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Abstract

This paper describes a system for classifying traffic con-
gestion videos based on their observed visual dynamics.
Central to the proposed system is treating traffic flow iden-
tification as an instance of dynamic texture classification.
More specifically, a recent discriminative model of dynamic
textures is adapted for the special case of traffic flows. This
approach avoids the need for segmentation, tracking and
motion estimation that typify extant approaches. Classifica-
tion is based on matching distributions (or histograms) of
spacetime orientation structure. Empirical evaluation on a
publicly available data set shows high classification perfor-
mance and robustness to typical environmental conditions
(e.g., variable lighting).

1. Introduction
1.1. Motivation

Traffic congestion is a serious issue confronting many
urban centres. To address this issue, traditional solutions
have mainly consisted of increasing the supply of roads;
however, such remedies are becoming less feasible due to
the prohibitive costs involved and the scarcity of suitable
land. Instead, contemporary solutions focus on optimizing
the throughput of existing roads. Here, methods for gath-
ering real-time information on traffic flows are key. Early
traffic monitoring systems relied on inductive-loop detec-
tors [38], which are buried underneath roadways, to count
vehicles traveling over them. More recently, the use of cam-
era networks have shown promise for monitoring traffic. In
contrast to loop detectors, video based systems are less dis-
ruptive, less costly to install and allow for a more detailed
understanding of traffic flow patterns.

In response to the above motivations, this paper presents
a novel approach to representing and classifying traffic con-
gestion scenes as captured in video. In this work, traffic
scenes are treated as instances of a dynamic texture [9], i.e.,

as spatiotemporal image patterns best characterized in terms
of the aggregate dynamics of a set of constituent elements,
rather than in terms of the individuals (cf. spatial texture
[36]). In particular, traffic patterns will be classified directly
in terms of measures of their dynamics aggregated over re-
gions of image spacetime, (x, y, t), rather than via the anal-
ysis of individual vehicles. Toward that end, an approach is
developed that is based solely on observed dynamics (i.e.,
excluding purely spatial appearance cues). For such pur-
poses, local spatiotemporal orientation is of fundamental
descriptive power, as it captures the first-order correlation
structure of the data irrespective of its origin (i.e., irrespec-
tive of the underlying visual phenomena), even while allow-
ing for the discrimination of pattern differences (e.g., levels
of congestion). Correspondingly, each traffic scene will be
associated with a distribution (histogram) of measurements
that indicates the relative presence of a particular set of 3D
orientations in visual spacetime, (z,y,t), as captured by a
bank of spatiotemporal filters and recognition will be per-
formed by matching such distributions.

1.2. Related work

Most extant approaches to classifying vehicular traffic
videos use a combination of segmentation and tracking,
e.g., [24, 25, 3, 28, 35, 11, 23, 22, 30, 29, 6]. The general
procedure consists of the following three steps: (i) motion
detection, (ii) tracking of the individual vehicles and (iii)
combining trajectory information to derive an overall de-
scription of traffic flow. Problems associated with these ap-
proaches include, (i) segmentation issues due to varying en-
vironmental conditions (e.g., lighting), occlusions and low-
resolution imagery resulting in small pixel support of vehi-
cle targets and (ii) tracking issues related to correspondence
problems and occlusions.

Alternatively, several approaches have attempted to re-
cover a holistic representation (macroscopic view) of traffic
flow information directly, thereby avoiding the need for de-
tecting individual moving objects. For example, statistics
of optical flow taken over the roadway have been used to



characterize traffic flow [41, 27, 32, 31, 26]. A drawback of
these approaches is that extracting reliable measurements
of flow is difficult in traffic scenarios due to environmen-
tal conditions and are subject to noise in cases where there
are many vehicles in the scene. Other work has proposed
that traffic flows could be modeled directly as dynamic tex-
tures [7], defined as an autoregressive (AR) stochastic pro-
cess with spatial and temporal components [15]. The utility
of this representation was demonstrated in the context of a
traffic congestion classification application. A drawback of
this approach is the large computational load in fitting the
model, as a result analysis is limited to relatively small im-
age patches and might make this approach impractical for
application to real-time traffic monitoring.

