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Log messages have been used widely in many software systems for a variety of purposes during software
development and field operation. There are two phases in software logging: log instrumentation and log
management. Log instrumentation refers to the practice that developers insert logging code into source code
to record runtime information. Log management refers to the practice that operators collect the generated
log messages and conduct data analysis techniques to provide valuable insights of runtime behavior. There
are many open source and commercial log management tools available. However, their effectiveness highly
depends on the quality of the instrumented logging code, as log messages generated by high-quality log-
ging code can greatly ease the process of various log analysis tasks (e.g., monitoring, failure diagnosis, and
auditing). Hence, in this article, we conducted a systematic survey on state-of-the-art research on log instru-
mentation by studying 69 papers between 1997 and 2019. In particular, we have focused on the challenges
and proposed solutions used in the three steps of log instrumentation: (1) logging approach; (2) logging util-
ity integration; and (3) logging code composition. This survey will be useful to DevOps practitioners and
researchers who are interested in software logging.
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1 INTRODUCTION

Software logging is a common programming practice that developers use to track and record the
runtime behavior of software systems. Software logging has been used extensively for monitor-
ing [107, 117], failure diagnosis [55, 127], performance analysis [54, 75, 99, 115], test analysis [45,
70], security and legal compliance [22, 98, 103], and business analytics [31, 96].

As shown in Figure 1, software logging [48] consists of two phases: (1) Log Instrumentation,
and (2) Log Management. The log instrumentation phase, which concerns about the development
and maintenance of the logging code, consists of three steps: Logging Approach, Logging Utility
(LU) Integration, and Logging Code (LC) Composition. The log management phase, which fo-
cuses on processing the generated log messages once the system deploys, consists of three steps:
Log Generation, Log Collection, and Log Analysis.
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Fig. 1. The overall process of software logging.

There are many industrial-strength tools available already to aid effective log management.
For example, the ELK stack (Elasticsearch [6], Logstash [15], and Kibana [11]) is a very popular
platform for collecting, searching, and analyzing logs. Splunk [21], one of the most popular com-
mercial log management platforms, provides an integrated solution for monitoring and managing
complex telemetry data. According to Gartner, the market for log management tools is estimated
to be a $1.5B market and has been growing rapidly every year [7].

However, the effectiveness of log management highly depends on the quality of the logging
code produced from the log instrumentation phase. Low-quality logging code can cause issues in
problem diagnosis [129], high maintenance efforts [41, 78, 95], performance slow-down [54], or
even system crashes [9]. On one hand, there are many LUs available for developers to instrument
their logging code. For example, Chen and Jiang [44] found that there are more than 800 open
sourced third-party LUs being used by various Java-based GitHub projects. Among these LUs,
SLF4J and Android Logging are two of the most popular LUs. On the other hand, unlike other
aspects in the software development process (e.g., software design [61] and code refactoring [59]),
recent empirical studies show that there are no well-established logging practices in practice [31,
60, 109]. The process of log instrumentation is generally ad hoc and usually relying on developers’
common sense. As more systems are migrating to the cloud [36] with increasing layers of com-
plexity [136], new software development paradigms like Observability-Driven Development
(ODD) [121] are introduced. ODD, in which log instrumentation plays a key role, emphasizes the
exposure of the state and the behavior of a System Under Study (SUS) during runtime. Unfortu-
nately, other than describing the capability of their accompanying LUs, existing cloud platforms
(e.g., Microsoft Azure [2], Amazon Web Service [3], and Google Cloud [8]) provide little informa-
tion on effective development and maintenance of the logging code. Hence, in this article, we have
conducted a systematic survey [86] on the instrumentation techniques used in software logging.
The contributions of this article are:

o This is the first survey that systematically covers the techniques used in all three software
log instrumentation approaches: conventional logging, rule-based logging, and distributed
tracing.

e Through the process of systematic survey, we have identified nine challenges in four
categories associated with log instrumentation and described their proposed solutions
throughout the three steps in the log instrumentation phase. We have also discussed the
limitations and future work associated with these state-of-the-art solutions if applicable.
The challenges, the solutions, and the discussions will be useful for both practitioners and
researchers who are interested in developing and maintaining software logging solutions.

Paper Organization

The structure of this article is organized as follows: Section 2 describes the workflow of the log
instrumentation phase. Section 3 provides the overview of our systematic survey process and
summarizes the findings from the studied papers. Section 4 discusses the challenges and solutions
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Fig. 2. The steps in the three phases of log instrumentation.

associated with log instrumentation. Section 5 presents the discussions and future research
directions. Section 6 concludes this survey.

2 THE WORKFLOW OF SOFTWARE LOGGING INSTRUMENTATION

In this section, we will introduce the overall workflow of software log instrumentation through a
running example. Section 2.1 provides an overview of the log instrumentation phase; Section 2.2
describes the three general logging approaches; Section 2.3 proposes two concerns in LU Integra-
tions; and Section 2.4 illustrates three steps of logging code composition.

2.1 An Overview of the Log Instrumentation Phase

Software logging consists of two phases: (1) Log Instrumentation, which concerns about the
development and maintenance of the logging code, and (2) Log Management, which concerns
about the collection and the analysis of the generated log messages. Here, we further explain the
three steps in the log instrumentation phase, which is the focus of this survey. The detailed steps
are shown in Figure 2.

(1) Logging Approach: Logging is a cross-cutting concern, as the LC snippets are scattered
across the entire system and tangled with the feature code [82]. In addition, logging in-
curs performance overhead [54] and if not careful may slow down the system execution
and impact user experience. Hence, additional logging approaches have been proposed
to resolve some of these issues. However, they also introduce additional problem(s). For
example, although Aspect-Oriented Programming (AOP) improves the modularity of
the LC snippets, it introduces steep learning curves of different programming paradigms
and is difficult to generalize individual logging concerns into rules [44]. Developers have
to first decide which logging approach to adopt for their SUS before instrumenting their
SUS with LC.

(2) LU Integration: Instead of directly invoking the standard output functions like
System.out.pri nt, developers prefer to instrument their systems using LUs such as
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SLF4J [19] for Java and spdlog [20] for C++ for additional functionalities like thread-
safety (synchronized logging in multi-threaded systems) and verbosity levels (controlling
the amount of logs outputted). While integrating LUs, developers have to address the fol-
lowing two concerns: what-to-adopt: different LUs provide different functionalities [44].
Depending on the actual usage context, developers may integrate existing third-party
LUs or develop their own; and how-to-configure: each project may contain one or more
LU(s), each of which has many different configuration options. It is important to config-
ure LUs correctly and effectively so the SUS can produce high-quality log messages during
runtime.

(3) LC Composition: Once the developers integrate the LU(s), they need to insert LC into the
SUS to expose the state and behavior of the SUS during runtime. While composing LC,
developers have to address the following three concerns: where-to-log: determining the
appropriate logging points; what-to-log: providing sufficient information in the LC; and
how-to-log: developing and maintaining high-quality LC.

2.2 Logging Approach

The first step in the log instrumentation phase is to choose an appropriate logging approach. There
are three general logging approaches, each of which has its pros and cons. We will explain and
compare these logging approaches by going through a running example. The scenario is about
logging the behavior of a web server during the user authentication process. This scenario is im-
plemented using all three general logging approaches, as shown in Figure 3.

2.2.1 Conventional Logging. The code snippet using the conventional logging approach is
shown in Figure 3(a). Before we can instrument the SUS with LC snippets, we have to first im-
port the LU(s), which provides functionalities of conventional logging. As shown from line 1 and
2 of the code snippet, we use Log4J 2 library [14], a popular LU for Java-based systems. Then
a logging object, which is responsible for performing the log instrumentation in the rest of this
example, is created at line 6. Line 9 and 21 show two lines of LC snippets, which record the user
names and their IP addresses before and after the authentication process. Similar to standard I/O
methods like System.out.println or System.err, an LC snippet contains static texts and dy-
namic contents. In addition, it also contains a logging object as well as a verbosity level to control
the amount of outputted log messages. Take the LC snippet at line 9 as an example. The four com-
ponents are highlighted in different colors: the logging object (logger) in red, the verbosity level
(info) in yellow, the static texts (‘Received from client”) in green, and the dynamic contents
(req.userName) in grey.

A sample snippet of the generated log messages is shown in Figure 3(d). In addition to the static
texts and dynamic contents, each log message also contains basic information like timestamp and
the location of the logging code. Similar to the natural language text, the resulting log messages
are usually loosely formatted and cannot be easily parsed by the computer programs [138].

Conventional logging is very easy to set up and the resulting LC snippets can be placed almost
anywhere in the SUS. However, there are two main issues concerning conventional logging: (1)
Cross-cutting Concerns: the resulting LC snippets are scattered across the entire system and tangled
with the feature code [32, 34, 82, 87]. This results in challenges in developing and maintaining
high-quality LC, while the SUS evolves. To resolve this issue, the rule-based logging approach
is introduced (Section 2.2.2). (2) Lack of Execution Context: It is very challenging to correlate log
messages from different processes or even machines [133]. This is especially the case for large-scale
distributed systems. Hence, distributed tracing is introduced (Section 2.2.3).
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M Logging Object Verbosity Level [l Static Texts Dynamic Content

1 import org.apache.logging.logdj.LogManager;
2 import org.apache.logging.logdj.Logger;

MyServenjava Apr 92, 2020 12:22:41 PM mycompany.MyServer Receive from client alice
Apr 02, 2020 12:22:42 PM mycompany.MyServer Send response to 192.168.0.1
5 class MyServer {

6  Logger logger = Logger.getLogger(MyServer.class);

7 void authentication(Request req, ...) {

@ |: Configurator.setLevel(logger.getName(), Level.DEBUG);
® ° [IGEESR - info("Receive from client " + req.userName);

10 OKHttpClient.Builder builder = new OKHttpClient.Builder();

Apr 02, 2020 12:22:50 PM mycompany.MyServer Receive from client bob
Apr 02, 2020 12:22:52 PM mycompany.MyServer Send response to 192.168.0.2

Apr 02, 2020 12:23:01 PM mycompany.MyServer Receive from client tom

sus  [11 HttpLoggingInterceptor logInter = new HttpLoggingInterceptor();| 1| ...
Developers | 15 builder.addInterceptor(logInter); Apr 02, 2020 12:23:02 PM mycompany.MyServer Send response to 192.168.0.3
// actual authentication process ...
20 reply(response, ...)
21 logger.info("Send response to " + req.IP);
22}
23 private void start() {
24 Server server = new Server();
25

(a) Using conventional logging for log instrumentation (d) Outputted logs

1 import org.apache.logging.log4j.LogManager; LogAspect.java
2 import org.apache.logging.log4j.Logger;

Apr 02, 2020 12:22:41 PM mycompany.MyServer Receive from client alice

Apr 02, 2020 12:22:42 PM mycompany.MyServer Send response to 192.168.0.1
® @Around("execution(* MyServer.authentication(..)"))

