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Abstract

This paper presents a novel approach to recovering tem-

porally coherent estimates of 3D structure of a dynamic

scene from a sequence of binocular stereo images. The

approach is based on matching spatiotemporal orientation

distributions between left and right temporal image streams,

which encapsulates both local spatial and temporal struc-

ture for disparity estimation. By capturing spatial and tem-

poral structure in this unified fashion, both sources of in-

formation combine to yield disparity estimates that are nat-

urally temporal coherent, while helping to resolve matches

that might be ambiguous when either source is considered

alone. Further, by allowing subsets of the orientation mea-

surements to support different disparity estimates, an ap-

proach to recovering multilayer disparity from spacetime

stereo is realized. The approach has been implemented

with real-time performance on commodity GPUs. Empir-

ical evaluation shows that the approach yields qualitatively

and quantitatively superior disparity estimates in compari-

son to various alternative approaches, including the ability

to provide accurate multilayer estimates in the presence of

(semi)transparent and specular surfaces.

1. Introduction
Binocular stereo is one of the fundamental and most

widely researched topics in computer vision. Broadly

stated, given a pair of spatially separated 2D projections of

a scene, the goal is to recover the unknown third dimension

of distance between the sensor and scene. Significantly,

many applications allow for image acquisition over time

and thereby allow for incorporation of the temporal dimen-

sion into processing. Ideally, recovered 3D structure should

be temporally consistent and respect scene dynamics. Fur-

thermore, the addition of temporal information has the po-

tential to resolve stereo matches that might be ambiguous

when only instantaneous binocular views are considered.

In response to these observations, the present paper pro-

poses a novel approach to spacetime stereo that centers on

the idea of representing video in terms of a distribution of

3D orientation measurements in visual spacetime, (x, y, t).
The measurements are recovered via application of a bank

of orientation tuned spatiotemporal filters separately to the

left and right image streams for subsequent matching. By

capturing both spatial and temporal structure in this unified

fashion, the cues combine to drive matching for resolution

of situations that might be ambiguous when either source is

considered alone and to increase temporal continuity. Fur-

ther, by allowing subsets of the orientation measurements to

support different disparity estimates, a natural approach to

recovering multilayer disparity estimates arises that yields

accurate recovery in the presence of depth discontinuities,

(semi)transparency and specular reflections.

Various attempts have been made to understand how the

availability of temporal information can enhance binocu-

lar stereo processing. Considerable work has addressed si-

multaneous structure and motion estimation that combines

intraframe (spatial) and interframe (temporal) image pair-

wise constraints in various fashions (e.g. [27, 21, 14, 29]).

However, the following review concentrates on research

that uses temporal information primarily to enhance dispar-

ity estimation (rather than 3D motion processing), as such

work is most closely related to the current research. Some

approaches smooth binocularly derived disparity estimates

across consecutive temporal instants along optical flow di-

rections [6] or along the temporal axis subject to change de-

tection and background modeling [18]. Other approaches

reinforce disparity hypotheses by propagating correlation

scores from the previous frame using optical flow [13]. Still

other approaches consider temporal information by extend-

ing a regularizing spatial MRF grid to include time and

thereby allow for smoothing along the temporal direction,

variously respecting flow displacements [17] and either ac-

counting for change detection [31] or not [19].

The proposed approach explicitly combines spatial and

temporal (i.e. spatiotemporal) support in stereo matching;

thus, previous research with similar considerations is of

particular interest. One method was initially developed in

conjunction with temporally varying structured lighting [9].

Other work generalized this approach to model temporal

disparity change [32]. Still other work extends the notion

of spatially adaptive aggregation to include the temporal

dimension [22]. Most closely related to the proposed ap-



proach is previous work that used measurements of spa-

tiotemporal orientation as the basis for stereo matching [24].

That work encapsulated spacetime orientation in the spa-

tiotemporal quadric or stequel (also referred to as the ori-

entation tensor and covariance matrix [4]) and was shown

to yield disparity estimates with some degree of tempo-

ral coherence and ability to resolve otherwise ambiguous

matches. However, representation in terms of the stequel

fundamentally limits the ability to characterize the presence

of multiple orientations at a point (as all are collapsed to a

single quadric) that might further help distinguish matches,

especially in situations involving multilayer surfaces (e.g.

transparency) and near surface discontinuities.