Similar to [7], the proposed approach adopts previous
work directed at general dynamic texture classification [13]
for the purpose of classifying traffic congestion scenes. Pre-
vious empirical evaluation of the proposed approach on a
standard image data set consisting of a wide range of dy-
namic textures has shown significant classification improve-
ment over alternative state-of-the-art approaches. Spa-
tiotemporal oriented energy filters serve in defining the rep-
resentation employed. In addition to the analysis of dy-
namic textures [13], previous efforts have used similar op-
erators in the analysis of image sequences for various other
purposes, e.g., enhancement [17, 20], motion estimation
[21, 18, 34] and activity recognition [10, 14, 12]. Signifi-
cantly, it appears that no previous work has used the filter
outputs to support traffic congestion classification, as shown
here.

1.3. Contributions

In the light of previous research, the contributions of the
present work are as follows. First, a system is presented
for classifying traffic congestion scenes depicted in videos.
The system is based on a particular spatiotemporal filtering
formulation for measuring spatiotemporal oriented energy
that is used for representing and recognizing traffic conges-
tion scenarios based solely on their underlying dynamics.
Second, empirical evaluation on a publicly available data
set demonstrates that the proposed system achieves state-of-
the-art performance, while at the same time being amenable
to computationally efficient realization.

2. Technical approach

The local spacetime orientation of a visual pattern cap-
tures significant, meaningful aspects of its dynamic struc-
ture [1, 40, 13]. As examples, it can provide the basis for
characterizing image motion as well as more general pattern
dynamics, even while exhibiting robustness to illumination
as well as purely spatial appearance variation. Correspond-
ingly, a spatiotemporally oriented decomposition of a vi-

sual pattern provides a useful basis for local representation
of image dynamics. By extension, aggregate measures of
orientation over a region of visual spacetime are of use in
characterizing the region’s spacetime texture. The charac-
teristics of this approach are well matched to the analysis
of traffic video: The dynamics of the pattern are captured,
robustness to illumination provides ability to operate con-
sistently over a wide range of natural and artificial lighting
conditions and robustness to purely spatial appearance al-
lows traffic patterns to be characterized independent of the
exact composition of the vehicles involved.

2.1. Representation: Distributed spacetime orien-
tation

The desired spacetime orientation decomposition is re-
alized using a bank of broadly tuned 3D Gaussian third
derivative filters, G, (z,y,t), with the unit vector 0 cap-
turing the 3D direction of the filter symmetry axis. The re-
sponses of the image data to this filter are pointwise rectified
(squared) and integrated (summed) over a spacetime region,
Q, that covers the entire traffic scene sample under analysis,
to yield the following energy measurement for the region

E; Z (Gs, *I)?, (1)
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where I = I(x,y,t) denotes the input imagery and * con-
volution. Notice that while the employed Gaussian deriva-
tive filter is phase-sensitive, summation over the support re-
gion ameliorates this sensitivity to yield a measurement of
signal energy at orientation . More specifically, this fol-
lows from Parseval’s theorem [5] that specifies the phase-
independent signal energy in the frequency passband of the
Gaussian derivative:

Byoc Y [F{Gs, % I} wa,wy,wr) [, )
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where (wg,wy,w;) denotes the spatiotemporal frequency
coordinate and F the Fourier transform'.

Each oriented energy measurement, (1), is confounded
with spatial orientation. Consequently, in cases where the
spatial structure varies widely about an otherwise coherent
dynamic region (e.g., single motion across a region with
varying spatial texture), the responses of the ensemble of
oriented energies will reflect this behaviour and thereby
are spatial appearance dependent; whereas, a description
of pure pattern dynamics is sought. To remove this dif-
ficulty, the spatial orientation component is discounted by
“marginalization” of this attribute, as follows.

