
An Industrial Experience Report on
Performance-Aware Refactoring on a

Database-centric Web Application

Boyuan Chen and Zhen Ming (Jack) Jiang

York University

Toronto, Canada

{chenfsd, zmjiang}@eecs.yorku.ca

Paul Matos and Michael Lacaria

Copywell Inc.

Toronto, Canada

{paulm, michael}@2ics.com

Abstract—Modern web applications rely heavily on databases
to query and update information. To ease the development
efforts, Object Relational Mapping (ORM) frameworks provide
an abstraction for developers to manage databases by writing
in the same Object-Oriented programming languages. Prior
studies have shown that there are various types of performance
issues caused by inefficient accesses to databases via different
ORM frameworks (e.g., Hibernate and ActiveRecord). However,
it is not clear whether the reported performance anti-patterns
(common performance issues) can be generalizable across various
frameworks. In particular, there is no study focusing on detecting
performance issues for applications written in PHP, which is the
choice of programming languages for the majority (79%) of web
applications. In this experience paper, we detail our process on
conducting performance-aware refactoring of an industrial web
application written in Laravel, the most popular web framework
in PHP. We have derived a complete catalog of 17 performance
anti-patterns based on prior research and our experimentation.
We have found that some of the reported anti-patterns and
refactoring techniques are framework or programming language
specific, whereas others are general. The performance impact
of the anti-pattern instances are highly dependent on the ac-
tual usage context (workload and database settings). When
communicating the performance differences before and after
refactoring, the results of the complex statistical analysis may
be sometimes confusing. Instead, developers usually prefer more
intuitive measures like percentage improvement. Experiments
show that our refactoring techniques can reduce the response
time up to 93.0% and 93.4% for the industrial and the open
source application under various scenarios.

I. INTRODUCTION

Many of the modern web applications are database-centric

systems, which extensively use the databases in order to

accomplish users’ tasks. There are many existing database-

centric web applications, ranging from enterprise (e.g., content

management, and enterprise resource planning) to consumer

applications (e.g., e-commerce, and discussion forums). To

ease the development processes, Object-Relational Mapping

(ORM) has been introduced as a middle layer between the

application code and the database. It enables developers to

manage the database using the same Object-Oriented program-

ming languages and automatically translate the application

source code into underlying SQL queries. On one hand,

the ORM layer provides a nice conceptual abstraction and

improves code readability, so that developers can focus on their

application logic instead of the underlying database accesses.

On the other hand, the translation process is not transparent,

and can often lead to sub-optimal performance in both open

source [1], [2] and commercial applications [3], [4].

Software performance is one of the crucial factors related to

the success of web applications, as failing to do so would result

in customers’ abandonment and loss of revenue [5]. There have

been many prior studies that focus on detecting and deriving

performance anti-patterns (a.k.a., common performance issues)

in the ORM layer. However, they are generally focused on a

particular framework (e.g., Hibernate for Java Spring frame-

work [1], [4] or ActiveRecord for Ruby on Rails [2], [6],

[7]). It is not clear whether the reported performance anti-

patterns can be generalizable across different frameworks or

programming languages, as there are many ORM frameworks

available. In particular, there are no studies focusing on appli-

cations written in PHP, which is the choice of programming

languages for 79% of web applications [8]. Instead of writing

PHP code from scratch, developers usually prefer building

their applications based on existing web frameworks, which

have a set of features (e.g., ORM, task scheduling, and

message queues) implemented already. Among all the PHP

web frameworks, Laravel is currently the most popular one [9].

The ORM framework inside Laravel is called Eloquent. It

is important to study the performance issues across different

ORM frameworks due to the following three reasons:

• Different default behavior: Depending on the frame-

works, the default ORM behavior can be very differ-

ent. For example, to find the first object which satis-

fies a predicate, the default behavior for ActiveRecord

(where().first()) is to sort the results by their pri-

mary keys followed by fetching the first object, whereas

the default Eloquent behavior (where()->first()) is

to only retrieve the first object without sorting. Hence, to

ensure the quality of various database-centric web appli-

cations, we need to not only detect general performance

anti-patterns, but also framework-specific ones [3].

• Different ORM configurations: Some ORM configu-

rations are related to the representation (e.g., mapping

specific classes to database tables), and others are related

to their runtime behavior (e.g., caching or data loading).

Different frameworks have different ways to specify these

configurations. For example, Hibernate uses configuration

files and annotations, whereas Laravel uses API calls. The

differences in the configurations would require different

detection and optimization techniques.

• Different analysis tools: All the existing ORM perfor-

mance anti-pattern detection works (e.g., [1], [2], [6])

leveraged program analysis. Such techniques are gener-

ally framework and programming language dependent.

To support a different programming language, a new

parser would be needed for the static analysis. Similarly,

a different instrumentation framework is needed for the

dynamic profiling tools.

In this paper, we report our experience on conducting

performance-aware refactoring on a database-centric indus-

trial application written in Laravel. It is performance-aware

refactoring, as our approach detects and refactors performance

issues without altering the functional behavior of the applica-

tions under study. The contributions of this paper are:

1) This is the first research work which focuses on

performance-aware refactoring in Laravel and PHP.

2) We built a catalog of 17 performance anti-patterns by

studying the prior research works on other programming

languages or frameworks and by experimentation on

our industrial application. Among them, two new anti-

patterns were discovered by us.

3) Certain anti-patterns were framework/programming lan-

guage specific, whereas others are general. The per-

formance impact of the individual anti-pattern instance

may vary significantly based on the actual usage con-

text(workload and database settings).

4) We have applied our performance-aware refactoring

approach to the industrial and one popular open source

application. The results show that we can reduce the

response time up to 93.4% for these two applications.

The developed techniques have already been adopted

and used daily by our industrial partners.

5) Our process and experience will be useful for researchers

and practitioners who are interested in optimizing the

performance of database centric applications.

Paper Organization. The rest of this paper is structured

as follows. Section II explains the Laravel framework and

provides some background information about our industrial

application. Section III explains our approach using a running

example. Section IV explains the refactoring techniques for

detected anti-patterns. Section V evaluates the performance

improvement. Section VI discusses lessons learnt. Section VII

surveys related work. Section VIII describes the threats to

validity. Finally, Section IX concludes the paper.