A major component of the proposed approach is the rep-

resentation of imagery in terms of a distribution of spa-

tiotemporal oriented energy measurements. While previous

research has exploited such measurements toward a vari-

ety of ends, e.g. optical flow recovery [2], dynamic texture

analysis [11], tracking [7] and activity recognition [8], it

appears that no previous work has applied this approach di-

rectly to spacetime stereo. Previous work has made use of

purely spatial orientation measurements in stereo matching

[15], but did not consider the temporal dimension.

In the light of previous work, the outstanding contri-

butions of the proposed approach are as follows. First, a

novel approach to spacetime disparity estimation is pro-

posed based on direct matching of a distribution of image

spacetime orientation measurements. In distinction from an

alternative spacetime stereo method [24], the present ap-

proach eschews collapsing orientation measurements into

a quadric approximation and thereby makes fuller use of

available information. Second, the first approach to recov-

ering multilayer disparity estimates from spacetime stereo

processing is proposed. It is shown to allow for recovery

of multiple layers in the presence of (semi)transparent and

specularly reflecting surfaces. Interestingly, previous work

in multilayer surface recovery from multiple images largely

considers stereo (e.g. [23, 28]) and motion (e.g. [3, 5]) only

independently. Even previous work that combined multihy-

pothesis disparity and optical flow for recovery of 3D mo-

tion estimates made use of purely binocular stereo consider-

ations in its disparity estimation [10]. Third, the approach is

realized in local and global stereo matchers with real-time

GPU-based performance for the local version. Fourth, the

developed implementations have been subject to extensive

qualitative and quantitative empirical evaluation.

2. Technical Approach

2.1. Background
2.1.1 Spatiotemporal orientation correspondence

Local oriented measurements in image spacetime have vi-

sual significance and thereby are an appropriate primitive

for spacetime stereo. For example, orientations parallel to

Figure 1. The spatiotemporal orientation correspondence con-

straint, (1), describes the relationship between arbitrary orienta-

tions in correspondence, ŵl and ŵ
r , subject to binocular viewing

of a slanted surface undergoing arbitrary motion in the world rel-

ative to the cameras. Depicted are several different orientation

directions that might be considered across views.

the image plane capture the spatial pattern of observed sur-

faces (e.g. texture); whereas, orientations that extend into

the temporal dimensions capture dynamics (e.g. motion).

A prerequisite to the use of spatiotemporal orientation

measurements for stereo matching is an analysis of how an

arbitrary 3D world point that suffers an arbitrary displace-

ment projects to related orientations in image spacetime,

(x, y, t), across a binocular pair. The essential result was

presented originally elsewhere [24] and is summarized here

to provide necessary groundwork. Let unit vectors ŵ
l and

ŵ
r (superscripts l and r denote left and right spacetimes,

resp.) specify orientations about points that are in binocular

correspondence, but otherwise arbitrary in visual spacetime

as depicted in Fig. 1. These orientations are related as

ŵ
r =

Hŵ
l

‖Hŵl‖
, where H =

[

1 + h1 h2 h3

0 1 0

0 0 1

]

, (1)

with h1 and h2 capturing the motion independent change in

local spatial orientations about corresponding points owing

purely to the difference between binocular views of a (po-

tentially) non-frontoparallel surface, while motion effects

are captured by h3. In the following, the basic relationship

between binocularly corresponding image spacetime orien-

tations, (1), will be referred to as the spatiotemporal orien-

tation correspondence constraint.

2.1.2 Measuring local spatiotemporal orientation

To exploit the spatiotemporal orientation correspondence

constraint, (1), one must commit to a particular approach to

making local measurements of 3D, (x, y, t), orientation in

image spacetime data. Here, it proves to be advantageous to

make use of oriented energy measurements based on steer-

able filters [12], as it will be shown they are amenable to

matching directly on their responses to image data. In par-

ticular, recall that an energy measurement at a particular ori-

entation, ŵi, and spacetime position, x = (x, y, t)⊤, can be

obtained as the quadrature response of filtering image data

I(x) with Gaussian derivative filters of order n, Gn(ŵi)
and their Hilbert transforms Hn(ŵi) as

E(x; ŵi) = [Gn(ŵi) ∗ I(x)]
2

+ [Hn(ŵi) ∗ I(x)]
2
, (2)



with ∗ denoting convolution.

