android Applications

There are many factors impacting the energy consumption of logging on Android applica-
tions. Factors such as the logging rate and the log message sizes cannot be easily controlled
on real-world use cases and applications. In addition, real-world applications also perform
other tasks (e.g., networking and video playing), which makes it difficult to isolate the
energy impact of logging. Hence, to control the various confounding factors, we have devel-
oped a testing Android application which is dedicated only to log messages at different rate
and size. The values of the logging rates and message sizes were derived based on actual
scenarios in practice (e.g., the size of a network packet and the size of a typical stack trace).
Since the logging rates and the message sizes combined could have an impact on the size
of the log files, an additional factor, the number of disk flushes, is introduced to assess the
combined impact of logging rate and log message size. Yet the Android operating system is
a complex piece of software, thus state will slowly change while the operating system run-
ning, for instance the file system state will change between runs. Future tests could replace
the file system each and every time in order to control the non-determinism in the file
system.

6.3 External Validity

6.3.1 Generalizing the Energy Impact of Logging on Real-world Android Applications

To ensure our findings on the energy impact of logging on real-world Android applica-
tions are generalizable, we have selected 24 Android applications from different application
domains. In addition, many of the applications in our dataset have many versions. These
versions correspond to a range of different software development activities (e.g., new fea-
tures and bug fixes). Increasing both the number of applications and versions covered would
provide better generality. However, our findings might not be able to generalize to other
mobile application platforms (e.g., BlackBerry, iOS or Windows phones) and other Android
phones.

In addition, although we have designed our test cases to closely mimic the realistic user
usage of mobile applications, the resulting test cases may not cover all the possible uses for
the studied applications.

7 Related Work

In this section, we will discuss three areas of prior research that are related to this paper:
(1) energy testing and modeling for mobile applications, (2) empirical studies on energy-
efficient mobile development, and (3) execution logs.

7.1 Energy Testing and Modeling for Mobile Applications

Hindle et al. developed the GreenMiner, an automated test-bed to assess the energy con-
sumption for each revision of a given mobile application (Hindle 2013; Hindle et al. 2014).
Since running performance tests on each revision is time consuming, Romansky and Hindle
(2014) proposed a search-based test approximation technique to reduce the testing efforts in
GreenMiner. Li et al. (2014) proposed a test minimization technique that prioritizes the test
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suites with higher energy consumption. This paper leverages the GreenMiner (Hindle 2013;
Hindle et al. 2014) to perform energy testing on different versions of the mobile applications
with and without logging enabled.

There have been many studies dedicated to modeling energy consumption for mobile
applications. In general, there are three approaches, which use three different datasets, col-
lected by different monitoring and profiling tools, to model mobile energy consumption:
(1) hardware-based counters (Carroll and Heiser 2010; Shye et al. 2009; Gurumurthi et al.
2002; Flinn and Satyanarayanan 1999; Zhang et al. 2010; Dong and Zhong 2011); (2) pro-
gram instructions from the applications (Seo et al. 2008; Hao et al. 2013; Li et al. 2013);
and (3) system calls (Aggarwal et al. 2014; Chowdhury and Hindle 2016b; Pathak et al.
2011). Different mobile monitoring and profiling tools can bring different insights into the
mobile applications’ dynamic behavior. However, they all have some runtime overhead. Dif-
ferent from the above three approaches, this paper builds the energy consumption models to
explore factors of energy consumption prevalent in execution logs.

7.2 Empirical Studies on Energy-efficient Mobile Development

We further divide the empirical studies on energy-efficient mobile development into the
following three sub-areas:

– App Developers: Pinto et al. (2014) investigated questions on StackOverflow that
programmers had about energy. They found that programmers lacked the resources to
answer questions about software energy consumption. Similar findings were confirmed
by other studies that surveyed programmers about their understanding on software
energy consumptions (Manotas et al. 2016; Pang et al. 2016). Chowdhury and Hin-
dle (2016a) compared energy-aware software projects with projects that did not consider
energy-efficiency as one of the non-functional requirements. They found that energy-
aware software projects are more popular in terms of number of forks, and contributors.

– Code Obfuscation: Sahin et al. studied the impact of code obfuscation (Sahin
et al. 2014) and refactoring (Sahin et al. 2014) on energy consumption of several
Android applications. They found that code obfuscation does impact energy consump-
tion but the differences could be too small for users to notice, whereas the impact
of code refactoring could be mixed (a.k.a., either increases or decreases in energy
consumption).

– Energy Greedy APIs, Frameworks, and Platforms: Li et al. (2014) leveraged their
technique of estimating energy consumption for source lines in Li et al. (2013) and stud-
ied the API level energy consumption patterns of different mobile applications. They
found that the networking component consumes the most energy and more than half
of the energy consumption is spent on idle state. This observation indicates that reduc-
ing the number of idle states can optimize energy consumption for mobile applications.
Linares et al. (Vásquez et al. 2014) identified energy greedy Android APIs that can
be helpful for the developers to write energy efficient code. Chowdhury et al. (2016)
found that employing HTTP/2 server can save energy for the mobile clients. Pathak
et al. suggested that around 70% of mobile software energy bugs are the direct result of
problems linked to wake locks (Pathak et al. 2011). Hence, many studies have focused
on understanding and optimizing wake lock in mobile applications (Pathak et al. 2012;
Alam et al. 2014; Liu et al. 2016; Banerjee et al. 2014; Wang et al. 2014; Patil et al.
2015). Tail energy leaks, the energy cost of powering up and eventually powering down
peripherals, have been studied as a source of energy consumption in mobile applications
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(Pathak et al. 2011; Chowdhury et al. 2016; Li et al. 2016). Tail energy leaks can be
optimized by bundling I/O operations together (Chowdhury et al. 2016; Li et al. 2016).
Hasan et al. (2016) studied the energy profiles of frequently used Java collection classes
and suggested that using the most energy efficient collection classes can save up to
300% software energy.