II. BACKGROUND

In this section, we provide a background about Laravel (Sec-

tion II-A) and our studied industrial application (Section II-B).

A. Laravel

Laravel is a very popular web framework for PHP. It

contains various libraries like an ORM framework (Eloquent)

and a packaging system. The applications developed under

Laravel follows the Model-View-Controller (MVC) pattern.

Figure 1 shows an example Laravel application. In this ex-

ample, the user makes a request to the /orders page. Once

the web server receives this request, it looks through the

routing file web.php to locate the corresponding method

(the method show) in the controller (OrderController).

The controller (OrderController) then interacts with the

model by invoking the Order::activeCount() method.

This method accesses the database through Eloquent APIs

(e.g., where and count), which will translate the PHP

code into the corresponding database query and pass it to

the database. The query is executed and the Eloquent ORM

passes the result back to the model class and subsequently to

the controller. The result is stored in the $active_orders
variable in the controller. This variable is then rendered to the

view file (index.blade.php) as the $active variable.

The computed response is sent back and displayed in the

user’s browser. In addition to the ORM APIs from Eloquent,

Laravel also provides developers with the choice of querying

the database using raw SQL queries in the code.

B. Our Industrial Application Under Study

SP is a complex web-based Consumer Relational Manage-

ment (CRM) written in Laravel. It is used for stream-lining the

process of quoting and ordering printing jobs for consumers.

Depending on the jobs, many different configuration options

(e.g., choice of ink, colour of the paper, types of printers) are

needed and specified. Pricing of orders also vary depending

on the configured values (e.g., paper and ink costs as well

as due dates). Once jobs are created, proofs are generated

and sent to customers for approval. Historical jobs and their

configurations are also stored, so that recurrent customers or

orders can be conveniently made. Currently the database of SP

is around 1 GB and consists of more than 90 tables and over

a million records. One of the main issues with SP is that some

pages take a long time to load. This problem is getting even

worse over time, since the size of the database is constantly

growing (∼ 10% every month). In the next two sections, we

will discuss about our approach to detecting and refactoring

the reported performance issues.

III. DETECTING PERFORMANCE ISSUES

In this section, we explain our approach to detecting per-

formance issues in SP. It is also applicable to other database-

centric web applications written in Laravel. As illustrated in

Figure 2, our approach consists of five steps: (1) literature

study, (2) dynamic analysis, (3) static analysis, (4) filtering,

and (5) deriving new performance anti-patterns.

In the remaining part of this section, we will explain these

steps using a running example, which has two page requests:

/activeorders and /outsources. Both requests are

routed to the same controller (OrderController.php),

Class OrderController {

 public function show() {
 $active_orders = Order::activeCount();
 return view('index')->
 with('active',$active_orders);}

(1) Request page: /orders

Class Order extends Model {

 public static function activeCount(){
 return $this
 ->where('status','=','active')
 ->count());}

 <p>There are {{$active}} active orders.</p>

OrderController.php

Index.blade.php

Order.php

Route::get('/orders', OrderController@show)

select count(*) from orders
where `status` = `active`;

Database Query

Eloquent ORM

routes/web.php
Routing

Controller

View Model

DBMS

(2) Route to appropriate
Laravel controller

(3) Interact with model

(4) Invoke view

(5) Render response in
browser

SP

Fig. 1: An example of a Laravel-based web application written in PHP.

Redundant and
Inefficient DBMS

Accesses

ORM API
Misuses(3) Static

 Analysis

(2) Dynamic
 Analysis

(4) Filtering

Applications

Performance
Issues

Performance
Anti-patterns

Source Code

(5) Deriving New Performance Anti-patterns

Research
Works

(1) Literature
 Study

Fig. 2: Our process of detecting performance issues in

Laravel-based database-centric web applications.

but are handled by two different functions: showActive
and showOutsource. The showActive function in the

controller subsequently calls the active function from the

model (Order.php). To save space, we only showed the

code snippets for the controller (OrderController.php)

and the model (Order.php) in Figure 3(a). For the first page

request, the active function in the Order.php retrieves all

the orders with active status and sorts them by the order

ID (id) at line 40. Then it retrieves three particular attributes

from the sorted orders: price, cost, and progress at

line 41, 42, and 43. The above data retrieval processes invoke

several Eloquent APIs (where, orderBy, and pluck) and

the third column of Figure 3(b) shows the resulting SQL

queries. In Eloquent, line 40 only returns a Builder object.

Developers need to invoke API calls like get (executing the

query) or pluck (retrieving a column) to execute this query.

Hence, calling pluck at lines 41, 42, and 43 result in three

similar SQL queries, except selecting different fields in the

table. For the second page request, the showOutsource
function from OrderController.php checks whether

there are any outsourced orders at line 81. Since the where
API call is followed by the get call, executing this line result

in a select query as shown in the later part of Figure 3(b).

Step 1 - Literature study

We went through the existing works [1], [2], [3], [6], [10],

which focus on detecting performance anti-patterns in the

database-centric applications. We did not include [11], as it fo-

cuses on view-centric performance optimization, which alters

the functional behavior, whereas our focus is on performance-

aware refactoring. As a result, we compiled a list of perfor-

mance anti-patterns, their generalizability, and the suggested

refactoring techniques.

Step 2 - Dynamic Analysis

Some of the reported anti-patterns need to be detected

by dynamic analysis. There have been different approaches

to collecting the runtime traces from the applications. Most

of them are framework (e.g., the Rails Active Support In-

strumentation APIs [2]) or programming language specific

(e.g., AspectJ [10]). In addition, the detection methods vary

from dynamic taint analysis [10] to threshold checking [2].

However, all the existing dynamically detected anti-patterns

OrderController.php
40 public function showActive() {

51 $activeNumber = Order::active($orders);

70 public function showOutsource() {

81 if (count(OutSource::where('type','order')->get()) > 0)
82 $this->countOutsource();

Order.php
10 class Order extends Model {

30 public static function active() {

40 $allStats = Order::where('status','active')->orderBy('id','asc');
41 $price = $allStats->pluck('price');
42 $cost = $allStats->pluck('cost');
43 $progress = $allStats->pluck('progress');

(a) Source code.