Significantly, most practical uses of energy filtering of

the form (2) involve a normalization step to make responses

invariant to multiplicative bias and bring response values to

the uniform scale 0 to 1. The necessary operation is realized

via pointwise division by the sum of the N local energy

measurements at a point:

Ê(x; ŵi) = E(x; ŵi)/





N
∑

j=1

E(x; ŵj)



 . (3)

Reasonably, N is taken as the number of orientations that

span the space of orientations for the order of filtering that

is employed. In the following, second-order, n = 2, Gaus-

sians filters and Hilbert transforms are used; so, N = 10 is

required [12], with their orientations chosen to uniformly

sample 3D orientation as the normals to the faces of an

icosahedron with antipodal directions identified [4].

2.2. Binocular spatiotemporal orientation error

With both the relationship between binocularly corre-

sponding spatiotemporal orientations, (1), and a method for

measuring local orientations, (3), in hand, an explicit stereo

matching error can be developed.

The matching error is derived under the assumption that

the pattern of the orientation distribution will vary between

left and right views according to the binocular spatiotem-

poral orientation constraint, (1), but that it is otherwise ap-

propriate to minimize the differences in the oriented filter

responses. This approach amounts to a relaxed assumption

of brightness constancy between views, as the filtered re-

sponses, (3), are robust to additive and multiplicative bi-

ases, which are discounted by the bandpass and normalized

nature of the employed filters. In particular, the developed

approach minimizes the sum of squared errors across all ori-

ented energy measurements (3) as

N
∑

i=1

E2

i (xl,xr) =
N

∑

i=1

[

Êr(xr; ŵr
i ) − Êl(xl; ŵl

i)
]2

, (4)

which by (1) evaluates to

=
N

∑

i=1

[

Êr

(

x
r;

Hŵ
l
i

‖Hŵl
i‖

)

− Êl(xl; ŵl
i)

]2

. (5)

The error function, (5), is minimized by setting the corre-

sponding gradient with respect to h = [h1 h2 h3]
⊤

to zero

and subsequently solving for h. Each error component E2

i

is a non-linear function of h; so, no closed form solution

exists and numerical solutions will be noise sensitive owing

to the high order in the variables of interest, h. Instead, a

solution is obtained via a first-order Taylor series expansion

around h0 = [0, 0, 0] to arrive at the simpler form

Ẽi(x
l,xr) = Ei(x

l,xr;h0) + ∇E⊤

i (xl,xr;h0)h (6)

for the error associated with each orientation wi.

Algorithm 1 Spacetime multilayer disparity estimation

Let D be the set of disparities considered

initialize voting array V corresponding to D to zero

for all directions ŵi do

for all disparities d ∈ D do

compute E2

i using (12)

end for

let di = arg mind Ei

update V(di) = V(di) + 1
end for

for all disparity hypotheses d from D do

if V(d) ≥ voting threshold λv then

Declare d as one of the disparities

end if

end for

2.3. Spatiotemporal orientation match cost

In this section, two methods are presented for assign-

ing a cost to matching points x
l = (xl, yl, t)⊤ and x

r =
(xl +d, yl, t)⊤ across a binocular view according to dispar-

ity estimate, d.

For the first method, the linearized errors (6) for all ori-

entations are combined into a system of linear equations

Bh = b, (7)

where B is an N × 3 matrix, b is an N × 1 vector and

N = 10 is the number of orientations measured, with

Bi,m =
∂Ei(x

l,xr;h0)

∂hm

, and bi = Ei(x
l,xr;h0), (8)

so that each row of B captures the error contribution of a

particularly sampled direction ŵi. A solution for h can be

obtained by following standard linear algebraic manipula-

tions [26] as h = (B⊤B)−1B⊤
b with residual error

Ẽ2 =
N

∑

i=1

Ẽ2

i =
(

B
(

B
⊤

B
)−1

B
⊤
b − b

)2

. (9)

Thus, for any given disparity, d, the cost associated with

matching x
l with x

r is taken as the residual, (9).