=) public Object logAround(ProceedinglointPoint pjp, Request req) {
<L GRS . info("Receive from client ™|+ req.userName);

5
6 Apr 02, 2020 12:22:50 PM mycompany.MyServer Receive from client bob
7

sus |8  pip.proceed()
9
1

Apr 02, 2020 12:22:52 PM mycompany.MyServer Send response to 192.168.0.2
Developers logger.info("Send response to " + req.IP)

0} Apr 02, 2020 12:23:01 PM mycompany.MyServer Receive from client tom

3 class MyServer { MyServer,java Apr 02, 2020 12:23:02 PM mycompany.MyServer Send response to 192.168.0.3
4 void authentication(Request req, ...) {

// actual authentication process ...
10}

(b) Using rule-based logging for log instrumentation (©) Outputted logs

(¢) Use distributed tracing for log instrumentation (f) Outputted traces

1 import io.opentracing.* MyS . "data" : [
2 class MyServer { lyoerver.java {
3 Tracer h = GlobalTracer.get(); “traceID": "1242029787ec9011"
. 4 private start() { “spans": [
mm 5 Server server = new TracedServer(tracer);
aee {
SUS 159 "traceID": "1242029787ec9011",
Developers| 51 yoid authentication(Request req, ...) { “"spanID": "1ad81c39c9e66ac6”,
// actual authentication process "parentSpanID": “c53ac490f828963a",
25 reply(response, ...)

“duration": 277146,

1 import io.opentracing.*

2 class TracedServer extends Server { TracedServerjava

"1 1585844561219000,
ob”,
Receive from client”

8  @verride
@ |° public void onReceive() {

10 SpanContext parentSpan = tracer.extract(HTTP_HEADERS, headers);
m 1 spanBuilder = spanBuilder.asChildof(parentSpan); “timestamp": 1585844561230000,
“IP": "192.168.0.2",
“Message": "Send Response”

Library |12 span = spanBuilder.start();
Developers | 13 BB 10g(Map. put(“Client”, )
14 .put(“Message", " "))

21 @verride
22 public void onSend(Response response) {

1

32 span.log(Map.put("IP", req.IP)
33 .put("Message”, "Send response”));

M Tracing Object Key [ Value

Fig. 3. An example of user authentication scenario instrumented with three general logging approaches.

2.2.2  Rule-based Logging. Different from the conventional logging approach, in which the
LC inter-mixes with the feature code, the rule-based logging approach generalizes the logging
behavior by specifying a set of rules. This greatly improves the modularity of the LC and hence
provides much better support for developers to track and maintain their LC while the SUS evolves.

Aspect-Oriented Programming (AOP)-based logging is one of the most commonly used rule-
based logging techniques. AOP is a programming paradigm, which is designed to improve mod-
ularity by reducing the amount of cross-cutting concerns [82], one of which is software logging.
AOP-based logging has been used to support diagnosing functional failures [34, 87]. Developers
define rules through aspect files. A typical aspect file consists of pointcuts and advice. A pointcut is
to define the point of execution where the cross-cutting concern (e.g., logging) needs to be applied.
An advice is the additional code (e.g., LC) being executed when the pointcut is reached.

Figure 3(b) continues our running example by using the AspectJ LU, which is a very popu-
lar AOP-based approach for Java-based systems. The file LogAspect. java acts as the aspect file.
The rules (a.k.a. instrumented points) are defined through the Java annotation at line 5. In this
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example, the annotation @Around means both the beginning and the end of the methods will be
instrumented. The value within the brackets specifies the instrumented methods. In this exam-
ple, the method with name authentication within class MyServer will be instrumented. The
instrumented code is defined at line 7 and line 9, which outputs the same log messages as the
conventional logging example. The file Server. java does not include any LC, as all the LC is
modularized and specified in the aspect files. As shown in Figure 3(e), the same log messages will
be outputted during runtime.

On one hand, rule-based logging enables developers to separate rules with actual instrumenta-
tion. Updating LC is easy, as developers only need to revise the rules without modifying code at
multiple locations. This improves the modularity of the LC. On the other hand, rule-based logging
lacks flexibility, as LC cannot be instrumented anywhere due to the implementation limitation [27,
44, 104]. For example, when we adopt AOP in Spring framework, only public methods can be ad-
vised in Spring AOP, whereas private or protected methods cannot [4, 17].

2.2.3 Distributed Tracing. Although it is flexible and easy to perform conventional logging, the
resulting log messages are free-formed text, which cannot be easily cross-linked across different
processes or even machines. This will be a major problem for distributed systems, in which one
scenario may be executed on multitple machines. To cope with this challenge, distributed tracing
is introduced. Different from conventional logging, in which developers of a SUS mainly perform
the log instrumentation activities, library developers are mainly responsible for the task of log
instrumentation. Although developers of a SUS can perform additional log instrumentations, their
main task is to import the tracing library and perform some setup actions. As a result, the generated
log messages are structured and can be connected by a set of common variables. In the context
of distributed tracing, these structured log messages connected together are also referred to as an
end-to-end trace. For brevity, we call this as a trace in the rest of this section.

Figure 3(c) continues our running example by using distributed tracing as our log instrumen-
tation approach. This example uses OpenTracing, a very popular LU supporting the distributed
tracing-based logging approach [108]. For the code snippet at the top of Figure 3(c), a tracer object
and a traced server instance are created at line 3 and line 5, respectively. Other than this, there are
no additional log instrumentation efforts required from developers of the SUS. The actual LC com-
position is done by the library developers whose code snippet is shown at the bottom of Figure 3(c).
They implement TracedServer, which extends the original Server class and overrides two im-
portant methods: onReceive and onSend. These two methods will be invoked when receiving a
request and sending a reply, respectively.

A typical trace in the context of distributed tracing consists of multiple log messages that
are connected together. These connected log messages form a complete request workflow. In
OpenTracing, such log messages are called spans. In both the client side and the server side,
library developers compose the span log using APIs like span.log. These spans are passed from
the client side to the server side by certain communication protocols (e.g., HTTP) so spans from
both ends can be connected. In this way, a complete trace recording information from both ends
can be generated. In our example, we only show the code on the server side, because the tracing
code on the client side is similar. To notice, inside method onReceive, where we receive the client’s
request, we extract the context data that is sent from the client at line 10. At line 11, we create the
span as a child of the span that we extract from the client. At line 13, we store the same message
as the example in conventional and rule-based logging. After the request is processed, inside the
onSend method, the span log at line 32 will be sent to the client.

The generated traces are shown in Figure 3(f). As we can see, the traces are structured in JSON
format. JSON stores information in a key-value fashion. For example, the recorded information
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Table 1. Comparison among Three Logging Approaches

Conventional Logging Rule-based Logging Distributed Tracing

Who SUS developers SUS developers Library developers
Filtering Verbosity level Verbosity level Sampling

Format Free form Free form Structured
Domain General General Distributed systems
Flexibility High Low Medium
Scattering High Low Low

of the LC snippet at line 13 has two keys: Client and Message. The key (Client) corresponds to
the runtime information: the userName of the request and the key (Message) correspond to the
static texts describing the logging context. Compared to conventional and rule-based logging, log
messages generated by distributed tracing are more structured. The related log messages can easily
be linked across different machines by the associated tracelID.

2.24 Comparison among Three Logging Approaches. Table 1 compares these approaches among
the following six dimensions:

e Who refers to the type of developers responsible for performing the log instrumentation
tasks. The SUS developers are mainly responsible for the log instrumentation tasks if they
adopt the conventional or rule-based logging approaches. If the SUS imports third-party
libraries, then they may need to configure the LUs within these libraries to gain the full
picture of the SUS behavior during runtime. On the contrary, third-party library developers
are the ones responsible for most of the log instrumentation tasks if they adopt distributed
tracing approach. Only if needed, SUS developers may add additional LC in the SUS.

o Filtering refers to the process of removing the unwanted log messages during runtime to
reduce overhead. The verbosity level is used in conventional and rule-based logging to in-
dicate the severity of LC. While in distributed tracing, sampling is adopted to filter log
messages. The sampling decision can be controlled by pre-defined probability, rate or even
adaptive.

e Format refers to the requirements on the structure and the contents of the generated log
messages. Instrumenting free form LC is mostly adopted in conventional and rule-based
logging. However, distributed tracing utilities record the information in a more structured
way. For example, key-value pair is a popular paradigm to structure the generated log
messages.

e Domain refers to the categories of applicable SUS for each logging approach. Conventional
and rule-based logging can be applied in almost any types of SUS, while distributed tracing
is mostly adopted in distributed systems.

o Flexibility refers to the feasibility and the effort needed for a particular logging approach
to be applied under various instrumentation scenarios. Conducting conventional logging
is most flexible, as SUS developers can insert LC in any program points. Instrumenting LC
in distributed tracing is less flexible, as most of the LC snippets are in the boundaries of
software components. Rule-based logging is the least flexible, because the locations of LC
snippets need to follow pre-defined rules.

e Scattering refers to the spread of the instrumented LC snippets across the code base by
adopting a particular logging approach. The degree of scattering of LC in conventional log-
ging is high, because of its high flexibility. However, LC snippets in rule-based logging and
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distributed tracing is less scattered, as its locations follow designated rules (e.g., beginning
of a method) or certain patterns (e.g., before an RPC call).