Page
requested Code path SQL Duration

/activeorders

OrderController.php:showActive()
 -> OrderController.php:51

-> Order.php:41

select `price` from
orders where `status`=
`active` order by id ASC

101.3ms

OrderController.php:showActive()
 -> OrderController.php:51
 -> Order.php:42

select `cost` from
orders where `status`=
`active` order by id ASC

102.7ms

OrderController.php:showActive()
 -> OrderController.php:51
 -> Order.php:43

select `progress` from
orders where `status`=
`active` order by id ASC

100.0ms

/outsources

OrderController.php:showOutSource()
 -> OrderController.php:81

select * from outsources
where `type`= `order` 2.1 ms

(b) Processed data from Clockwork.

Fig. 3: Our running example.

share one common theme: focusing on locating inefficient or

redundant database computations.

We encoded the user usage using JMeter [12], which is an

open source performance testing tool, so that the same tests

can be replicated and compared across different versions of the

application. To avoid measurement bias and errors [13], each

scenario is repeated at least 30 times. JMeter records the end-

to-end response time for each scenario. However, the timing

for each scenario can be broken down into various components

like the network transmission time, the time spent on loading

and displaying the results (i.e., page rendering time), the web

server processing time, and the database query processing

time. To further isolate the timing between these components,

we used a open source profiler called Clockwork [14].

Clockwork is a profiler for Laravel-based PHP applications.

Clockwork collects various dynamic information (e.g., the

request URLs, the executed source code, the invoked database

queries and their durations) for each page request. Clockwork

can be installed as a browser plugin, so that the profiling

data can be viewed within a browser. It also stores the

profiled information in the web server as a JSON file for

each individual request. In this paper, we leverage the recorded

JSON files, as they can be automatically processed. We used

another open source tool called Page Load Time [15] to track

the end-to-end response time, and the page rendering time.

For each scenario, we correlated the timing results from

Page Loading Time and the profiling data from Clockwork.

Based on our analysis, we found that most of the time

consuming steps for SP were about processing the application

logic (a.k.a., within the controller, the model, and the database

side). The time spent on the network transmission and the page

rendering was generally very small. Some of the function calls

may be time-consuming. But they were actually performing

the necessary computation for the complex user requests and

should not considered as performance issues. We would like

to only identify problematic areas which are either redundant
(i.e., the same PHP methods or database queries are executed

multiple times back-to-back) or inefficient (i.e., very similar

database queries are executed multiple times).

We processed the Clockwork data to recover the call paths

for each database query. We grouped them based on the

requested pages. Figure 3(b) shows the processed Clockwork

data for our running example. The first column refers to

the pages requested. Under the same page request, different

code paths are executed. They are shown in the second

column of that table. The resulting SQL queries and their

execution time are shown in the third and fourth column. For

the /activeorders page request, there are three queries

executed due to the pluck calls at line 41, 42, and 43.

This is inefficient, as the only differences among these queries

are the selected columns. A more efficient solution is to add

->get() at the end of line 40, as it will execute a query to

select all columns and store them in the variable allStats.

In this way, the following three pluck calls will only retrieve

the values of the attributes from the memory. No further

database queries are invoked.

Step 3 - Static Analysis

The remaining performance anti-patterns derived from the

prior research are detected statically. These anti-patterns are

mostly ORM API misuses and complement nicely with the

results of our dynamic analysis. As our dynamic analysis is

focusing on redundant or inefficient database queries spanning

over multiple lines or even source code files, static analysis can

pin-point other code-specific issues. In our running example

from Figure 3(a), line 81 in OrderController.php con-

tains an anti-pattern related to the ORM API misuses. The if
statement is to check whether there are any outsourced orders.

Calling the get() API will cause the database to return all

the records in the outsource table which has the type
value to be order. This query can be slow if there are many

records which match this criteria. A more efficient approach

would be to replace the get() method with the first()
method, which only returns the first matching record.

Since such static anti-patterns were originally studied and

specified in other programming languages (e.g., Ruby [2]

and Java [1]), we searched for the corresponding problematic

Eloquent APIs from the Laravel documentation. In order to

automatically detect these issues, we implemented a static

code checker, which scans through the PHP code. Our static

checker first parses the source code files into Abstract Syntax

Trees (ASTs) by using a popular open source tool: PHP

parser [16]. Then we detected these static anti-patterns by

traversing through ASTs and matching them with various

regular expressions. In our running example, our checker

will extract the condition checks for every if statement by

analyzing the ASTs. Among all the condition checks, this code

snippet is flagged in our tool, as it matches with a regular

expression (count.*get).

Step 4 - Filtering

We found that some of the reported code snippets, especially

the ones detected using our static analysis, are dependent on

the actual usage context and may not cause performance prob-

lems for the end users. For example, some of the detected code

snippets might not be executed, or the amount of computing

(e.g., # of database records involved) is very small in the actual

customer usage context. Since developers have limited time,

we would like to only pin-point the problematic areas which

really impact the user experience. Hence, in this step, we

only included the issues existed in the problematic scenarios.

Similar to [2], we considered a scenario as problematic, if the

end-to-end response time exceeds two seconds.

In our running example, the page /activeorders
takes 2.5 second and the page /outsources takes

0.5 seconds. Hence, the issue flagged at line 81 of

OrderController.php was filtered out. We only reported

the issue at line 40 of Order.php to the developers.

Step 5 - Deriving New Performance Anti-patterns

We reported a set of user impacting performance issues to

the developers in step 4. For issues which are not detected by

the existing static anti-patterns, we added them into our catalog

of performance anti-patterns. The reported performance issue

in our running example did not belong to any of the existing

performance anti-patterns. We classified them as a new anti-

pattern: Mid-result misuse and added it to our catalog. For

the dynamically detected anti-patterns, we also encoded them

into our static analysis tool so that we can automatically

categorize all the reported issues and apply the same suggested

refactoring techniques on them.

As shown in the third column of Table I, we ended up with

17 performance anti-patterns in total. For each anti-pattern, we

assigned them a category, an ID, and a name. We intentionally

used the name of the Eloquent APIs (e.g., Eloquent:get in

AP-10) in some of the anti-pattern names if they are related

to the API misuses. We used the Eloquent APIs, if the anti-

patterns are general or specific to Eloquent, as that’s the focus

of this paper. For other anti-patterns, we labeled the applicable

ORM frameworks to avoid confusion.