In general, a pattern exhibiting a single spacetime ori-
entation (e.g., image velocity) manifests itself as a plane

IStrictly, Parseval’s theorem is stated with infinite frequency domain
support on summation.



through the origin in the frequency domain [39]. Corre-
spondingly, summation across a set of z-y-t-oriented en-
ergy measurements consistent with a single frequency do-
main plane through the origin is indicative of energy along
the associated spacetime orientation, independent of purely
spatial orientation. Since Gaussian derivative filters of order
N = 3 are used in the oriented filtering, (1), it is appropriate
to consider N + 1 = 4 equally spaced directions along each
frequency domain plane of interest, as N + 1 directions are
needed to span orientation in a plane with Gaussian deriva-
tive filters of order NV [19]. Let each plane be parameterized
in terms of its unit normal, i1; a set of equally spaced N + 1
directions within the plane are given as
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o 2mi L 2mi 0 <i<

0; COS<N+1>9a(1’1)+81n<N+1)9b(1’1), 0<i<N,
3)

where &, denotes the unit vector along the w;-axis.

Now, energy along a frequency domain plane with nor-
mal n and spatial orientation discounted through marginal-
ization, is given by summation across the set of measure-
ments, Eéi’ as

~ N
Ba=) E;, (5)
=0

with éi one of N + 1 = 4 specified directions, (3), and
each F; calculated via the oriented energy filtering, (1).
In the present implementation, 27 different spacetime ori-
entations, as specified by n, are made explicit, correspond-
ing to static (no motion/orientation orthogonal to the im-
age plane), slow (half pixel/frame movement), medium (one
pixel/frame movement) and fast (two pixel/frame move-
ment) motion in the directions leftward, rightward, upward,
downward and diagonal, and flicker/infinite vertical and
horizontal motion (orientation orthogonal to the temporal
axis); although, due to the relatively broad tuning of the
filters employed, responses arise to a range of orientations
about the peak tunings.

Finally, the marginalized energy measurements, (5), are
confounded by the local contrast of the signal and as a result
increase monotonically with contrast. This makes it impos-
sible to determine whether a high response for a particular
spacetime orientation is indicative of its presence or is in-
deed a low match that yields a high response due to signif-
icant contrast in the signal. To arrive at a purer measure of
spacetime orientation, the energy measures are normalized

2Depending on the spacetime orientation sought, &, can be replaced
with another axis to avoid the case of an undefined vector.

by the sum of consort planar energy responses,

M
Ea, = Ea,/ (Z Eﬁj + 6>7 (6)
=1

where M denotes the number of spacetime orientations con-
sidered and ¢ is a constant introduced as a noise floor. Con-
ceptually, (1) - (6) can be thought of as taking an image
sequence, I(x,y,t), and carving its power spectrum into a
set of planes, with each plane corresponding to a particular
spacetime orientation, to provide a relative indication of the
presence of structure along each plane.

2.2. Representation properties

The constructed representation enjoys a number of at-
tributes worth emphasizing. First, owing to the bandpass
nature of the Gaussian derivative filters (1), the representa-
tion is invariant to additive photometric bias in the input
signal. Second, owing to the divisive normalization (6),
the representation is invariant to multiplicative photomet-
ric bias. These first two invariances combine to provide a
level of robustness to illumination variation, which is im-
portant in the analysis of traffic video, if it is to provide
consistent results across diurnal and other anticipated light-
ing variations. Third, owing to the marginalization (5), the
representation is invariant to changes in appearance mani-
fest as spatial orientation variation. Overall, these three in-
variances allow abstractions to be robust to pattern changes
that do not correspond to dynamic pattern variation (i.e.,
spatial appearance), even while making explicit local orien-
tation structure that arises with temporal variation. Robust-
ness to purely spatial appearance is of importance for traffic
congestion classification to provide consistent estimates in-
dependent of the particular composition of vehicles that are
present in a given scene. Finally, the representation is effi-
ciently realized via linear (separable convolution, pointwise
addition) and pointwise non-linear (squaring, division) op-
erations; thus, efficient computations are realized [19], in-
cluding real-time realizations on GPUs [42]. The issue of
computational complexity is important since a system may
consist of an array of hundreds of video cameras including
the potential need for real-time analysis.

Overall, each of the normalized oriented energies can be
viewed as expressing the evidence for the presence of a par-
ticular, spacetime oriented structure. Taken as an ensem-
ble (distribution), they provide the relative contribution of
each spacetime orientation in the decomposition of the traf-
fic scene signal under consideration.