2.3 LU Integration

Instead of directly invoking the standard output functions like System.out.print, developers
prefer to instrument their SUS using LUs (e.g., SLF4J [19] for Java and spdlog [20] for C++) due to
additional functionalities such as thread-safety (synchronized logging in multi-threaded systems),
data archival configuration (automated rotation of the log files), and verbosity levels (controlling
the amount of log messages outputted). There are generally two concerns associated with LU
integration:

e what-to-adopt: With the increasing amount of LUs available in the wild [44], integrating
appropriate LUs according to the requirements of individual SUS is important. The problem
of what-to-adopt focuses on this matter with regard to the maintainability and security
compliance of LUs. After that, it is also important to configure these LUs to increase their
usability.

Modern software often leverage the functionalities provided by the LUs to instrument
their SUS. A study [44] on 11,194 Java-based GitHub projects shows that there are more
than 3,000 LUs being adopted in the wild. For example, many developers adopt LUs such
as Log4j [13] and Apache Commons Logging [1] to instrument their Java-based SUS [90].
Many of these projects adopt multiple LUs or even implement their own LUs. Developers
need to decide which or whether existing LU(s) are needed for their SUS. Furthermore, for
projects with LU(s) integrated already, developers have to determine if they would like to
migrate to other or newer LU(s). For example, in Figure 3(a), developers adopt Log4J 2 to
record the runtime behavior of the server. Since there is a dependency of the third-party li-
brary OKHt tp3 to manage HTTP connections in this program, the LUHTTPLoggingIntertor,
provided by OKHttp3 shown in line 11, should be adopted as well.

e how-to-configure: LUs contain many different configuration options. They can be re-
lated to controlling the amount of log messages outputted, or the location of the log files,
and the size of the log files. Developers need to properly configure LUs for their SUS to
gather enough logging data while minimizing the performance overhead and storage re-
quirements. For example, the default verbosity level in Log4J 2 can be configured either
statically (e.g., through a configuration file) or dynamically (through APIs). In our running
example, line 8 in Figure 3(a) shows how to configure the default level of LUs. For LUs
provided by third-party libraries, developers need to configure the options one-by-one.

2.4 LC Composition

The last step of the log instrumentation phase is LC composition. There are three sub-steps in LC
composition:

(1) The step of where-to-log is about deciding the appropriate logging points. Various stud-
ies [42, 60, 109, 128, 130] have shown that logging is pervasive in software development
process. Developers usually rely on their experience or gut feelings when deciding on the
logging points in the source code. In our running example, Figure 3(a) shows that devel-
opers choose to instrument logging code snippets at the entry and exit of the method
authentication to record the program state. On one hand, logging too little will hinder
the diagnosability of log messages. For example, missing logging statements in exception
blocks will cause incomplete information of failures, making failure diagnosis more dif-
ficult [127]. Incomplete LC snippets also hinder developers’ understanding, hurting LC
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quality, since they can only recover ambiguous execution paths from the execution log

messages [132]. On the other hand, although excessive logging—in which LC snippets are

inserted everywhere in the source code—will provide rich runtime information, it will
bring in huge performance overhead and high storage cost associated with the generated
log messages. In addition, it is very challenging to diagnose problems by analyzing large

volumes of log messages, most of which are not related to the problematic scenarios [74].

(2) The step of what-to-log is about providing sufficient information in the three components
of each LC snippet:

o Verbosity level specifies whether an LC snippet should be outputted during the execu-
tion of SUS. Choosing an appropriate verbosity level for an LC snippet is important.
For example, if an LC snippet records information about a failed execution, then the
verbosity level should be set as error or fatal. If it is mistakenly set as debug, such
log messages may not be outputted or even if they do, developers may neglect them.
Such neglection could impact customer experience and negatively impact the product
quality.

e Static texts describe the logging context in a human readable manner. Currently, devel-
opers are responsible for manually composing the static texts in the LC snippets. Poorly
written or outdated static texts may cause confusion for the practitioners and impact
their various log analysis tasks.

e Dynamic contents reflect the state of SUS during runtime. They are the results of exe-
cuting variables and method invocations included in each LC snippet. It is important
to record the necessary runtime information to satisfy various logging needs from the
developers and operators.

(3) The step of how-to-log is about developing and maintaining high-quality LC, which is
scattered across the entire system and tangled with the feature code. Although the rule-
based logging approach provides better management of LC, many industrial and open
source systems still choose to inter-mix LC with feature code [40, 41]. A study [78] shows
that 20%-45% of the LC has been changed at least once during their lifetime. The median
number of days between an LC snippet is introduced and its first change ranges from 1
to 17 days. Unlike feature code, whose quality can be verified via testing, the correctness
of LC is very difficult to verify. This can hinder program understanding or even cause
runtime issues like crashes [9].

3 AN OVERVIEW OF OUR SYSTEMATIC SURVEY

In this section, we will first describe our systematic survey process in Section 3.1. Then, we will
summarize our survey results in Section 3.2. Finally, we will explain the differences of our survey
against existing works in Section 3.3.

3.1 Methodology

A systematic survey is a type of literature review, which uses systematic approaches to identifying
and analyzing the primary studies related to a particular research topic [86]. The main benefits of
conducting a systematic survey are: (1) the results of selected studies are less likely to be biased,
since it applies a pre-defined search strategy; (2) the search process is documented so the study
could be easily replicated.

Below, we briefly describe our systematic survey process. In addition to “logging” and “instru-
mentation,” we also include the word “tracing” as our search keywords, as “logging” and “tracing”
are used interchangeably in the research literature and practice. For example, “trace” is usually
a common verbosity level defined in many LUs to capture information flow through the SUS
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[24, 92]. In addition, many tracing frameworks [79, 99, 120] also use the term “logging” to record
various runtime behavior of the SUS. Hence, to capture all the possible related works, we search
IEEE Xplore, ACM, and DBLP publication repositories with the root form of these three words:
log, trace, and instrument.

e For IEEE Xplore, we set the “Publication Title” field to be software, and check if the
“Metadata” field satisfies one of the following criteria:
—containing the words of logging and software logging, or logging practices; or
—containing the words of tracing, software tracing, or tracing practices; or
—containing the words of instrumentation or software instrumentation.

e Similarly, for ACM, we set the “acmdICCS” field to be software and check if the title and
the abstract contains the word “logging,” “tracing,” or “instrumentation.”

e AsDBLP’s API does not support advanced search functions, we mainly use it for verification
purposes.

We then manually check the search results by employing the following inclusion and exclusion
criteria:

(1) We exclude all the papers that only study the issues in the log management phase by
reading through the abstract. For example, there are many studies focusing on log analysis
(e.g., References [75, 118, 124]) and log abstraction (e.g., References [67, 76]), which are
not relevant to this survey.

(2) We only include the papers that are published in software engineering or computer
systems—related venues, as our target audience is software practitioners or researchers.

(3) Since we are only focusing on SUS, which sits on top of operating systems and are con-
nected by computer networks, we will exclude papers that focus on the logging at the
kernel (e.g., Reference [62]) or network levels (e.g., Reference [64]).

After we gather the first batch of papers, we further apply the snowballing method [116] from
the references of these papers as well as looking through the papers that cite them. This process
results in a total of 69 papers that match our criteria. To verify the completeness of the surveyed
papers, the final results include all the papers we knew beforehand that are related to software log
instrumentation (e.g., References [41, 60, 128]). We include these 69 papers and their metadata (e.g.,
year, publication venues) as well as the initial search results from IEEE and ACM in our replication
package [18].

3.2 Summary of Our Survey

We performed our paper collection process on October 30, 2019. Figure 4 illustrates the number
of related papers between these 23 years (1997-2019), as the first research paper in this area [80]
appears in 1997. There is a clear increasing trend in terms of the number of research papers over
the years on this topic. In particular, the research interests in this area spiked after 2012, as 62%
(43) of the studied papers have been published since then. This is also partially a result of the
increasing number of research in areas in software engineering during this period [101].

After carefully studying each paper, we have identified nine challenges, which are further
grouped into the following four major categories. Note that some papers may touch on multiple
challenges.

(1) Usability refers to the log instrumentation techniques that facilitate the adoption of var-
ious logging techniques. There are two specific challenges in this category:
(a) Configurability refers to the challenge of whether the studied paper provides support
to ease the configuration process of various log instrumentation techniques.
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Fig. 4. Papers related to Log instrumentation from 1997 to 2019.

(b) Performance Overhead refers to the challenge of whether the study aims to minimize
the slowdown caused by logging.

Diagnosability refers to the log instrumentation techniques that support the analysis

and debugging tasks of various functional and non-functional problems. This category

consists of the following two challenges:

(a) Failure Diagnosis refers to the challenges associated with providing sufficient logging
information to diagnose functional failures.

(b) Performance Analysis refers to the challenges associated with providing sufficient log-
ging information to detect and debug performance problems.

LC Quality refers to the log instrumentation techniques that improve various develop-

ment aspects of LC. This category consists of the following three challenges:

(a) Clarity refers to the challenge of making LC easy to understand and less ambiguous
to both developers and operators.

(b) Maintainability refers to the challenge of supporting the maintenance and evolution
of LC, as LC is scattered across the entire system and tangled with the constantly
evolving feature code.

(c) Consistency refers to the challenges on ensuring uniform styles of logging across dif-
ferent components of SUS.

Security Compliance refers to the log instrumentation techniques that address the safety

or legal concerns of SUS. This category consists of the following two challenges:

(a) Auditing refers to the challenge of recording a serial of security relevent events to
meet various legal regulations like the Sarbanes-Oxley Act of 2002 [22].

(b) Forensic Analysis refers to the challenges of recording the user activities to support
investigations on criminal activities such as an intrusion or fraud detection.