Among the 17 anti-patterns, two (AP-04 and AP-05)

are newly discovered in this paper. There are 11 general

anti-patterns, which are applicable across different ORM

frameworks. There are five anti-patterns only applicable for

ActiveRecord (in Ruby); and one anti-pattern only applicable

for Eloquent (in PHP). These ORM specific anti-patterns cor-

respond to some particular API calls in the framework. Among

all 17 performance anti-patterns, there are 12 applicable to

Inefficient

Efficient

Fig. 4: An example of [AP-01] Loop-invariant queries.

Laravel. For the ones that are not applicable to Laravel, it is

mostly due to differences in the APIs across frameworks. For

example, AP-13 is related to the default behavior of first
in ActiveRecord. This API automatically sorts the results using

the primary key and only returns the first row as the result.

Such API does not exist in Eloquent. We also showed the

refactoring techniques for each anti-pattern as well as their

origin (a.k.a., the prior research works which reported them).

Using the approach described above, we were able to detect

all of the performance anti-patterns applicable to PHP. The

next section describes the refactoring techniques.

IV. PERFORMANCE-AWARE REFACTORING

Although there are various techniques to improve the

performance of these detected performance issues, we only

focused on the performance-aware refactoring techniques, as

we intended to minimize the risks of functional behavior

changes for the end-users. We used the following process to

synthesize the refactoring suggestions: for anti-patterns which

were originally studied in the prior research, we tried to apply

the same refactoring techniques to the problematic PHP code.

If the refactoring technique involves API changes, we tried to

look for similar APIs in Laravel. If the refactorings technique

involves algorithm changes, we tried to re-implement them

in PHP. For newly discovered anti-patterns, we consulted

the developers of SP on how to refactor them. We verified

the validity of all the refactoring techniques by comparing

the performance before and after the refactorings. Different

frameworks may require different refactoring techniques. For

example, in Hibernate, AP-06 can be refactored by adding

annotations or changing settings in configuration files [1].

In Laravel, such refactoring technique does not apply due

to differences in the ORM configurations. In the rest of

this section, we will describe the refactoring technique for

the performance anti-pattern shown in Table I. We will skip

AP-13 to AP-17, as they are not applicable to PHP.

[AP-01] Loop-invariant queries

Description: This anti-pattern is about repeatedly executing

the same queries, which return the same results. These queries

are redundant. Figure 4(a) shows such an example. The loop

iterates through all tasks. During each iteration, it always

queries the total number of orders, whose results never change.

TABLE I: The complete catalog of performance anti-patterns.

Category ID Anti-pattern General/
ORM specific Refactoring Origin

Unnecessary
Computation

AP-01 Loop-invariant queries General
Introducing intermediate
variable

[2]

AP-02 Dead-store queries General
Deleting unnecessary
statement

[1], [2], [10]

AP-03 Queries with known results General
Involving default
behavior

[2]

AP-04 Redundant condition check General
Introducing intermediate
variable

New

AP-05 Mid-result misuse Eloquent
Incurring queries
in advance

New

Inefficient
Data Accessing

AP-06 Inefficient lazy loading General
Changing loading
configuration

[1], [2], [3], [10]

AP-07 Inefficient eager loading General
Changing loading
configuration

[2]

AP-08 Inefficient updating General Applying batch updating [2]
Unnecessary
Data Retrieval

AP-09 Eloquent: map General Eloquent: pluck [2], [3], [6], [10]

Inefficient
Computation

AP-10 Eloquent: get General Eloquent: first [2]
AP-11 Eloquent: array_sum.*pluck General Eloquent: pluck.*sum [2], [6]

AP-12 Eloquent: orderBy.*count General
Deleting unnecessary
ordering

[2]

AP-13 ActiveRecord: where.first ActiveRecord ActiveRecord: find_by [2]
AP-14 ActiveRecord: pluck+pluck ActiveRecord ActiveRecord: union [2]

AP-15 ActiveRecord: if exists? ActiveRecord
ActiveRecord:
find_or_create_by

[2]

AP-16 ActiveRecord: .count ActiveRecord ActiveRecord: .size [2]
Inefficient
Rendering

AP-17 ActiveRecord: link_to ActiveRecord ActiveRecord: gsub [2]

Inefficient

Efficient

Fig. 5: An example of [AP-02] Dead-store queries.

Refactoring: The refactoring technique for this anti-pattern

is to move the query out of the loop and assign the queried

result to an intermediate variable as shown in Figure 4(b). The

performance after the refactoring should improve due to the

removal of the redundant queries.

[AP-02] Dead-store queries

Description: This anti-pattern is about storing the results of

multiple queries into the same variable, some of which are

never accessed. This causes redundancy in the computation.

Figure 5(a) shows such an example. The count value computed

from the first query is never used.

Refactoring: The refactoring technique for this anti-pattern is

to remove the query, whose results are used in the subsequently

computation. The performance after the refactoring should

improve as the redundant queries no longer exist.

[AP-03] Queries with known results

Description: This anti-pattern checks if there are redundant

queries, whose results are known to be empty before compu-

tation. Figure 6(a) shows such an example. It invokes take to

(a) Inefficient

(b) Efficient

Fig. 6: An example of [AP-03] Queries with known results.

return only a pre-specified number of records, by the variable

$setting_number from the query. This query will be

redundant, if $setting_number is set to be zero.

Refactoring: The refactoring technique for this anti-pattern is

to add a condition check as shown in Figure 6(b). The database

query will be executed, if the value of $setting_number is

larger than zero. The performance after the refactoring should

improve as it prevents unnecessary queries.

[AP-04] Redundant condition check *NEW*

Description: This anti-pattern is about introducing redundant

queries in condition checks. It is a new anti-pattern that we

have found. Figure 7(a) shows one such example. The if
statement checks whether an order has any related customers.

If the condition is true, the variable $cus will be assigned

with the name of the first customer. Under the true branch

of the condition check, the same queries are executed twice,

which is unnecessary.