Logs are widely used in software development for various purposes like debugging, mon-
itoring and user behavior tracking. However, there are no prior studies focused on the energy
impact of logging for mobile applications. Hence, in this paper, we performed an empirical
study on another aspect of energy-efficient mobile development: the energy consumption of
software logging.

7.3 Execution Logs

We will discuss two areas of related research on execution logs:

– Empirical Studies on Execution Logs: There have been a few empirical studies con-
ducted to investigate the logging activities in practice. Shang et al. (2011) analyzed
how log events evolve over time by executing the same scenarios across different ver-
sions of the same applications. They found that logs related to domain level events (e.g.,
workload) are less likely to change compared to logs related to feature implementations
(e.g., opening a database connection). Yuan et al. (2012) analyzed the source code revi-
sion history for 4 C-based open source software systems. They found that log events
are often added as “after-thoughts” (a.k.a., after failure happens). They also developed
a verbosity-level checker to automatically detect anomalous log levels (e.g., DEBUG
vs. FATAL) using clone analysis. Fu et al. (2014) performed a similar log characteristic
study but on the source code of two large industry systems at Microsoft. Shang et al.
(2015) studied the release history of two open source applications (Hadoop and JBoss)
and found that files with many logging statements have higher post-release defect den-
sities than those without. Unfortunately, all of the prior empirical studies on execution
logs focused on desktop and server-based applications. This paper is the first research
work focused on studying the execution logs on mobile applications.

– Analyzing Execution Logs Execution logs have been used extensively by developers,
testers and system operators to monitor and diagnose problems for large-scale software
systems (Oliner et al. 2012; Yuan et al. 2010). Execution logs have a loosely-defined
structure and a large non-standardized vocabulary. Due to its sheer volume of size
(hundred megabytes or even terabytes of data), it is usually not feasible to analyze the
logs manually. Techniques have been proposed to automatically abstract the loosely
structured execution log events into regularized log events (Jiang et al. 2008; Xu et al.
2009b). Then automated statistical and AI techniques can be applied on these regular-
ized log events to analyze the results of load tests (Jiang et al. 2008), and to monitor,
detect and diagnose problems in big data applications (Shang et al. 2013; Xu et al.
2009a, b). In addition to leveraging the existing logs, Yuan et al. proposed a technique
to automatically suggest logging points to aid the debugging activities using program
analysis (Yuan et al. 2011). Finally, Ding et al. (2015) proposed a cost-aware logging
mechanism so that informative logs can be generated while still ensuring the perfor-
mance overhead is within the specified budget. Their performance overhead is defined
in terms of resource usage (e.g., CPU, memory and disk I/O) and their target appli-
cations are large-scale server applications. In this paper, we used the log abstraction
technique proposed by Jiang et al. (2008) to build our energy consumption model.



Empir Software Eng

8 Conclusion

Software developers use execution logs to debug and monitor the health of mobile applica-
tions. This paper investigates the energy impact of execution logs on Android applications.
Around 1000 versions of 24 Android applications were tested and measured under logging
enabled and disabled. In addition, a controlled experiment with varying rates of logging and
sizes of the log messages was carried out.

Our experiments show that limited logging (e.g. ≤ 1 msg/sec) has little to no impact on
the energy consumption of mobile applications. Although there is little to no impact on
the energy consumption of logging for most of the versions, there are still many versions
with medium to large effect sizes when comparing the energy consumption between when
logging is enabled and logging is disabled. The rate of logging, the size of log messages, and
the number of disk flushes are three statistically significant factors that impact the energy
consumption of logging. Log events can be used in energy consumption debugging as some
events common across applications, that are logged as log events, are highly correlated with
energy consumption—especially those regarding garbage collection or graphics. Depending
on the application, some workload-specific log messages are also correlated with energy
consumption. However, building energy consumption models with log events yield mixed
performance. It would be an interesting future work to leverage event logs, as a proxy to
predict the energy consumption of applications.

In conclusion we have presented evidence that logging under relatively liberal conditions
of less than 1 log message per second does not have a significant effect on energy per-
formance. Furthermore we have shown with numerous existing Android applications that
logging typically has a negligible effect on energy consumption. Although there are some
log events recorded in logs which are highly correlated to the energy consumption of the
mobile applications, it is still an open research question on how one can leverage software
logging to debug energy problems.

8.1 Replication Package

To aide replicability, we freely disclose and share our dataset and source code for our anal-
ysis in our replication package (Replication Package Android Logcat Energy Study 2017).
The GreenOracle tests that were run on the GreenMiner are located at https://github.com/-
shaifulcse/GreenOracle-Data/tree/master/Tests.
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