Table 2 further breaks down the surveyed papers by associating each study with the tackled
challenge(s), the proposed solution(s), and the applied step(s). Multiple solutions can be proposed
to solve one challenge. The solution(s) can also be applied at multiple steps or sub-steps from the
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Table 2. An Overview of This Survey by Categorizing Different Papers under the Challenge Categories,
the Detailed Challenges, the Solutions That They Developed, as Well as the Applied Steps

Category Challenges Solutions Applied Steps
Configurability History [134] LU/How-to-configure
Post-processing [100, 125] LA/Conventional logging
Usability Sampling [39, 57, 58, 79, 99, 115, 120, 122] LA/Distributed tracing
Performance
Overhead LU/How-to-configure

Cost-optimization

LC/Where-to-log
[54, 126, 131, 132]

Rule-generation

LA/Rule-based loggin
[28, 49, 51, 52, 123] ule-based logging

Failure

Program analysis LC/Where-to-log
Diagnosability [50, 53, 72, 73, 127, 129] LC/What-to-log
Causality tracking LA/Distributed tracing
Performance Analysis | [29, 30, 39, 46, 47, 56-58, 68, 79, 80, 99, LC/Where-to-log
102, 111, 115, 120, 122, 135] LC/What-to-log
NLP [66]
Clarity Visualization [110] LC/What-to-log

Entropy [113]

Machine learning
LC Quality Consistency [60, 83, 88, 89, 91-94, 97, 137] LC/*
Code cloning [128]

Domain-specific Language

LA/Rule-based logging

Maintainability [26, 35]
History [41, 65, 95] LC/How-to-log
= AOP [26] LA/Rule-based
Security Auditing LU design [44] LU/What-to-adopt
Forensics Heuristics [84, 85] LC/What-to-log

W

Under the applied steps column, “*” means all the sub-steps within this step will be applied.

log instrumentation phase. For example, Dapper [120] tries to solve the challenge of controlling
the performance overhead of logging. It is classified as the sampling-based solution. The steps
that can be applied are the distributed tracing approach from the Logging Approach step and the
how-to-configure sub-step of the LU Integration step. One study can also provide solutions for
multiple challenges. For example, in addition to addressing the performance overhead challenge
mentioned above, Dapper [120] also proposes a causality tracking-based solution for supporting
performance analysis.

Figure 5 shows the distribution of studied papers by the challenges that they tackled. Note that
they do not add up to 69, as some papers tackle multiple challenges. The majority of them focus on
the diagnosability (45%) or LC quality (43%) aspects. 25% of papers tackle the usability challenge
and only 6% of papers study security-related challenges.

Section 4 will explain each challenge and the proposed solutions by the studied papers.

3.3 Comparing Against Existing Surveys
There are three existing works [37, 112, 114] that are related to our survey on log instrumentation:
e Rong et al. [112] conducted a systematic review on the log instrumentation practices on
one type of logging approach, conventional logging. They did not cover other logging
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Fig. 5. Paper distribution classified by associated challenges.

approaches nor discussed the techniques in LU integration. Furthermore, compared to Ref-
erence [112], we have placed each studied paper in the context of associated challenges so
practitioners or researchers can easily locate the relevant solutions to adopt and understand
their limitations if any.

e Sambasivan et al. [114] conducted a survey on distributed tracing systems, which are log-
ging frameworks to support monitoring and diagnosing problems for distributed systems.
They examined the features of 15 frameworks (e.g., preserving causal relationships or visu-
alization) and focused on the diagnosability category of the log instrumentation techniques.
Our survey covers all three general logging approaches, which include distributed tracing.
Furthermore, on top of diagnosability, we have identified and examined additional challenge
categories (e.g., usability and security) and their associated solutions.

e Candido et al. [37] conducted a systematic review on logging techniques for contemporary
software monitoring. They focused their study on the following four dimensions: log engi-
neering, log infrastructure, log analysis, and log platforms. Log engineering is only focused
on logging code composition of conventional logging, while our survey not only discusses
other logging approaches, but also covers LU integration. The remaining three dimensions
are all related to the log management phase, which is not the focus of this survey.

In addition, there are also surveys related to the dynamic instrumentation techniques used dur-
ing monitoring [38, 63, 69], as the focus of this article is on log instrumentation, which gen-
erally refers to static instrumentation techniques applied during the software development and
maintenance.

3.4 Comparing against Industrial Work and Open Source Software

Several existing studies were conducted in an industrial environment. A study is considered as
industrial work, if the affiliation of the first author is an industrial organization (e.g., research
labs or software companies) and the study was conducted mainly on industrial software systems.
Two studies have been conducted on researching and developing the infrastructure of distributed
tracing systems from Google [120] and Facebook [79]. Three studies from Microsoft [31, 54, 60]
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tackled the where-to-log step in the LC Composition phase. Two studies from Critiware [28,
109] proposed rule-based logging in the Logging Approach phase. There is a lack of industrial
work in other steps or phases, such as the phase of LU integration. The reasons are two-fold:
(1) log instrumentation is highly tangled with the source code, due to confidentiality reasons,
many companies are not willing to make their internal infrastructure or practices public; and
(2) log instrumentation is commonly conducted as after-thought efforts [128], because industrial
organizations might not be aware of the benefits of proactively developing and maintaining LC
snippets.

Similar to other systematic literature surveys [37, 112, 116], in this article, our main focus is on
published research papers instead of the tools and frameworks. Additionally, in favor of the prac-
titioners, we also list the tools and frameworks we have found so far. There are many industrial
systems and open source software available for the phase of Logging Approach. For example, the
most commonly used logging utilities include Log 4] 2 [14] and Apache Commons Logging [1],
which are using the conventional logging approach. Software systems such as OpenTracing [108],
OpenCensus (Google) [16], Jaeger (Uber) [10], Zipkin (Twitter) [25] are widely used for distributed
tracing. Closed source commercial solutions and platforms also exist for log instrumentation and
management, such as Datadog [5], Lightstep [12], and Splunk [21]. However, to our best knowl-
edge, there is a lack of widely adopted industrial and open source tools and frameworks focusing
on the phases of LU Integration and LC Composition.

4 CHALLENGES AND SOLUTIONS

In this section, we discuss in detail about the nine different challenges in four categories and
report the solutions extracted from the existing literature. For each of the solutions, we identify
the applied steps/sub-steps of the log instrumentation phase and discuss the pros and cons.

4.1 Usability

The usability of log instrumentations relates to how effectively users can adopt various logging
techniques and manage logging behavior during runtime. This is challenging because: (1) logging
behavior is managed through various configuration functionalities. As large-scale software sys-
tems evolve rapidly, their logging behavior needs to be changed accordingly; and (2) intensive
logging, although helpful to many tasks to a certain degree, will inevitably downgrade the per-
formance of the SUS and may even interfere with the normal operation. Hence, the performance
overhead caused by logging has to be controlled within a certain threshold. In this subsection, we
will discuss these two challenges (configurability and performance overhead) and the proposed
solutions to address them.

4.1.1 Configurability. Configuring LUs is a non-trivial task. A study conducted by Hassani
et al. [65] shows that log configuration-related issues could possibly cause serious problems such
as runtime exceptions and missing logs. These issues are often caused by inconsistencies between
the log configurations and feature code. For example, a wrongly named logger could cause a
File Not Found exception, preventing the logs from being written to disks. There is a lack of
automated tool support for detecting such inconsistencies. There is one solution proposed for this
challenge:

e History-based solution. Zhi et al. [134] conduct an empirical study by analyzing the evolu-
tion of logging configurations of 10 open source projects and 10 industrial projects from
Alibaba. Many of the studied open source projects (e.g., Hadoop, HBase) are also being
widely used in industry. They find, for the ease of managing logging behavior in different
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components of a large-scale system, the loggers will be named after three conventions:
topic-based, package-based, and mixed naming. In industrial projects, topic-based naming
is used most often while in open source projects, and package-based naming is used most
frequently. Furthermore, the names of loggers are changed frequently due to inconsisten-
cies and software evolution. Based on this finding, they propose a history-based solution
to identify invalid loggers. It compares the names of all the loggers in configuration files
and the ones mentioned in source code files. The unmatched ones between the two sets
are reported to developers. All the detected issues are confirmed by developers of the SUS.
This solution is applied in the how-to-configure sub-step in the LU Integration step. Al-
though it is able to statically detect inconsistencies in log configurations, many other types
of issues, such as low readability of loggers and performance-related parameter tuning, still
cannot be detected automatically. Hence, more research is needed to facilitate log configu-
rations so they can co-evolve with other components of the SUS.

4.1.2  Performance Overhead. On one hand, effective log analysis requires rich logs that are
generated by the execution of instrumented LC snippets. On the other hand, excessive log in-
strumentation will cause runtime performance overhead and impact customer experience. This
challenge is about how to balance the performance cost and the benefits of log instrumentation.
The following three types of solutions have been proposed for this challenge:

e Post-processing-based solution: To reduce the I/O cost associated with conventional logging,
a post-processing-based solution has been proposed. The main idea is to delay the output
of log messages only when needed. NanoLog [125] is a nanosecond scale logging system
implemented in C++. It first statically analyzes the source code during compilation time and
generates a compression function for each LC snippet. During runtime, only the compact
log messages would be generated. The full textual version of the log messages will only
be generated during the post-processing time. In this way, NanoLog can achieve 1-2 order
of magnitude faster than conventional logging libraries (e.g., Log4] 2 [14], spdlog [20]).
Similarly, Log++ [100] is a logging system that optimizes the logging performance for the
Node.js platform by postponing log generation offline.

The post-processing-based solution is applied in the Conventional Logging sub-step in
the Logging Approach step. Although the proposed solutions are faster than existing log-
ging libraries, they are limited to certain programming languages (C++ and Javascript). In
addition, this solution would not be applicable if logs are also used for real-time analysis
purposes (e.g., monitoring), as real-time analysis requires the logs to be immediately avail-
able for various automated tools. Hence, the runtime would be the same as the common
conventional logging approach.

e Sampling-based solution: One of the main issues associated with distributed tracing is the
performance overhead incurred to the SUS. Many LUs (e.g., Google’s Dapper [120] or Face-
book’s Canopy [79]) implementing distributed tracing-based logging approaches usually
support sampling, which is a technique to selectively generate and preserve log messages
to reduce the runtime overhead. There are three sampling techniques: head-based sampling,
tail-based sampling, and unitary sampling [114, 119]:

— Head-based Sampling: The sampling decision is made at the beginning of every trace. It
either preserves the whole trace (including every trace point) or no trace at all. Head-
based sampling techniques can be further divided into the following three types of sam-
pling techniques: (1) Probability sampling, which makes the sampling decision based on
a pre-defined probability; (2) Rate-limit sampling, which makes sampling decision based
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on a pre-defined sampling rate; and (3) Adaptive sampling, which dynamically adjusts the
sampling decisions during runtime.