Refactoring: The refactoring technique for this anti-pattern is

to assign the query result to an intermediate variable $tmp

Inefficient

Efficient

Fig. 7: An example of [AP-04] Redundant condition check.

(a)

(b)

Fig. 8: An example of [AP-06/07] Inefficient lazy/eager

loading.

shown in Figure 7(b). The performance after the refactoring

should improve due to the removal of the duplicated query.

[AP-05] Mid-result misuse *NEW*

Description: This anti-pattern is about applying redundant

queries on the same Builder object. It is a new anti-pattern

that we have found. Line 40 in Figure 3(a) shows one such

example. In Eloquent, method where does not incur the

actual query. It only generates an instance of Builder object.

Developers need to invoke APIs like get (executing the

query) or pluck (retrieving a column) to invoke and execute

the query. In this example, the three pluck invocations are

not needed, as they can leverage the results from the same

query.

Refactoring: The refactoring technique for this anti-pattern is

to add the get API call after where to invoke and execute the

query. The performance after the refactoring should improve

as only one query is needed to retrieve the results.

[AP-06] Inefficient lazy loading

Description: This anti-pattern is about not eager loading the

relational data when needed. Figure 8(a) shows one such

example. It first retrieves all the records from Book. Then it

iterates through each book to retrieve the names of the authors.

It will result in N+1 queries: 1 query for extracting all the

books, N queries for extracting the names of the authors for

each book. Such computations can be done more efficiently

by eager loading all the related data.

Refactoring: There are three ways to refactor this anti-

pattern: (1) to eager load the related data in the first query

by adding with call inline as shown in Figure 8(b); or (2)

to eager load the related data by adding a class attribute

$with=[’authors’]; or (3) to conduct a left join on

the books table with the authors table. The performance

Inefficient

Efficient

Fig. 9: An example of [AP-08] Inefficient updating.

(a) Inefficient

(b) Efficient

Fig. 10: An example of [AP-09] map.

after the refactoring should improve as only two queries are

executed instead of N+1.

[AP-07] Inefficient eager loading

Description: This anti-pattern is the opposite of AP-06. If

the associated objects are too large, eager loading everything

will create memory bloat, which can lead to the slow down

of the web applications due to memory paging. This may also

cause the application to be unresponsive.

Refactoring: The refactoring technique for this anti-pattern is

to delay the eager loading till later. As shown in Figure 8(a),

we should not use the with call if the associated author

objects are too large. The performance of the application

should improve as the data intensive computation is delayed.

[AP-08] Inefficient updating

Description: This anti-pattern is about updating records in a

loop. Figure 9(a) shows one such example. It iterates through

all the orders to update the status to be complete. This

would cause performance issues as it would incur N queries,

where N is the number of records.

Refacotring: The refactoring technique for this anti-pattern

is to update records in a batch as shown in Figure 9(b). The

performance after refactoring should improve as the number

of queries is reduced to one instead of N.

[AP-09] Eloquent: map

Description: This anti-pattern is about using map method

in PHP to apply a function on a collection of objects. If

this function involves with database queries, this might result

in unnecessary computations. Figure 10(a) shows one such

example. It first retrieves all the records from the User table.

Then, it gets their names by invoking the map method.

Refactoring: The refactoring technique is to use pluck to get

specific columns as shown in Figure 10(b). The performance

(a) Inefficient

(b) Efficient

Fig. 11: An example of [AP-11] array_sum.*pluck.

after refactoring should improve as the database query will

only return the specified column(s) instead of the entire rows.

[AP-10] Eloquent: get

Description: This anti-pattern is about checking whether one

or multiple rows exist in the database with certain predicates.

Line 81 of OrderController.php in Figure 3(a) shows

such an example. It checks whether there are outsourced

orders. This can cause performance issues, as the get()
method will have the database return all the records in the

outsources table with type order.

Refactoring: The refactoring technique for this anti-pattern is

to replace the get() API call with first(), which only

returns the first record from the result set. If there are 500

records in the outsource table with order as their type.

Calling first() will only return one record, compared to

returning all 500 records by calling get().

[AP-11] Eloquent: array_sum.*pluck

Description: This anti-pattern is about using pluck to re-

trieve the attributes from the queried results and computing

the sum on the web server. Large amount of data will be

sent from the database to the web server for computing the

sum. This will cause unnecessary overhead, as the database

can perform the addition efficiently on their end. Figure 11(a)

shows such an example. The inefficient code first retrieves the

total column of all the records from the bill table. The

results are transmitted to the web server, which subsequently

computes the sum.

Refactoring: The refactoring technique for this anti-pattern

is to apply sum directly after pluck in the code snippet as

shown in Figure 11(b). The performance after the refactoring

should improve as the web server does not need to receive

the large volume of the queried results and perform the

computation afterwards.

[AP-12] Eloquent: orderBy.*count

Description: This anti-pattern is about counting the total

number of sorted entries in the queried results. The sorting

step is unnecessary, as it has nothing to do with the counting.

Figure 12(a) shows an example. The count method is called

after the orderBy method.

Refactoring: The refactoring technique for this anti-pattern is

to remove the orderBy method call in the code snippet as

shown in Figure 12(b). The performance after the refactoring

should improve due to the elimination of the sorting process.

(a) Inefficient

(b) Efficient

Fig. 12: An example of [AP-12] orderBy.*count.

TABLE II: The evaluation results for SP. Due to page limita-

tion, we only showed the anti-patterns, if they existed in SP.

We marked one anti-pattern in bold, if p− value < 0.05 and

the effect size is medium or above.

ID # of effect %
instances size reduced time

AP-04 > 100 medium - large 2.9% - 21.3%
AP-05 2 large 24.2% - 69.0%
AP-06 > 10 large 17.0% - 93.0%
AP-08 > 10 large 70.1% - 80.2%
AP-10 > 10 N/A N/A
AP-11 1 N/A N/A

V. EVALUATION

In this section, we evaluate the effectiveness of our

performance-aware refactoring approach.

A. Approach

For each anti-pattern instance (a.k.a, reported performance

issues), we compared the performance of SP before and after

applying the suggested refactoring technique. JMeter [12] was

used to automate the performance benchmarking process. It

executes the pre-defined user workload and records the end-

to-end response time for each scenario. We used JMeter to

repeatedly executed each scenario for at least 30 times to avoid

measurement bias and errors [13].