2.3. Recognition: Spacetime orientation distribu-
tion similarity

An ensemble of (normalized) energy measurements,
E;,, is taken as a distribution with spatiotemporal orien-



Algorithm 1: Traffic congestion recognition.

Input: Q: Query traffic video, D: Database containing labeled
traffic congestion videos
Output: c: Classification label

Step 1: Compute spacetime oriented energy
representation (Sec. 2.1)
1. Initialize 3D (G'3 steerable basis.
2. Compute normalized spacetime oriented energies for () and D,
Eq. (1) - (6).

Step 2: Recognition (Sec. 2.3)
3. Compute nearest-neighbour of @) in D using the Bhattacharyya
measure, (7).
4. Assign label of nearest-neighbour in D to c.

tation, n;, as variable. (In practice, these measurements
are maintained as histograms.) Given the spacetime ori-
ented energy distributions of an input query and database
with entries represented in like fashion, the final step of
the approach is recognition. In the present application, the
database is composed of a set of spatiotemporal oriented en-
ergy distributions labeled according to the level of conges-
tion that were derived from a set of exemplar traffic videos;
the queries derive from traffic video that is to be classified
and are likewise represented in terms of their spatiotempo-
ral oriented energy distributions. In general, to compare two
distributions, denoted x and y, there are several standard
similarity measures in the literature that are applicable [33].
In the present application, the Bhattacharyya measure was
employed as it was empirically demonstrated to yield supe-
rior classification performance over other popular measures
for dynamic texture recognition [13]. (In the following, in-
dividual entries in the employed histogram representation
of the distributions are specified via subscripting, e.g., z;,
and summations are taken across all bins.) In particular, the
Bhattacharyya coefficient (similarity on hyper-sphere) [4] is
defined as

B(x,y) = Z VTiYi- (N

Finally, for any given distance measure, a method must
be defined to determine the classification of a given probe
relative to the database entries. In this work, a standard
Nearest-Neighbour (NN) classifier [16] was used in the ex-
periments to be presented. Although not state-of-the-art,
the NN classifier has been shown to yield competitive re-
sults relative to the state-of-the-art Support Vector Machine
(SVM) classifier [37] for dynamic texture classification [8]
and thus provides a useful lower-bound on performance.

To recapitulate, the proposed system for traffic conges-
tion recognition is given in algorithmic terms in Algorithm
L.

Traffic Descrintion Number
Condition P of Videos
light traffic around the speed limit 165
medium reduced speed 45
heavy slow or stop and go speeds 44

Table 1. UCSD traffic data set summary.
Classified
light medium heavy
= light (total 165) | 163 1 1
g medium (45) | 1 40 4
< heavy (44) | 1 4 39

Table 2. Traffic congestion confusion matrix. Cumulative confu-
sion matrix for traffic congestion classification for all four testing
trials using the proposed system.

3. Empirical evaluation
3.1. UCSD traffic data set

The UCSD traffic video data set® consists of video se-
quences of daytime highway traffic in Seattle, Washington,
totalling 20 minutes of video footage [7]. The videos con-
tain a variety of traffic congestion patterns and weather con-
ditions (e.g., raining, overcast and sunny). Each video has a
resolution of 320 x 240 pixels with 42 to 52 frames captured
at 10 frames per second. The data set provides representa-
tive 48 x 48 video patches for training and testing, which
were manually selected over the area with the “most activ-
ity”. Also, hand-labeled ground truth is provided that de-
scribes the amount of traffic congestion in each sequence.
In total there are 254 video sequences, grouped into three
classes of traffic congestion, light, medium and heavy; see
Table 1 for summary. Example frames from the data set are
shown in Fig. 1.

3.2. Traffic congestion classification

In previous work using the USCD traffic video data set
[7], reported traffic congestion classification results were
computed as the average classification rate taken over four
trial runs. Each trial consisted of splitting the data differ-
ently with 75% of the video samples reserved for training
and 25% for testing. The training and test data splits for
each trial are provided with the data set. The empirical re-
sults described next are based on the same testing protocol.