— Tail-based sampling makes the sampling decision at the end of each trace. Compared
to head-based sampling, it can make a more informed decision after all the collected
traces are available. Hence, developers can pay more attention to the traces that may
contain anomalies and discard the repetitive normal traces. However, tail-based sampling
is not supported by many LUs due to its high resource requirements on memory/disks
for temporarily storing all the generated traces.

— Unitary sampling makes the sampling decision at every trace point. Hence, a complete
trace cannot be recovered through this approach. This technique only has very limited
usage scenarios.

The sampling-based solution is applied in the Distributed Tracing sub-step in the Log-

ging Approach step and how-to-configure sub-step in the LU integration step. It is a

widely adopted solution in practice to reduce the performance overhead in distributed trac-

ing. The downside of the sampling-based solution is that important logs might be filtered
out due to low sampling rate. However, in a high-throughput SUS, crucial events will be
caught eventually. Low-throughput SUS are recommended to preserve every trace if the

system is not tolerant of missing information [120].

Cost-optimization-based solution: Three cost-optimization-based solutions have been pro-

posed to determine the optimal instrumentation points in the SUS under a certain

threshold:

— Information Theory: To better recover execution paths using log messages, Zhao
etal. [131, 132] propose Log20, which is a tool to automatically insert LC snippets. To eval-
uate such capability, the concept of entropy is used. Entropy is originated from Shannon’s
information theory. In the context of problem diagnosis, the higher entropy, the more un-
certain execution paths exist in a code block. At the same time, the performance costs of
the instrumented LC snippets should not exceed a customized threshold to minimize per-
formance overhead. The best logging points are those that resolve the most uncertainty
during problem diagnosis within an acceptable range of performance overhead.

— Constraint Solving: To dynamically control the performance overhead, Ding et al. [54]
propose a constraint solving method to determine the optimal logging points that incur
minimum performance overhead with maximum amount of runtime information. This
approach provides a configuration that dynamically adjusts the types of log messages
outputted during runtime based on the performance of SUS.

— Statistical Modeling: To better monitor the performance of SUS, Yao et al. [126] propose
Log4Perf to suggest logging points. They first build performance models by running
performance tests. Through these models, source code snippets that are performance-
influencing are identified. For all the methods in the source code, the entry points and
the exit points are instrumented with LC snippets. After re-executing the performance
tests, the methods that cost constant execution time are identified and their correspond-
ing LC snippets are removed. The remaining set of LC snippets will assist developers
in diagnosing and optimizing system performance by increasing the visibility of perfor-
mance issues.

Cost-optimization-based solutions are applied in the where-to-log sub-step in the LC

Composition step. They are able to reduce performance overhead caused by log instrumen-

tation while preserving their ability for tasks such as code path recovery and performance

analysis. However, logs are used in many other scenarios (e.g., security compliance). It is im-

portant to expand these mutli-objective optimization problems to other factors of logging.
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4.2 Diagnosability

Diagnosability is to what degree practitioners can leverage log instrumentation to diagnose system
problems, functional or non-functional. More than often, logs are the only source that practitioners
rely on for this task. However, around one-third of log instrumentation is conducted in an ad hoc
manner [42, 128], which implies that practitioners often add log instrumentation after they realize
there is a lack of information. This will cause delay in diagnosis and potential financial losses.
Hence, in this subsection, we will describe two challenges in diagnosability (failure diagnosis and
performance analysis) and the corresponding solutions to address them.

4.2.1 Failure Diagnosis. Practitioners often leverage logs for failure diagnosis. They often start
with mapping logs to the LC snippets and work backwards to understand the executed code paths
during runtime. However, if the recorded information in logs is not enough for pinpointing the
exact executed code paths, a number of possible paths need to be identified and analyzed thor-
oughly to infer the real paths. This will dramatically increase the analysis time and is harmful to
the product quality. Hence, proactive log instrumentation techniques are needed to identify the
key program points that need to be instrumented. The following two solutions have been proposed
to address the challenge of failure diagnosis:

e Rule-generation-based solution: Cinque et al. [49] find that the quality of generated telemetry
data has a strong correlation with the ability to report failure, which highlights the impor-
tance of log quality. Motivated by the findings, they [51, 52] further summarize eight gen-
eral rules for log instrumentation by studying system design artifacts such as architectural
models and UML diagrams. To do this, they first abstract these artifacts into a system rep-
resentation model, which consists of the interactions among a set of entities in the system.
Then the rules for instrumenting LC snippets are composed to record the key interactions,
which should cover the needed data for failure diagnosis. These rules are designed to meet
the needs of diagnosing four types of functional failures: (1) service error, (2) service com-
plaint, (3) interaction error, and (4) crash error. For instance, when a service is unable to
reach an exit point, it is considered to be a service error. To handle such errors, the events
of service start and service end must be logged. Crash errors refer to any abnormal stop of
an entity. To handle such errors, a heartbeat LC snippet needs to be periodically invoked to
monitor the service execution.

Baccanico et al. [28] find several logging issues existing in Selex ES, a top-leading Fin-
meccanica company. They propose to use logging policies, i.e., a set of rules, to support the
log reengineering across all the product teams. For example, they propose that an error-
reporting logging statement must be inserted after checking an assertion. They aim to sup-
port the failure diagnosis by enhancing the log instrumentation via rule-based approach.

Varvaressos et al. [123] propose a rule-based framework for detecting bugs in video
games. They improve the traditional instrumentation process by identifying the key prop-
erties of video games. That is, every video game has a main game loop and it is thus the
only place that needs to be instrumented. Key events that represent the program states can
be captured. They instrument five games using the same rule: identifying the game loop,
instrumenting the template instructions, and checking if the properties (represented as a
series of game status) are violated. This log instrumentation framework is able to detect
existing bugs of the studied video games precisely.

The Rule-generation-based solution is applied in the Rule-based Logging sub-step in
the Logging Approach step. It helps to complement the existing log instrumentation in
the SUS by automatically inserting log instrumentations according to the generated rules.
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The overhead of additional instrumentation is also controlled at an acceptable level. How-

ever, all of the above approaches derive rules manually and require deep domain knowledge.

Hence, an interesting future area of research is to investigate automated approaches to

discover and update rules based on the SUS’s runtime behavior and historical problems.

e Program analysis-based solution: Program analysis [106] is a technique that analyzes the
behavior of SUS automatically through static [33] or dynamic analysis [105]. Both types of
techniques have been used to facilitate the diagnosis of functional failures:

— Static analysis-based techniques analyze source code without executing the SUS. There
are many program analysis tools, which automatically scan through the source code of
SUS, output abstract representations like ASTs (abstract syntax trees) and call graphs,
and reveal deficiencies in the source code. For example, call graphs can be analyzed fur-
ther to identify logging points that are suitable for failure diagnosis. Yuan et al. have con-
ducted two prior works to improve failure diagnosis by leveraging static analysis [127,
129]. For example, they investigate 250 bug reports and characterize exception patterns
that need additional logging [127]. A static checking tool, Errlog, is proposed to scan the
code base for these types of exception blocks and automatically instrument LC snippets
to record the error locations and error context. They also propose LogEnhancer [127] to
instrument additional variables in the existing LC snippets. These variables are extracted
by statically analyzing the control flow and data flow of the source code of SUS, so log
messages can contain complete runtime information to closely replay and diagnose the
failure context. Different from the above approaches, in which the logging points are
suggested manually one-by-one, SmartLog [73] is proposed to automatically instrument
LC snippets by leveraging the data mining techniques on the static analysis results. The
context (e.g., residing functions) of LC snippets are analyzed to generate log intention
models. The log intention models represent the logging decisions (a.k.a. whether this LC
snippet is logged or not logged) of a code snippet. Data mining models are then trained on
such dataset and used subsequently to suggest program points for log instrumentation.

— Dynamic Analysis-based techniques suggest logging points by analyzing the runtime be-
havior of SUS. Compared to static analysis-based techniques, dynamic analysis-based
techniques need to execute the SUS. The output data generated by the execution is then
analyzed for various tasks. The ambiguous and missing information in the outputs leads
back to logging suggestions. Hence, dynamic analysis-based solution usually consists of
three steps:

(1) Running SUS under different settings: Developers can inject customized faults into
the SUS or just run with common workloads. The goal of this step is to collect output
data, such as log messages, stack traces, and memory dumps.

(2) Log analysis: The goal of this step is to check whether the current output data
is capable of diagnosing failures. If not, then the missing information indicates the
potential logging points and what key variables need to be recorded.

(3) Update instrumentation: Additional instrumentation will be performed on the
SUS. Then the same experiments from step 1 will be executed again. The goal of
this step is to evaluate if the newly instrumented LC can improve the failure diag-
nosis process.

There are three research works that leverage dynamic analysis-based techniques to sug-
gest additional logging points. Cinque et al. [50] propose a technique to increase the fail-
ure diagnosability of log messages. They first inject faults into three popular open source
projects and execute the SUS to collect log messages and memory dumps. Analyzing the
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output data, they summarize the top 10 frequent executed functions from halt failures and
silent failures. Additional LC snippets are inserted into these functions. Crameri et al. [53]
also propose similar techniques to suggest which branches to log. They first repeatedly
execute the SUS with different inputs using a symbolic engine. After each run terminates,
they record the constraints between the symbolic variables and the executed branches.
Additional log instrumentation is performed by identifying the associations of executed
branches and variables. Jia et al. [72] propose an approach to inserting LC snippets to
ease fault localization. They first run the SUS with injected faults. Then they compare
the log messages between successful runs and failed runs to identify key variables to log.
Program analysis-based solutions are applied in the where-to-1log and what-to-log sub-
steps in the LC composition step.
Static analysis-based techniques incur low overhead, as the analysis can be run offline. Dy-
namic analysis-based techniques can provide more accurate results, as they are based on
real execution instead of offline inference. However, with the rapid software release cycle
nowadays, both approaches need to be re-run frequently to reflect the feature code changes.
Hence, to prevent the results from becoming stale, tools for integrating these solutions into
Continuous Integration/Continuous Delivery processes are needed.