It is not necessary to combine all orientation measure-

ments into a single system of equations in support of a sin-

gle minimal cost disparity estimate. Alternatively, multi-

ple disparity estimates can be recovered at a point or over a

spatial region by allowing subsets of measurements to con-

tribute to different estimates, as might be useful in cases of

(semi)transparencies, reflections and even near surface dis-

continuities. In particular, the second method for assigning

costs to disparities operates by aggregating orientation mea-

surements over a spatial support window so that each orien-

tation, ŵi, can form its own (overdetermined) least-squares

system to define the error cost Ei(x
l,xr;h0) for a disparity

estimate. In this formulation, consideration is of the system

Ch = c, (10)



where C is a Q×3 matrix, c is an Q×1 vector and Q is the

number of points in the spatial aggregation region, with

Cq,m =
∂Ei(x

l
q,x

r
q;h0)

∂hm

, and cq = Ei(x
l
q,x

r
q;h0), (11)

so that each row of C captures the error contribution of par-

ticular points x
l
q and x

r
q that ranges over a spatial aggrega-

tion region of Q total points. Similarly to (7), the solution

is h = (C⊤C)−1C⊤
c with residual error

Ẽ2

i =
(

C
(

C
⊤

C
)−1

C
⊤
c − c

)2

. (12)

In this case, each measured orientation, ŵi, can provide its

own cost for any given disparity, d, in terms of the resid-

ual (12). In turn, each measured orientation can “vote” for

its own lowest cost disparity and all disparities that receive

greater than a threshold number of votes can be considered

valid and thereby allow for multiple layer disparity estima-

tion. This approach is encapsulated in Alg. 1.

The first method for assigning cost to disparity estimates,

(9), allows for recovery of only a single disparity estimate

at a point. In that sense, it is analogous to the earlier ap-

proach to disparity estimation based on the spatiotempo-

ral quadric element, [24]; however, the proposed approach

makes more complete use of available orientation informa-

tion by eschewing its collapse to the quadric. The second

method, (12), in conjunction with Alg. 1, allows for mul-

tilayer disparity estimates over a window of match aggre-

gation by more fully exploiting the availability of multiple

orientation measurements.

2.4. Temporal flicker cue

Temporal continuity in the captured binocular imagery

can break down (e.g. motions so large that they alias, flash-

ing lights that yield instantaneous brightness change). In

such situations, it is useful to restrict orientation-based

matching to consider only orientation filtering in space (i.e.,

neglect support in the temporal domain) and thereby avoid

contamination from confusing temporal information.

Along these lines, an interesting aspect of spatiotempo-

ral oriented energy measurements is that individual direc-

tions can be associated with qualitative descriptors of im-

age dynamics. In particular, filters oriented in directions

orthogonal to t-axis (e.g., [1 0 0]⊤) are matched to tempo-

ral change and their response is indicative of infinite/very

fast velocity and instantaneous intensity change, i.e. break-

down in temporal continuity. Normalized energy response

along the spanning set of these directions is referred to as

flicker [30, 11], F , and can be readily computed as a linear

combination of the basis filter responses, (3), implying that

intensity isocontours of minimal brightness variation must

lie in the xy plane:

F(x) = 1 −
[

Ê(x; [1 0 0]
⊤

) + Ê(x; [0 1 0]
⊤

)
]

. (13)

Thus, 0 ≤ F ≤ 1, with F → 1 as the signal becomes

pure temporal change. In the following, local measurements

of F that exceed a threshold are used to detect locations

where 3D spatiotemporal, (x, y, t), orientation matching is

switched to purely 2D spatial, (x, y), orientation match-

ing. Importantly, there is no need to recompute 2D filter

responses; they can be extracted from the already computed

3D filtering operations by reusing the intermediate results

of separable 1D convolutions along the x and y axes [12].

3. Experimental evaluation
The proposed approach has been realized in software im-

plementations that input synchronized and rectified binoc-

ular videos, I l, Ir, recover basis orientation measurement

distributions, Êl(ŵl
i), Ê

r(ŵr
i ) and then calculate the match

cost for any given disparity, d, using one of the methods (9)

or (12). The match cost has been embedded in both local

and global stereo matchers, denoted STE-local and STE-

global (resp.) to illustrate the broad applicability of the ap-

proach. The local algorithm is an adaptive, coarse-to-fine

block-matcher operating over Gaussian pyramids [25]. The

global algorithm is a graph-cuts matcher [16]. These par-

ticular matchers were chosen because they have been used

previously in realizing the stequel approach to spacetime

stereo [24] and thereby allow for direct comparison.