To assess the impact of the refactoring technique, each time

we only applied refactoring on one anti-pattern instance. We

reset the database and rebooted the web server to restore the

test environment before each JMeter test. We performed the

non-parametric Wilcoxon rank-sum test (WRS) to compare

the response time before and after refactoring. In addition, to

quantify the magnitude of the performance improvement, we

calculated the effect sizes using a non-parametric technique

called the Cliff’s Delta (CD) [17].

B. Result

Although WRS and CD techniques provided a statistical

rigorous view of the performance differences, the developers

of SP prefer a more intuitive representation. In particular, they

would like to know how much faster the performance improves

after the refactoring. Hence, we just calculate the percentage

of improvement before and after refactoring.

Table II shows the performance assessment results for all

the performance anti-patterns that we detected and refactored

in SP. Fixing instances from AP-10 did not have much

performance impact. It is meaningless to fix the one instance

from AP-11, as it was dead code. In total, four out of the six

detected anti-patterns were considered as impactful in SP.

AP-04 is the most common anti-pattern in SP with over one

hundred occurrences. More than ten occurrences of AP-06
and AP-08 were also reported. There were two occurrences of

AP-05. Due to confidentiality concerns, we did not show the

exact number of anti-pattern instances here. The differences

in response time before and after refactoring are statistically

significant for all four anti-patterns with medium to large effect

sizes. However, the performance improvement across different

instances of the anti-patterns vary significantly. For example,

the biggest improvement (93.0%) comes from refactoring one

instance of AP-06. The response time was 5.96 seconds and

0.42 seconds before and after the refactoring. The impact

of refactoring on some other instances of AP-06 is not as

big. For example, refactoring another instance of AP-06 only

yields 17.0% improvement (4.59 seconds vs. 3.81 seconds).

The smallest performance improvement is from AP-04, re-

ducing 2.9% - 21.3% response time after refactoring.

We have reported the above anti-pattern instances and

their refactoring suggestions to the developers of SP. They

happily accepted our suggestions and applied the changes in

their code base. After applying these changes, the response

time of SP has been reduced from 2.9% to 93.0% across

different scenarios. One of the comments we received from

the developers of SP said: "you have definitely hit the nail
on the head with what you have found so far.". This clearly

demonstrated the impact of our approach.

Summary: The statically and dynamically detected anti-

patterns can have large performance impact on SP. Although

some anti-patterns are pervasive, they may not impact the

performance much based on the actual usage context. The

performance improvement due to refactoring may vary

significantly across instances of the same anti-patterns.

VI. DISCUSSION AND LESSONS LEARNED

In this section, we discuss the lessons learned during our

process on detecting and refactoring performance anti-patterns.

Lesson 1: Techniques on detecting and refactoring anti-
patterns in database-centric web applications.

We derived the catalog of performance anti-patterns based on

prior works in other programming languages and our experi-

ence while working on SP. Based on our experience, the exsit-

ing technique on detecting and refactoring anti-patterns [1],

[2] in database-centric web applications can be applied to a

language and ORM framework which have not been applied

to. To demonstrate the generalizablility of this catalog, we

also applied our approach on another Laravel-based web

application: Cachet [18]. It is the open source project with

the most stars in GitHub written in Laravel. Cachet is a status

page application, which is used to communicate downtime

and system outages to users. Since there are no databases

which provide the realistic usage context, we varied the size

of different tables while keeping the same number of records

in the database to be 20,000. We chose 20,000 in this study,

as a previous work [2] found that it is a realistic setting for

many database-centric open source applications. We found

five types of anti-pattern instances (AP-02, AP-05, AP-06,

AP-10, and AP-12), which are reported in at least one of the

database settings. We measured the performance impact after

refactoring the anti-pattern instances. As a result, we achieved

up to 93.4% improvement in Cachet.

Lesson 2: The importance of the usage context for detecting
and refactoring anti-pattern instances.

For the Cachet experiment mentioned above, we found if

we distributed the contents among the tables differently, the

performance will vary significantly even if the overall size

of the database kept constant. Here we describe the experi-

ments we have conducted on the homepage of Cachet. Using

our approach, there are four types of anti-patterns detected.

However, by varying the number of records in these two

tables: components and component_groups, some anti-

patterns did not impact the experience of the end users. We

kept the sum of the records in these two tables as 4,000.

In one experiment we set the number of records in these

two tables as 2,000 each, while in another experiment we

changed them to 1,000 and 3,000. We tried many combinations

and measured the resulting performance. Figure 13 shows the

distribution of the response time for these experiments. Under

some experiments, the homepage is fast (1.2 seconds), whereas

for other experiments the response time can be as high as 3.7

seconds.

The above experiments and our experience on SP clearly

demonstrate the importance of the usage context (workload

and database setting) while detecting and refactoring anti-

pattern instances. The developers of SP provided us with

a sanitized version of the production database and the user

workload. For applications (e.g., open source or newly devel-

oped applications) which do not have such information, it is

important to include the experimented workload and database

settings when reporting detected anti-pattern instances.

Lesson 3: Filtering and presenting anti-pattern instances to
the developers.

Since there can be many anti-pattern instances and developers

have limited time, we only kept the detected anti-pattern

instances if the scenarios under test impact the end-user expe-

riences. Same as in [2], we chose two seconds as our threshold.

Since we believe if the performance of certain scenarios were

poor, refactoring any or all the reported anti-pattern instances

should be helpful. However, based on our experiments in SP

and Cachet, refactoring some anti-patterns may have little or

even negative performance impactFor example, after refactor-

ing some instances of AP-10 in Cachet, we received negative

performance impact (2.41 vs. 2.42 seconds). Therefore, one of

0

1

2

3

4

R
es

po
ns

e
Ti

m
e

Fig. 13: Response time distribution for the homepage of

Cachet by varying the number of records in different tables

while keeping the total number of records the same.

the common questions we got from the developers of SP was

on the anticipated performance impact of these anti-pattern

instances. There is currently one technique, which executes

and times the anticipated SQL queries after the refactoring [1],

[10]. We are currently incorporating this technique in our

approach. We will first get the estimated timing for various

anti-pattern instances after refactoring. Different scenarios may

invoke code snippets, which correspond to the same anti-

pattern instances. We intend to compute a subset of suggested

anti-pattern instances using search optimization techniques.