4.2.2  Performance Analysis. Performance problems are often caused by interactions among dif-
ferent software components. With the increasing popularity of cloud native applications and mi-
croservice architecture, one system could contain hundreds or even thousands of small services,
many of which are developed by different engineering teams. Logs generated by traditional log-
ging approaches are insufficient for analyzing performance problems, as the lack of contextual
information makes it impossible to reconstruct the ordering of events. Without such information,
it is very challenging to pinpoint the performance bottleneck.

Causality tracking-based solutions are applied in the Distributed Tracing sub-step in the
Logging Approach step and in the where-to-log and what-to-1log in the LC Composition step.
They are designed to instrument and preserve contextual data in logs to facilitate complex per-
formance analysis. They are widely adopted in modern distributed software systems. There is one
solution proposed to address the challenge of performance analysis:

o Causality tracking-based solution To enable thorough end-to-end performance analysis, the
causality tracking-based solution is proposed. In particular, causality tracking is conducted
in two ways [114, 119]:

— Schema-based techniques: Schema-based techniques correlate the relevant logs based on
pre-defined rules [29, 30, 47, 68]. Developers need to design event schemas to join indi-
vidual event to reconstruct a complete request. For example, event A and event B share
the same value of variable x, event B and event C share the same value of variable y, then
event A, B, and C will be joined. The causality is then decided through the happened-before
relation.

— Propagation-based techniques: Propagation-based techniques track the causality within
a request by propagating the context metadata between instrumented components. A
complete trace of a request consists of multiple log messages (i.e., spans) linked by the
metadata. The metadata contains a unique global trace ID. The metadata is passed around
as the request flows from one component to another one. Apart from the global trace
ID, it also records other necessary information such as parent ID to keep the causal-
ity relations between individual span. The format of metadata needs to follow a cer-
tain standard or protocol so both the senders and receivers can pack and unpack the
information.
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Most of the modern distributed tracing frameworks adopt propagation-based techniques instead
of schema-based techniques. There are three reasons for this:

e Performance Overhead: Schema-based techniques do not support sampling, because they
cannot decide which log messages to be discarded without compromising the ability to
conduct the join operations. Hence, for SUS that generates large volumes of log messages
every day, it would be too expensive to adopt schema-based techniques.

o Generalizability: Propagation-based techniques are general across different SUS. On the con-
trary, for schema-based techniques, developers need to implement the join schema for every
different SUS based on its characteristics, which can be time-consuming and error-prone.

e Real-time feedback: Schema-based techniques are mostly conducted offline after all the log
messages have been collected. For SUS that need monitoring or online analysis and detec-
tion, propagation-based techniques are more appropriate.

4.3 LC Quality

Developing and maintaining high-quality logging code is very challenging, especially in con-
stantly evolving SUS. There are two main reasons: (1) Management: software logging is a cross-
cutting concern, which tangles with the feature code. Although there are language extensions
(e.g., Aspect]) to support better management of logging code, many industrial and open source
projects still choose to inter-mix logging code with feature code. (2) Verification: unlike feature
code or other types of cross-cutting concerns (e.g., exception handling or configuration), whose
correctness can be verified via software testing; it is very challenging to verify the correctness
of the logging code. In this subsection, we present three challenges that are related to LC Qual-
ity: clarity, consistency, and maintainability. For each challenge, we discuss the solutions that
address it.

4.3.1 Clarity. There are two components within an LC snippet, which provides the context
of logging: the static texts and the dynamic information. The static texts generally describe the
surrounding of the logging context (e.g., “Transaction completed”) whereas dynamic information,
including variables and method invocations, provides the runtime information/state (e.g., the to-
tal amount for that transaction) of the SUS. Unclear static texts and missing dynamic informa-
tion would cause confusion and even mislead developers’ decisions. However, as the clarity of LC
snippets usually does not impact the normal execution of the SUS, it is challenging to identify the
clarity issues in the existing LC snippets. Automated approaches to improving the clarity of the
LC snippets are needed to ensure the LC quality.

Hence, it is important to clearly describe the static context of each LC snippet to avoid confusion
and to add the appropriate dynamic information in the LC to capture a clear runtime context. There
are three solutions reported in the literature. NLP-based solution is proposed for automatically
generating static text. Visualization-based and Entropy-based solutions are proposed for clarifying
dynamic information.

o NLP-based solution: He et al. [66] conduct a study on characterizing the static texts of logging
code using Natural Language Processing (NLP) techniques. They find that static texts
in LC snippets are endemic, i.e., LC snippets within the same file or in the same context
tend to use similar static texts to describe the program behavior. Inspired by this finding,
they propose a solution to automatically generate static texts for an LC snippet. The solu-
tion consists of three steps: (1) for the candidate LC snippet, the surrounding code snippet
(Snippet A) are extracted; (2) within a corpus of code snippets that contain an LC snippet,
we extract the most similar code snippet Snippet B compared to Snippet A. The similarity is
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calculated by Levenshtein distance; (3) the static text of the LC snippet in Snippet B is then
used as the static text of the candidate LC snippet.

The NLP-based solution is applied in the what-to-log sub-step in the LC Composition
step. This solution is the first work on automated static text generation and can achieve
decent BLEU and ROUGE score (two metrics that are commonly used in NLP studies). It
does suffer from several limitations. For example, LC snippets in similar code snippets do
not necessarily have the same static texts, because they are in different methods. Other
techniques such as clone detection and deep learning might be helpful for this task.

e Visualization-based solution: Rabkin et al. [110] propose a visualization-based solution for
adding missing variables of LC snippets. For each log message, they first create a graphical
representation that contains all the identifiers in it (e.g., a transaction or operation ID). The
identifier graph is then constructed by linking the log messages with the same identifers.
As the identifiers can be missing, inconsistent, or ambiguous, the identifier graph can be
used to visualize the deficiencies. For example, a log message with insufficient identifiers
would cause missing edges in the graph, where the semantics of the source code shows that
the edge should exist. Based on the finding, suggestions like adding the missing identifier
are made to improve the clarity of the LC snippet. They evaluated this solution in three
popular open source projects and demonstrate it can effectively pinpoint the deficiencies in
the LC snippets. The visualization-based solution is applied in the what-to-log sub-step
in the LC Composition step. It is straightforward and easy to apply. However, it requires
manual efforts for examining the visualization and thus cannot scale to large volumes of
LC snippets.

e Entropy-based solution: Salfner et al. [113] propose an entropy-based solution to measure
the comprehensiveness and expressiveness of logs. They define a set of metrics by adapting
Shannon’s information entropy to the context of logs. This enables practitioners to compare
the clarity of different LC snippets. They evaluate this solution on a set of real logs taken
from a Java Enterprise Beans container. Results show that certain information is considered
redundant and should be carefully removed. The entropy-based solution is applied in the
what-to-log sub-step in the LC Composition step. Quantifying the clarity of logs is helpful
for practitioners to make an informed decision on how to improve the LC snippets. How-
ever, automated techniques that support the improvement process for legacy LC snippets
are needed.

4.3.2 Consistency. The consistency of LC snippets denotes if the location, contents, or style of
LC snippets are uniform. As LC snippets usually scatter across the whole code base, it is chal-
lenging to identify and fix the existing inconsistencies. Consistent LC snippets generally have
three benefits: (1) in the instrumentation phase, it helps developers to make informed decisions
on where-to-log, what-to-log, and how-to-log; (2) in the runtime, information loss is avoided by the
consistent verbosity levels; and (3) in the operation phase, consistent logs can facilitate automated
analysis such as failure diagnosis and performance analysis.

There are two solutions proposed to ensure the consistency of LC snippets: machine learning-
based solution and code cloning-based solution:

e Machine learning-based solution: As logging is pervasive in software [42, 128], it is natural
to apply machine learning techniques to automatically learn from the existing practices and
provide useful insights. Depending on the objectives of tasks, there are two common types
of ML: supervised learning and unsupervised learning. Supervised learning requires the
training data to have readily available labels and predicts the labels of new data. However,
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unsupervised learning does not require the training data to have labels. It is mostly used

for deriving patterns in a dataset.

— Supervised learning techniques are adopted for assisting LC composition, as the objec-
tives are labelling if a code snippet should be logged (where-to-1log) or if a particular
variable/verbosity level should be used for logging (what-to-1og). The general process
usually consists of the following four steps: (1) Data gathering: This step is to collect
training data for performing the tasks. The training data consists of a set of instances
with labels; (2) Feature engineering: This step is to extract features that are to describe
the instances. These features are the input for the machine learning models; (3) Model
building: This step is to build machine learning models from the labelled training data.
The parameters are tuned in this step to improve the model performance; and (4) Making
predictions: This step is to apply the model on new data to predict the labels. This step is
the final output of the supervised learning process.

Supervised learning techniques have been applied in the following two sub-steps in the

LC composition phase:

* Predicting where-to-log: Fu et al. [60] propose a technique to predict if a code snippet
should be logged. In particular, they focus on two types of code snippets: catch
blocks and return-value-check blocks. Each logged or unlogged code snippets are
collected and labelled. Contextual keywords, such as the residing function name,
are then collected as the features. A decision tree model is built for the task based
on the collected features. They evaluate the solution on two Microsoft systems and
achieve more than 80% of precision and recall. Zhu et al. [137] propose LogAdvisor,
which improves the previous technique by collecting more types of features. Their
features include structural features, which are the contextual keywords, the textual
features, which are generated by transforming the code snippet into stemmed words,
and the syntactic features, which are the properties of the code snippets such as the
total lines of the code snippet. In addition, they also include new processes such as
noise handling and cross-project evaluation. A user study shows 70% of participants
think suggestions made by LogAdvisor is useful. Lal et al. propose a similar technique
using a different set of features for predicting the insertion of LC snippets in two
types of code blocks: catch blocks [89] and if code blocks [88]. Li et al. [91] use
automatically computed topics to describe the functionality of a code snippet. This
information is then used as an additional feature for an existing machine learning
model, which is used to predict whether a code snippet needs to be logged. Results
show that such a topic-based feature is helpful in explaining the likelihood of log
instrumentation. With this feature, the value of AUC and balanced accuracy increases
more than 10%. Other than code snippets, they [93] also propose a similar technique
to predict if a new commit needs just-in-time changes for LC snippets.