The local method makes use of the per orientation match

cost (12) with Alg. 1 to support recovery of multiple layer

disparity estimates. In all cases spatial aggregation is 5 × 5
and voting threshold λv = 4. The global method makes

use of the across orientations match cost, (9), with no spa-

tial aggregation to avoid non-trivial optimization involving

multiple label association, which is beyond the scope of the

current paper. The global method is thereby not capable

of multilayer estimation. In preliminary investigation, the

across orientation cost, (9), also was embedded in the local

method; it was found that results were comparable to those

shown here for single layer disparity estimates and are not

given explicitly for the sake of space. For both implementa-

tions, subpixel estimation was performed as post-processing

using a Lucas-Kanade type refinement [1] specialized to the

proposed spatiotemporal match costs, (9) and (12), as done

analogously in previous comparable work [24].

The local algorithm, STE-local, is well suited to par-

allel computation and therefore has been implemented in

OpenCL [20] to be independent of hardware vendor. For the

results presented here, this implementation was executed on

an nVidia GTX580 GPU at 16 fps for 640× 480 video with

256 disparity levels, where execution speed scales linearly

with image size. The global algorithm, STE-global has

been realized in C++ for execution on standard CPUs.

To demonstrate the benefits of the proposed spatiotem-

poral matching, several alternative approaches are com-

pared. First, comparison is made to conventional spatial-

only matching using image intensity with normalized cor-



relation match cost, as realized in both local adaptive,

coarse-to-fine block [25] and global graph-cut [16] algo-

rithms; these methods will be denoted noST-local and

noST-global, resp. Second, comparison is made to the

most closely related stequel-based matching, again with

both local and global instantiations [24], denoted STQ-

local and STQ-global, resp. Third, an alternative space-

time stereo approach that uses image intensity matching

with spatiotemporal oriented aggregation will be considered

[32]. As with all others instances, this approach has been

implemented within the same local [25] and global [16]

matchers, denoted Zhang-local and Zhang-global, resp.

Six binocular video data sets are used as input. The first

two are the Lab 1 and Lab 2 videos originally presented

elsewhere [24]. These sets are considered as they are nat-

ural image sequences with disparity groundtruth and have

been used previously in comparison of spacetime stereo al-

gorithms. Challenges present in these videos include weak,

epipolar-aligned and camouflaging surface texture, complex

3D shapes (e.g. gargoyle and teddy bear) and a wide range

of motions (vertical, horizontal and depth axis translations

in Lab 1, depth axis translation and out-of-plane rotations

of non-trivial magnitudes in Lab 2).

Example input image frames, groundtruth disparity, re-

covered disparity and summary performance statistics are

presented in Fig. 2; see supplemental material for video re-

sults. Disparity maps are shown only for STE and Zhang,

as recovered disparity maps for the other approaches are

available elsewhere [24] and are suppressed here in the in-

terest of space; error statistics are shown for all approaches.

The results show that both local and global versions of STE

and STQ perform better than the noST algorithms that es-

chew temporal information. Attention to regions involving

weak and epipolar aligned texture (e.g. in the piecewise pla-

nar regions of Lab 1) show that the inclusion of temporal

information helps to resolve purely spatial match ambigui-

ties. Consideration of the relative smoothness of the error

time series provides evidence of improved temporal coher-

ence offered by STE and STQ.

In these tests, the improvement of STE relative to STQ

arises in the vicinity of depth discontinuities, as evidenced

in the error statistics near discontinuities. This is particu-

larly the case for STE-local, where improved resolution of

structure near 3D boundaries is expected, as its ability to

capture multiple disparities allows a consensus to develop

that accurately segregates the foreground and background

depths without allowing one to contaminate the other. Inter-

estingly, near surface discontinuities, it can happen that two

disparities corresponding to the foreground and background

within the aggregation window exceed the voting threshold,

λv; typically, however, either the foreground or background

dominates the voting depending on the aggregation support

and only the dominant surface is recovered. Moreover, for

half-occlusion, the occluded point fails to yield consensus

voting as no meaningful match is available.

Interestingly, spatiotemporal matching based directly on

intensities, Zhang, did not show significant advantages

even over purely spatial stereo, noST, and behaves notice-

ably worse than STQ and STE. Still, for Lab 1, Zhang

does help disambiguate matches in the camouflage (lower

left) and epipolar-aligned texture regions relative to noST.