The proposed system achieved an overall classification
rate of 95.28%. By way of comparison, the best previous
result reported on this data set resulted in an overall classi-
fication result of 94.5%. Table 2 provides the cumulative
confusion matrix for all four testing trials using the pro-

3 Available at: www.svcl.ucsd.edu/projects/traffic
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Figure 1. Example frames from the UCSD traffic video data set. The sample frames depict various traffic congestion conditions, coarsely
categorized as light (top row), medium (middle row) and heavy traffic (bottom row).

posed system. Figure 2 shows a correct classification result
for each of the three traffic congestion conditions.

As shown in Table 2, the majority of misclassifications
(ten cases in total) occur between neighbouring classes (i.e.,
light vs. medium and medium vs. heavy). Given the indeter-
minate nature of category boundaries and the corresponding
ambiguities of generating ground truth, such matches are
reasonable. Figure 3 (a) shows an example of this ambigu-
ity where the input depicting heavy traffic is matched clos-
est to an instance of medium traffic. The remaining two
misclassifications are related to confusions between light
and heavy traffic (i.e., non-neighbouring classes). In both
instances, the light traffic sequences largely depict the back-
ground (i.e., few cars are present), while the matched heavy
traffic sequences depict cars that are virtually at a standstill
(see Fig. 3 (b) for an example). From the viewpoint of dy-
namics, both scenes are similar and thus the matches are
reasonable.

As noted above, in previous experiments with the UCSD
database [7], an alternative approach based on dynamic tex-
ture analysis yielded a comparable overall recognition rate
(94.5%); however, this result was based on the computa-
tionally intensive estimation of an autoregressive stochastic
model of dynamic texture, which, to date, precludes effi-
cient computation and real-time applications. In contrast,
the spatiotemporal oriented energy model of dynamic tex-
ture that is demonstrated here is amenable to real-time esti-

mation [42]. Ability to analyze traffic video in an efficient
fashion impacts the manner in which the results can be de-
ployed, e.g., if traffic video is to be analyzed for congestion
to advise drivers and otherwise control traffic online, then
real-time operation is critical.

4. Discussion and summary

The main contribution in this paper is a system for recog-
nizing traffic congestion scenarios from video based on their
observed visual dynamics. Dynamic information is encap-
sulated by a set of spacetime orientation measurements real-
ized by a particular spatiotemporal filtering formulation for
measuring spatiotemporal oriented energy. As compared to
most extant approaches, the proposed system has the fol-
lowing key advantages: (i) does not rely on segmentation,
(ii) does not rely on tracking, (iii) does not rely on optical
flow estimation, (iv) can accommodate variable appearance,
such as lighting variation and (v) is amenable to efficient
computation.

There are several possible directions for future work.
First, the current approach has limited ability to distinguish
between completely stopped traffic and an empty (station-
ary) roadway because it is based on scene dynamics (both
stopped traffic and the empty roadway are static). Other ap-
proaches based on dynamics also exhibit this limitation. A
straightforward way to extend the current approach to make
this distinction would be to incorporate spatial appearance



(c) heavy congestion

Figure 2. Example correct classifications for traffic congestion categorization. In each subfigure, the first row shows several frames from
an input sequence and the second row shows the corresponding nearest match in the database.

information in the form of a background image that would wrong direction (cf. [31]), is another interesting direction
distinguish the presence vs. absence of vehicles. Second, for future research. Third, attention in the current system
extensions related to detecting anomalous traffic behaviour, has been limited to vehicle-based scene elements. The anal-

such as detecting the presence of vehicles moving in the ysis of the movement of pedestrians and crowds is an inter-



(b) heavy congestion misclassified as light

Figure 3. Example misclassifications for traffic congestion categorization. In each subfigure, the first row shows several frames from an
input sequence and the second row shows the corresponding nearest match in the database.

esting domain for further application of the proposed sys-
tem (cf. [2]).

In summary, this paper has presented a system for rec-
ognizing traffic congestion scenarios based on the under-
lying pattern dynamics. The approach is based on a dis-
tributed characterization of visual spacetime in terms of 3D,
(x,y,t), spatiotemporal orientation. Empirical evaluation
on a publicly available data set assembled from real world
data shows that the proposed system achieves state-of-the-
art performance, while being amenable to computationally
efficient realization.
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