Predicting what-to-log: Supervised learning techniques are also used to predict the mod-

ification of contents in an LC snippet. They can be further divided into the following

two areas depending on the types of logging components:

. Verbosity levels: Li et al. [92] propose to recommend the most appropriate verbosity
level for newly added LC snippets. Since there are more than two verbosity levels
for an LC snippet, they build an ordinal regression model for this task. They gather
the training data from development histories and collect three types of features: file
metrics, change metrics, and historical metrics. Results show that the model outper-
forms the baseline model. Features such as the characteristics of the containing block
of a newly added LC snippet and the existing LC snippets in the containing source
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code file are important in explaining the predictions. Kim et al. [83] propose to use
semantic features of LC snippets for validating the consistency of verbosity levels.
They first collect similar sets of features as Li et al. [92]. In addition, they apply the
word2vec model to generate the word embedding of LC snippets as the semantic
features. Then they build randomforest and KNN models as the classifiers. Results
demonstrate that this technique achieves more than 85% of precision and recall.

. Dynamic Contents: Liu et al. [97] present a deep learning-based technique to recom-
mend variables in LC snippets. Different from predicting a verbosity level, which has
a fixed set of labels, variables in LC snippets are chosen from a dynamic set of candi-
dates. In addition, the names of variables may not exist in the training dataset, which
is known as the “out-of-vocabulary” problem. To address the first problem, they first
use a neural network with an RNN (recurrent neural network) layer and a self-
attention layer to learn the representation of each program token and predict which
token should be included in the LC snippet using a binary classifier. To address the
second problem. they map program tokens to word embeddings of natural language
tokens. They evaluate the technique on nine open source projects and show that it
outperforms the baseline methods by large margins.

— Unsupervised learning is applied to assist the modification of LC snippets at the step of
how-to-log. Li et al. [94] find that LC snippets with similar contexts tend to share sim-
ilar modifications. Inspired by this finding, they propose LogTracker, a clustering-based
technique to automatically learn log revision rules. For each instance of LC snippet, the
features are generated from the semantics of context. Then they apply the agglomerative
hierarchical clustering algorithm to mine log revision rules. The log revision rules are
then used to suggest modifications to LC snippets in a similar group. More than 65% of
reported issues detected by LogTracker are confirmed and fixed.

Machine learning-based solutions are applied at all three sub-steps of LC composition. They

can help practitioners make informed logging decisions without manual intervention. How-

ever, they generally rely on the size and the quality of the existing logging data. Hence, they
may not be applicable to new or small-sized projects.

e Code Cloning-based solution: The idea of the code cloning-based solution is to validate the
quality of LC by searching for similar LC snippets. For example, Yuan et al. [128] propose a
code cloning-based technique to fix inconsistent verbosity levels in LC snippets. They first
extract all the groups of code clones and identify the groups of code snippets that contain LC
snippets. If within the same clone group the LC snippets have inconsistent verbosity levels,
then at least one of them is considered to be incorrect. The code cloning-based solution is
applied in the how-to-1og sub-step in the LC Composition step. Although the code cloning-
based solution is straightforward and easy to implement, its capability is limited. This is
because not every code snippet containing LC snippets has clones [43].

4.3.3 Maintainability. The maintainability challenge is regarding the problem of supporting
the evolution and maintenance of LUs and LC. As log instrumentation is a cross-cutting concern,
it is challenging to keep the logging code updated with the feature code while it evolves rapidly.
The instrumented LC snippets may become obsolete, insufficient, and misleading due to lack of
continuous maintenance. Although many projects use general-purpose LUs, some LUs are used
specifically for improving the maintainability of the LC [87]. For example, Bartsch and Harri-
son [32] compare SUS written in the Object-Oriented to the Aspect-Oriented manner. They con-
clude that the clear separation of logging concerns has a positive impact on the maintainability
of LC. JBoss logging [71] supports multiple human-readable languages in the logs by providing
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internationalization-related APL It is quite common to find the current LUs not statisfying the
constantly evolved software requirements. Hence, developers [77] migrate LUs for better flexibil-
ity, performance, and maintenance. However, over 70% of the successfully migrated projects may
suffer from post-migration bugs. Existing studies show that logging is pervasive and LC snippets
are often updated as after-thoughts to reflect feature code changes [40-43, 128, 130]. Most of the
LC snippets have been changed at least once during their life cycle [78]. There are two types of
solution reported in the existing literature to improve the maintainability:

e Domain-specific Language-based solution: One of the main issues associated with rule-based
logging is the steep-learning curve [44]. To ease the migration efforts from conventional
logging to rule-based logging, Bruntink et al. [35] and Mohammadian et al. [26] propose
techniques to easily express logging concerns in a modularized manner in domain-specific
languages. These concerns can be generated to AspectC [23] code and then be removed
from the original code base. The Domain-specific Language-based solution is applied in
the Rule-based Logging sub-step in the Logging Approach step. It provides utilities for
automating the separation of concerns and reduces the technical difficulty of applying rule-
based logging. However, this process still needs deep domain knowledge and is thus hard
to be extended to other systems.

e History-based solution: Without careful maintenance, the number of outdated LC snippets
will increase as the SUS evolve. Outdated LC snippets exist for a variety of reasons. First,
as LC snippets are mostly composed manually, human errors (e.g., typos in the static texts)
are unavoidable. Furthermore, as LC snippets are scattered across the entire code base and
cross-cuts with the feature code, it is hard to keep track of them efficiently. As the SUS
evolves rapidly, developers may forget to update the LC accordingly along with feature
code. Hence, solutions to automatically maintain LC are needed. Existing works [41, 65,
95] mainly rely on the development history to guide the maintenance of LC snippets. They
usually consist of the following steps:

(1) Examine the development history, e.g., code changes and issue reports.

(2) Characterize the code changes that are fixing logging code issues.

(3) Identify and extract anti-patterns (a.k.a. common problems) in logging code from
the previous step and implement automated tools to detect them.

Depending on the type of studied development artifacts, there are three kinds of techniques:

— Commit-based: Chen and Jiang [41] propose the first work on characterizing and detect-
ing anti-patterns in the logging code. They have manually examined 352 pairs of inde-
pendently changed logging code snippets, which are extracted from code commits in the
development history, from three well-maintained open source systems. Six anti-patterns
in the logging code are identified. To demonstrate the value of the findings, they have en-
coded these anti-patterns into a static code analysis tool, LCAnalyzer. Case studies show
that LCAnalyzer has an average recall of 95% and precision of 60% and can be used to
automatically detect previously unknown anti-patterns in the logging code.

— Source code-based: Li et al. [95] propose DLFinder to characterize and detect duplicate
logging code smells. They manually studied over 3K LC snippets that have duplicate static
texts and their surrounding context from the source code of four open source projects.
They identify whether the duplicate static texts are problematic based on the context.
For the problematic ones, they encode the anti-patterns into static rules and develop a
code checker called DLFinder. Results show that DLfinder is able to detect previously
unknown duplicate logging code smells.

ACM Computing Surveys, Vol. 54, No. 4, Article 90. Publication date: April 2021.



A Survey of Software Log Instrumentation 90:25

— Issue report-based: Instead of analyzing the historical commits or the source code, Hassani
et al. [65] study log-related issue reports and manually summarize seven root causes
of log-related issues. They implement a rule-based tool to detect four of the seven root
causes. Results show that their tool can find previously unknown log-related issues.

History-based solutions are applied in the how-to-log sub-step in the LC Composition
step. They have been used to detect issues in the logging code of open source software
projects. However, as reported by Chen et al. [43], only a small portion of logging code issues
can be detected by existing techniques. Research is needed to detect more types of logging
code issues. Besides, history-based solutions often come with static code checkers, which
generally have a high false positive rate. It is worthwhile to look into the possibility of other
types of techniques (e.g., machine learning-based, dynamic analysis-based) to complement
current solutions.

4.4 Security Compliance

Security compliance means that the log instrumentation should serve the purposes of safety and
legal compliance. It is essential, as logs are often the sole source available for recording the user
activities. In this subsection, we will describe two challenges: auditing challenge for recording
security-related activities and forensics challenge for recording crime-related activities.

4.4.1 Auditing. Auditing refers to the practice of recording a serial of security-relevant events
to meet various legal regulations. The auditing requirements are often described in text-based spec-
ifications. Transforming the specifications to instrumentations is not straightforward. In addition,
large-scale software systems usually contain intensive log instrumentation, so it is challenging to
manage the different behavior of audit log instrumentation and regular log instrumentation, as
they have different requirements. There are two types of solutions that address this challenge:

e AOP-based solution: Some SUS (e.g., medical and aircraft control system) need correct and
sound audit logs to satisfy the security requirements. They have detailed specifications on
the audit logs. Tools have been developed to transform these specifications into AOP instru-
mentation, so the audit logs can be generated and managed easily. Mohammadian et al. [26]
propose to use Spring AOP to transform specification to logging instrumentations. They de-
vise a code rewriting algorithm and implement a prototype on OpenMRS, a popular medical
record system. The AOP-based solution is applied in the Rule-based Logging sub-step in
the Logging Approach step. It improves system modularity and reduces code tangling and
scattering. It makes the auditing logs easy to maintain and monitor. However, AOP-based
solution has high learning curves and the transformation process still needs high manual
efforts.

e LU Design-based solution: Some projects (e.g., Hadoop) develop their own LUs to better sup-
port auditing. Auditing logs are generally more structured compared to the regular log mes-
sages. The format of the audit logs can vary across different software components. Hence,
to facilitate code reuse, internal LUs for auditng purposes are developed. The LU Design-
based solution is applied in the what-to-adopt sub-step in the LU Integration step. On one
hand, it can be highly customized, as practitioners can manually design auditing logging
utilities. On the other hand, this solution incurs additional maintenance overhead.