Its performance on Lab 2 is particularly poor, especially

in the fine-textured background regions, which can be ex-

plained by the zooming effect associated with in-depth mo-

tion that is not effectively captured by the simple temporal

window shifts adopted in [32]. In contrast, spatiotemporal

oriented energy distributions are pointwise measurements

of the first-order intensity structure and explicit temporal

aggregation is not performed during the STE matching pro-

cedure; hence, no such problem arises.

An important distinguishing point of Alg. 1 in compar-

ison to all previous spatiotemporal stereo algorithms is the

ability to deal with multilayer disparities at a point. The

third test data set, Transparency, illustrates the case of semi-

transparency. This sequence was captured by placing an ac-

etate film in front of a background surface with each of the

two surfaces covered by a different texture pattern such that

the foreground is semitransparent while the background is

opaque. One of the surfaces was set in horizontal motion

and captured binocularly, see Fig. 3. Consideration of a

single left/right frame pair makes it very difficult to recover

the two disparity layers that are present; however, since the

two surfaces are in relative motion, they create distinctive

spacetime orientation patterns. The superposition of these

two patterns are readily apparent in the illustrated xt-slices,

where the vertical and diagonal orientations arise from the

stationary background and translating foreground surfaces,

resp. In essence, different orientations correspond to layers

residing at different depths and certain orientations will be

consistent with one layer or another. A plot of cost, (12), as

a function of disparity vs. spatiotemporal orientation also

is shown in the figure. It is apparent that the smallest er-

rors, i.e. darker colors, are concentrated about two dispar-

ity values (approximately 120 and 175), which correspond

to the foreground and background surfaces. Also shown is

the distribution of votes accumulated by Alg. 1 for differ-

ent disparities across the entire sequence, which shows a

strongly bimodal distribution. Finally, a perspective surface

plot of the disparities recovered by STE-local for a partic-

ular frame pair is displayed that shows the presence of two

disjoint layers. Note that Alg. 1 only offers multiple dispar-

ities at a point, but not the explicit grouping of underlying

layers, which is taken as later visual processing.

To underline the importance of spatiotemporal orien-

tation in multilayer matching, an alternative multilayer

matcher that works directly on single left/right frame pairs
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Figure 2. Example input frames, groundtruth, recovered disparity and recovered-groundtruth absolute difference error for Lab 1 and Lab 2.

For summary statistics, an error is taken as greater than 1 pixel discrepancy between recovered and groundtruth disparity. Bar plots show

average error across entire sequences: White bars are for points within 5 pixels of a surface discontinuity; black bars show overall error.

Error by frame plots show percentage of points in error overall for each frame separately.

also was applied to the Transparency data set. This matcher

makes use of robust, parametric layer estimation [5] and

was applied to the same left and right frames used to present

results for the proposed approach, STE-local. The results

are plotted as green planes in the perspective plot of Fig. 3.

It is seen that the background surface is reasonably recov-

ered at disparity 120.75; however, the foreground surface is

greatly underestimated at disparity 148.19 (correct dispari-

ties are 120 and 175, resp.). Apparently, the intensity mix-

tures that result from semi-transparency cannot be separated

properly by robust application of brightness constancy, as

employed by the alternative approach; whereas, the pro-

posed approach based on explicit representation of multi-

oriented intensity structure allows for success.

While the case of transparency is complicated and in-

triguing, specular reflections are more common in practice.

Indeed, relatively few surfaces are purely matte, especially

in the man-made world. The fourth data set, Lustre, deals

with the case of “binocular lustre” where a specular reflec-

tion is present in one of the two views and totally absent in
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Figure 3. Example input frames, spacetime slices and disparity

estimation results for Transparency. See text for details.
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Figure 4. Input frames and disparity maps for Lustre dataset.

the other. This sequence was acquired by having a well tex-

tured planar surface that is covered with a reflective coating

rotate about the horizontal during binocular video capture.

Across the sequence, an overhead light is strongly reflected

in the left view, but not present in the right, see Fig. 4.

Spatiotemporal stequel matcher STQ-local is able to rea-

sonably capture the surfaces outline and some of the inte-

rior. However, the proposed STE-local algorithm achieves

improved results as it can better capitalize on those com-

ponents of the spatiotemporal orientation distributions that

have reliable matches across views and ignore those that do

not. In contrast, purely spatial matching, noST-local per-

forms much poorer as it has no basis to overcome the in-

compatible intensity profiles that arise due to lustre.