This subset would only contain the smallest number of anti-

pattern instances, which have the biggest anticipated perfor-

mance improvement.

Lesson 4: Assessing the impact of the refactoring technique.

When evaluating the performance impact of various refac-

toring techniques, the developers of SP found that there is

a gap between the perceived differences by human and the

statistical differences. WRS test and CD have been used quite

often [1], [10], [19] in the past research works to compare

and quantify the differences between two distributions of data.

However, in our study, we have found that in some cases even

an improvement of 30msec can lead to a medium or large

effect sizes. For example, refactoring one instance of AP-10
can reduce the average response time from 2.00 seconds to

1.97 seconds. Although the effect size for such change is large,

the differences can hardly be noticed by users. Therefore, we

also calculated the percentage of improvement as a way to

capture performance changes perceived by humans.

Lesson 5: Static versus dynamic analysis.

We detected performance anti-patterns using both the static

and the dynamic techniques. Static analysis is easy to apply

to the whole code base, but not all of the reported issues from

them are relevant. In SP, the static analysis reported over 100

instances of AP-04. However, only a handful really impacted

the user experience. Dynamic analysis is more expensive,

as we need to set up test environments and analyze the

profiled information. However, it can be used to discover

new anti-patterns. The two new anti-patterns AP-04 and

AP-05 reported in this paper were discovered via dynamic

analysis. After we discovered the new anti-pattern, we encoded

them into our static detection. In addition to detecting anti-

pattern instances, another objective of the static analysis in

our approach is to automatically categorize the dynamically

detected performance issues. The corresponding refactoring

techniques can be suggested subsequently, instead of manually

analyzing the individual code snippets and thinking of ways

to improve them.

VII. RELATED WORK

In this section, we discuss two areas of the prior research

related to our work: (1) performance issues in database-centric

applications; and (2) testing database-centric applications.

A. Performance Issues in Database-centric Applications.

Smith et al. [20], [21] were the first to propose a catalog

for various performance anti-patterns. Some of these anti-

patterns were related to the ways how the applications per-

formed the database queries. The database-centric applications

were implemented differently by then, as raw SQLs queries

were usually specified in the application source code. To

characterize and detect ORM anti-patterns, Chen et al [1],

[3], [10] studied the performance anti-patterns for applications

implemented under the Hibernate framework in Java. Yang et

al. [2], [6] analyzed the bug reports and executed performance

tests for 12 open source Ruby on Rails applications. They

have synthesized nine types of ORM-level anti-patterns. They

also developed an IDE-plugin to automatically detect and fix

these anti-patterns [7]. Different from the prior works, our

work analyzed the applications written in Laravel. Our catalog

of ORM-level anti-patterns was built by studying these prior

works and applying them to Laravel-based open source and

industrial applications. During this process, we also found two

additional performance anti-patterns. We also reported a series

of lessons learned based on the challenges that we have faced

and the feedback gathered from the developers.

B. Testing Database-centric Applications

Mcminn et al. [22] and Kapfhammer et al. [23] proposed a

set of test coverage and adequacy criteria to assess the quality

of test suites for database-centric applications. Grechanik et

al. [24], [25] proposed new approaches to preventing database

deadlocks and automatically reproducing deadlocks for test-

ing purposes. Our work is related to Taneja et al. [26],

[27], in which they discussed the obstacles and challenges

of anonymizing the production databases for the outsourced

testing teams. They showed that the application’s functional

behavior (code coverage) can vary if the database fields were

not properly sanitized. Our work is focused on the performance

aspects related to the different settings of the database. While

keeping the same number of records in the database, we have

shown that the application performance can vary significantly

by changing the number of records among different tables.

VIII. THREATS TO VALIDITY

A. External Validity

We have only demonstrated the generalization of our ap-

proach to Laravel-based applications by applying it on one

industry and one open source application. There maybe addi-

tional performance anti-patterns unreported and our refactoring

techniques can be just one of the many solutions to improve

the performance of these anti-patterns.

B. Construct Validity

During the anti-pattern detection phase, we leveraged the

Clockwork data to: (1) find the mappings between the source

code and their corresponding database queries, and (2) to

gather the response time on invididual database queries. Such

information is accurate, as the monitoring overhead for Clock-

work, although high (> 10%), is mainly imposed on the web

server and has little impact on the database processing and the

page rendering. We turned off Clockwork and only collected

the end-to-end response time from the JMeter when assessing

the performance impact of various refactoring techniques.

C. Internal Validity

One scenario may contain multiple anti-pattern instances.

The performance of the same anti-pattern instances may vary

significantly based on the usage context. When assessing the

performance impact of different refactoring techniques, each

time we only fixed one anti-pattern instance and measured its

response time. We restored the database and restarted the web

server for each experiment. This process was repeated for all

the anti-pattern instances.

IX. CONCLUSIONS

Databases play a key role in modern web applications.

Many developers leverage ORMs to access databases to avoid

directly interacting with them. However, such setup may not

yield optimal performance. In this paper, we reported our

experience on conducting performance-aware refactoring on

database-centric web applications written in Laravel. Our com-

plete catalog of performance anti-patterns, which consists of

15 existing and 2 new anti-patterns, were derived from existing

research literatures and dynamic analysis on SP. Experiments

show that refactoring these anti-pattern instances may result

in up to 93.4% response time reduced in SP and Cachet.

REFERENCES

[1] T.-H. Chen, W. Shang, Z. M. Jiang, A. E. Hassan, M. Nasser, and
P. Flora, “Detecting performance anti-patterns for applications developed
using object-relational mapping,” in Proceedings of the 36th Interna-
tional Conference on Software Engineering, ser. ICSE 2014. New
York, NY, USA: ACM, 2014, pp. 1001–1012.

[2] J. Yang, P. Subramaniam, S. Lu, C. Yan, and A. Cheung, “How
Not to Structure Your Database-backed Web Applications: A Study of
Performance Bugs in the Wild,” in Proceedings of the 40th International
Conference on Software Engineering (ICSE), 2018.