4.4.2 Forensics. Computer forensics is the practice of collecting data for legal purposes. This
data is further exploited for the investigation of crimes. Log messages are one of the most important
sources of evidence [81]. It is challenging to decide what user activities are must-logged. There is
one solution proposed to address this challenge:
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e Heuristic-based solution: King et al. [84] propose a heuristic-based solution to identify
whether a user event should be logged or not from the forensic perspective. They first
extract verb-object pairs from natural-language artifacts such as specifications and re-
quirement documents. Then they propose 12 heuristic-based rules to identify the manda-
tory logging events (MLEs) from these verb-object pairs. They follow up by comparing
the heuristic-based solution [85] with the other baseline methods: standards-driven and
resource-driven. The standards-driven method requires the participants to identify MLEs
from real-world logging specifications, such as existing healthcare and payment-card in-
dustry logging standards. The resource-driven method requires the participants to identify
the sensitive resources before MLEs so they can extract MLEs from the interactions with
sensitive resources. A controlled experiment is conducted on 103 computer science students.
The heuristic-based solution is applied in the what-to-1log sub-step in the LC Composition
step. Unfortunately, the evaluation results show that there is no recommended method,
which outperforms the other two methods at a statistically significant level. More research
is needed towards identifying correct MLEs efficiently.

5 DISCUSSIONS AND FUTURE WORK

In this section, we discuss limitations in the current research and present future research directions
among the three steps of log instrumentation.

5.1 Logging Approach

Among all three logging approaches, conventional logging is the most widely used approach. How-
ever, as the software release cycle increases rapidly, LC snippets instrumented by conventional
logging suffers from issues such as code tangling and scattering. In addition, to enable reusabil-
ity in software components and support scalability, many software systems choose to adopt mi-
croservice architecture instead of traditional monolithic architecture. It is essential to record the
interactions among multiple services, as lack of such information may impact the effectiveness of
many post-mortem analysis tasks.

Rule-based logging complements conventional logging by providing pre-defined instrumenta-
tion rules. As the rules are usually clearly specified (e.g., log at the beginning of every method), the
instrumentation process can be easily automated. Hence, this approach can reduce manual efforts
in composing LC snippets. However, previous studies [27, 104] find that the rule-based approach
is not widely adopted among open source projects. It remains unclear to us why practitioners feel
reluctant to adopt this approach. Further investigation is needed to address this concern.

Distributed tracing becomes very popular in recent years. Compared to conventional logging,
it provides an end-to-end picture of how a request flows through multiple software services.
However, to use distributed tracing utilities, extensive changes on the source code need to be
done to convert LC snippets written in conventional logging. The migration process is difficult,
error-prone, and time-consuming. Hence, it is worthwhile to characterize the challenges within
the process and come up with best practices, guidelines, and tool support for the ease of
efforts.

We propose three open problems based on the above discussion:

e Can we identify the usage context of logging approaches? Different logging approaches can be
used in heterogeneous contexts and serve different purposes. It is important to extract and
summarize the complex requirements of software logging under various contexts. For ex-
ample, if the SUS adopts the microservice architecture, then identifying the causal relations
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between events is one of the important requirements for logging, as it helps to monitor and
troubleshoot the system behavior. Under this context, distributed tracing is more appro-
priate than conventional logging due to its ability to propagate metadata. Gathering such
documentation helps us understand the usage context of each logging approach and explore
new types of logging approaches.

e Can we understand the rationale behind adopting different logging approaches? Many soft-
ware systems might adopt more than one logging approach. To understand the benefits
and drawbacks of each logging approach, we need to conduct both quantitative and quali-
tative studies. Quantitatively, we should propose metrics that evaluate the impact logging
approaches have on the SUS, such as maintainability, configurability, and so on. Qualita-
tively, we need to conduct interviews or online surveys (e.g., questionnaire, open problems,
Likert scale questions) with practitioners to understand why they choose certain logging
approaches for their projects. The findings can then be used for providing guidance on
adopting logging approaches.

e Can we provide support on introducing new logging approaches? The cost of introducing a
new logging approach or migrating from one logging approach to another into a software
system is high. Due to the lack of tool support, this process can only be done manually and
is often error-prone. It would be valuable to come up with a set of metrics to measure the
efforts to help practitioners to decide whether it is worthwhile to conduct such a process.
In addition, tool support is needed to automate this process. For example, to transform the
LC snippets using conventional logging into LC snippets using distributed tracing, we can
leverage static code transformation tools such as JDT and Spoon.

5.2 LU Interaction

As suggested by our previous study [44], many software systems adopt more than one logging util-
ity to fulfill different kinds of requirements. Practitioners need to interact with these LUs through
different APIs. This will cause additional configuration and maintenance overhead. Zhi et al. [134]
find that managing the configurations of one LU for constantly evolving software systems is al-
ready non-trivial and configuration bugs such as invalid loggers may occur during this process.
With more LUs being used in software systems, the process would become more complex and
error-prone. Hence, we propose the following three open problems:

e How to recommend the appropriate LUs? There are many LUs available in the wild that pro-
vide various functionalities about software logging. At the same time, new LUs are also
constantly introduced. There is a lack of thorough and quantitative comparison of different
LUs from various dimensions such as performance, configurability, compatibility, and so
on. Such a comparison will provide guidance for practitioners on selecting the appropriate
LU(s) for the SUS.

e How to manage multiple LUs? Large-scale software systems usually depend on numerous
third-party libraries, which may contain their own LUs or leverage external LUs. It is nec-
essary to look into all these LUs to ensure they behave as expected. There are two benefits:
(1) it helps to achieve full observability of the entire system; (2) it helps to identify previ-
ously unknown issues in the interactions. Therefore, one potential opportunity is to develop
techniques to automatically configure the logging behavior across multiple LUs in one SUS.

e Can we provide guidance and summarize best practices for developing internal LUs? Although
there are many external LUs available in the wild, practitioners still implement their own
LUs for the sake of customization. Few studies explore the rationale behind implement-
ing home-grown LUs and evaluate their benefits and costs. Findings from such studies can
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be further synthesized as guidelines and best practices to support the process of select-
ing/customizing LUs.

5.3 LC Composition

Existing studies on LC composition mostly focus on automatically suggesting the insertion of new
LC snippets or update of existing LC snippets. Some of the solutions described in Section 4 have
already been applied in practice. However, intelligent LC composition is still at an early stage, as
these solutions are only able to find a small portion of all the issues in LC [43]. Furthermore, it
is difficult to compare these techniques due to the lack of well-accepted benchmarks. Hence, we
propose the following four open problems:

e How to effectively bootstrap logging practices? So far, many studies aiming to improve log-
ging practices were built upon existing logging practices of the SUS. For example, machine
learning models need to be trained from a large corpus of the training dataset. The features
in these training datasets are extracted from existing LC snippets. However, there are many
software projects with few or even no LC snippets. Bootstrapping logging instrumentation
in these projects requires cross-project knowledge. One possible solution is to explore if we
can leverage logging practices in mature software systems, which have a long development
history, to help the starting software systems.

e How to evaluate the effectiveness of logging practices? Currently, there are no well-accepted
standards or metrics defined in evaluating the effectiveness of logging practics. For example,
in software testing field, code coverage is an important metric for evaluating the quality of
test suites. Similar metrics should be developed to evaluate logging practices from different
dimensions such as usability, diagnosability, and so on. Such metrics can help practitioners
to understand the maturity of the current logging practices and further identify opportuni-
ties for improvement.

e Can we provide benchmarks for improving LC composition? Chen and Jiang [43] have made
the first attempt to extract the Logging-Code-Issue-Introducing (LCII) changes by min-
ing historical development data. Every LCII change corresponds to a potential logging is-
sue. Such a dataset can be very useful for interested researchers to develop new techniques
in the how-to-log sub-step of LC composition. However, more benchmarks are needed for
evaluating solutions in the other two sub-steps of LC composition.

e What are the characteristics of logging practices for the other two logging approaches? Existing
studies (e.g., References [42, 128]) mainly focus on the logging practices using conventional
logging. Few works to date focus on characterizing logging practices using the other two
logging approaches. As we previously discussed, these three logging approaches are dif-
ferent in many ways, including the adoption context and maintenance efforts, and so on.
These differences will highly impact the way that practitioners develop and maintain the
instrumented LC. Hence, such a study would greatly help us to understand and improve the
step of LC Composition using the other two logging approaches.

6 CONCLUSION

Software logging is used widely by DevOps practitioners for a variety of purposes. Software log-
ging consists of two phases: log instrumentation and log management. Unlike log management,
which has extensive tool support, there is little research and practice done in the area of log instru-
mentation. Different from existing surveys, which focus on conventional logging [112], distributed
tracing [114], and log management [37], this survey provides a comprehensive view on all three
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steps of log instrumentation and summarizes the associated challenges and solutions. Some of our
findings are consistent with the existing surveys. Rong et al. [112] find that it is very challenging
to maintain good quality LC snippets and it is hard to balance the cost and benefits of log instru-
mentation. Sambasivan et al. [114] find that distributed tracing is widely used for performance
analysis and sampling is important in controlling the overhead. Candido et al. [37] find that there
are three steps in logging code composition. However, our survey presents some unique findings
that none of the existing surveys discuss. First, we survey existing studies based on the three steps
in the log instrumentation phase: logging approach, LU interaction, and LC composition. This is
the first survey that systematically compares three different logging approaches. Second, we find
there are few discussions on interactions of multiple LUs, which could bring challenges in con-
figurability and maintainability. Third, we identify the need to create benchmarks to effectively
evaluate different LC composition techniques.

We hope this survey will be helpful to researchers, as we summarize the state-of-the-art tech-
niques on log instrumentation and identify several future research directions. We also hope that
this survey can be helpful to practitioners for their daily development and maintenance tasks. To
ease replicability and further study on this survey, we have provided our dataset at Reference [18].
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