The fifth data set, Bino-spec, deals with the case of

binocular specularity, where a specular reflection is present

in both views, but is displaced in mirror fashion relative

to the underlying surface. This sequence was acquired by

having a well textured, cylindrical cup with a shiny coat-

ing rotating about a vertical axis. Throughout the sequence,

a window in the room is strongly reflected in both views,

see Fig. 5. Pixel matcher noST-local is able to recover the

cup outline, but fails to match correctly the interior portion

due to its high reflectivity and the presence of superimposed

disparities of the cup texture and specular reflection. At

these points the algorithm recovers the surface, the reflec-

tion or some erroneous mixture. In contrast, STE-local is

Left frame t Right frame t noST-local result t

STE-local primary STE-local secondary STE-local result

Figure 5. Input frames and disparity maps for Bino-spec dataset.

Left frame t − 1 Left frame t Flicker response

noST-local STE-local STE-flicker-cue

Figure 6. Flicker channel in spatiotemporal stereo. Handwave

dataset: Example time-consecutive frames, flicker response and

disparity maps for various methods.

able to recover two disparity layers, as appropriate. The de-

picted “primary estimate” map shows the disparity at each

point that received the top number of votes above λv , the

“secondary estimate” map shows other disparities whose

number of votes also surpassed λv , the majority of which

are concentrated near the specularities on the cup and 3D

boundaries (see above discussion of 3D boundaries). The

top view 3D reconstruction shows the recovery of both the

cup surface as well as the specularity properly placed be-

hind the surface according to the mirror reflection with re-

spect to a convex surface. In comparison, when STQ-local

was applied to this case the results were very similar to the

primary estimate of STE-local (and therefore not shown in

the interest of space); significantly, however, STQ-local is

fundamentally incapable of recovering secondary estimates.

As already demonstrated, spacetime stereo offers a set

of advantages over spatial-only stereo. Meanwhile, very

large motions that result in temporal aliasing (e.g. situations

when the displacement of the object is larger than the size of

the object itself) creates significant difficulty for spacetime

methods, since temporal continuity breaks down. Dataset

Handwave (Fig. 6) shows a simple scenario of a rapidly

moving hand and disparity maps processed with noST-local



and STE-local. Here, the STE algorithm behaves worse

than traditional stereo noST. Fortunately, places of exces-

sively rapid motion can be detected using flicker, F , and

matching can be restricted to spatial only filtering at such

points, as described in Sec. 2.4. The results in Fig. 6 la-

beled STE-flicker-cue were generated by switching from

spatiotemporal to purely spatial matching when F > 0.5.

4. Discussion

This paper has described a novel approach to space-

time stereo using spatiotemporal oriented energy distribu-

tions as match primitives. Points of distinction include

the following: (i) resulting disparity estimates naturally ex-

hibit temporal coherence, as the primitives and match cost

inherently involve the temporal dimension; (ii) matches

that are ambiguous when considering only spatial pattern

are resolved through the inclusion of temporal informa-

tion; (iii) by allowing subsets of the orientation measure-

ments to support different disparity estimates, an approach

to multilayer disparity estimation is realized, e.g. as use-

ful in the presence of (semi)transparent and specularly re-

flecting surfaces; (iv) a method for detecting and treating

points where temporal continuity breaks down (flicker) is

presented; (v) the approach is amenable to real-time imple-

mentation on commodity GPUs. In comparison to alterna-

tive approaches, these benefits have been documented qual-

itatively and quantitatively on both publicly available and

novel data sets.

Perhaps the most closely related approach is previous

work using spatiotemporal orientation as encapsulated in

the spatiotemporal quadric element (stequel) [24]. From

a theoretical point of view the proposed approach makes

more complete use of available spatiotemporal orientation

information, as it does not collapse (potentially multimodal)

orientation distributions into a quadric approximation. This

theoretical advantage has been shown to have practical ram-

ifications, especially in the resolution of disparity in the

vicinity of surface discontinuities and the explicit recovery

of multilayer estimates when appropriate (e.g. transparency

and specular reflection). More generally, it appears that the

proposed approach is the only research on spacetime stereo

to consider multilayer disparity estimation.
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