[3] T.-H. Chen, W. Shang, A. E. Hassan, M. Nasser, and P. Flora, “Detecting
problems in the database access code of large scale systems: An
industrial experience report,” in Proceedings of the 38th International
Conference on Software Engineering Companion, ser. ICSE ’16. New
York, NY, USA: ACM, 2016, pp. 71–80.

[4] D. Maplesden, K. von Randow, E. Tempero, J. Hosking, and J. Grundy,
“Performance Analysis Using Subsuming Methods: An Industrial Case
Study,” in IEEE/ACM 37th IEEE International Conference on Software
Engineering (ICSE SEIP), 2015.

[5] K. Eaton, “How One Second Could Cost Amazon $1.6 Billion In
Sales,” https://www.fastcompany.com/1825005/how-one-second-could-
cost-amazon-16-billion-sales, Last accessed 05/01/2019.

[6] C. Yan, A. Cheung, J. Yang, and S. Lu, “Understanding Database Per-
formance Inefficiencies in Real-world Web Applications,” in Proceed-
ings of the 2017 ACM on Conference on Information and Knowledge
Management, ser. CIKM ’17. New York, NY, USA: ACM, 2017, pp.
1299–1308.

[7] J. Yang, C. Yan, P. Subramaniam, S. Lu, and A. Cheung, “Powerstation:
automatically detecting and fixing inefficiencies of database-backed web
applications in IDE,” in Proceedings of the 2018 ACM Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, ESEC/SIGSOFT FSE 2018, Lake
Buena Vista, FL, USA, November 04-09, 2018, 2018, pp. 884–887.

[8] “Usage statistics and market share of PHP for websites,” https://w3techs.
com/technologies/details/pl-php/all/all, Last accessed 04/16/2019.

[9] “Top 10 PHP Frameworks,” https://stackify.com/php-frameworks-
development/, Last accessed: 05/02/2019.

[10] T.-H. Chen, W. Shang, Z. M. Jiang, A. E. Hassan, M. Nasser,
and P. Flora, “Finding and evaluating the performance impact of
redundant data access for applications that are developed using
object-relational mapping frameworks,” IEEE Trans. Softw. Eng.,
vol. 42, no. 12, pp. 1148–1161, Dec. 2016. [Online]. Available:
https://doi.org/10.1109/TSE.2016.2553039

[11] J. Yang, C. Yan, C. cheng Wan, S. Lu, and A. Cheung, “View-centric
performance optimization for database-backed web applications,” in To
appear in the Proceedings of the 41th International Conference on
Software Engineering, ser. ICSE ’19, 2019.

[12] “Apache Jmeter,” http://jmeter.apache.org/, Last accessed 04/10/2019.

[13] A. Georges, D. Buytaert, and L. Eeckhout, “Statistically Rigorous Java
Performance Evaluation,” in Proceedings of the 22nd International
Conference on Object-Oriented Programming, Systems, Languages and
Applications (OOPSLA), 2007.

[14] “Clockwork - PHP dev tools integrated to your browser,” https://
underground.works/clockwork, Last accessed 03/20/2019.

[15] “Page load time,” https://chrome.google.com/webstore/detail/page-load-
time/fploionmjgeclbkemipmkogoaohcdbig, Last accessed 05/12/2019.

[16] “PHP-Parser - A PHP parser written in PHP,” https://github.com/nikic/
PHP-Parser, Last accessed 04/18/2019.

[17] J. Romano, J. D. Kromrey, J. Coraggio, and J. Skowronek, “Appropriate
statistics for ordinal level data: Should we really be using t-test and
Cohen’sd for evaluating group differences on the NSSE and other
surveys?” in Annual meeting of the Florida Association of Institutional
Research, 2006.

[18] “Cachet: an open source status page system for everyone,” https://github.
com/CachetHQ/Cachet, Last accessed 05/09/2019.

[19] R. Gao, Z. M. Jiang, C. Barna, and M. Litoiu, “A framework to evaluate
the effectiveness of different load testing analysis techniques,” in 2016
IEEE International Conference on Software Testing, Verification and
Validation (ICST), April 2016, pp. 22–32.

[20] C. U. Smith and L. G. Williams, “New software performance an-
tipatterns: More ways to shoot yourself in the foot,” in Computer
Measurement Group (CMG) Conference, 2002.

[21] ——, “More New Software Antipatterns: Even More Ways to Shoot
Yourself in the Foot,” in Computer Measurement Group (CMG) Con-
ference, 2003.

[22] P. Mcminn, C. J. Wright, and G. M. Kapfhammer, “The effective-
ness of test coverage criteria for relational database schema integrity
constraints,” ACM Transactions on Software Engineering Methodology
(TOSEM), 2015.

[23] G. M. Kapfhammer and M. L. Soffa, “A family of test adequacy
criteria for database-driven applications,” in Proceedings of the 9th
European Software Engineering Conference Held Jointly with 11th
ACM SIGSOFT International Symposium on Foundations of Software
Engineering, ser. ESEC/FSE-11. New York, NY, USA: ACM, 2003, pp.
98–107. [Online]. Available: http://doi.acm.org/10.1145/940071.940086

[24] M. Grechanik, B. M. M. Hossain, and U. Buy, “Testing Database-
Centric Applications for Causes of Database Deadlocks,” in Proceedings
of the 2013 IEEE Sixth International Conference on Software Testing,
Verification and Validation (ICST), 2013.

[25] M. Grechanik, B. M. M. Hossain, U. Buy, and H. Wang, “Preventing
database deadlocks in applications,” in Proceedings of the 2013 9th Joint
Meeting on Foundations of Software Engineering (ESEC/FSE), 2013.

[26] K. Taneja, M. Grechanik, R. Ghani, and T. Xie, “Testing Software
in Age of Data Privacy: A Balancing Act,” in Proceedings of the
19th ACM SIGSOFT Symposium and the 13th European Conference
on Foundations of Software Engineering (ESEC/FSE), 2011.

[27] B. L. . M. G. . D. Poshyvanyk, “Sanitizing and Minimizing Databases
for Software Application Test Outsourcing,” in 2014 IEEE Seventh In-
ternational Conference on Software Testing, Verification and Validation
(ICST), 2014.

