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Abstract

An algorithm is presented for video georegistration, with
a particular concern for aerial video, i.e., video captured
from an airborne platform. The algorithm’s input is a video
stream with telemetry (camera model specification sufficient
to define an initial estimate of the view) and geodetically cal-
ibrated reference imagery (coaligned digital orthoimage and
elevation map). The output is a spatial registration of the
video to the reference so that it inherits the available geode-
tic coordinates. The video is processed in a continuous fash-
ion to yield a corresponding stream of georegistered resullts.
Quantitative results of evaluating the developed approach
with real world aerial video also are presented. The results
suggest that the developed approach may provide valuable
input to the analysis and interpretation of aerial video.

1. Introduction

Video is an increasingly common and important source of
information about the world. In many situations the useful-
ness of this information is increased if the imaged objects
and events can be precisely localized in the world that has
been imaged. The ability to associate 3D world coordinates
with video is of particular value for many applications of
aerial video. The ability to assign geodetic coordinates to
video pixels is an enabling step for a variety of operations,
including, targeting, map generation, video annotation from
geospatial databases and sensor model refinement. To best
serve these applications, the assignment of 3D coordinates to
video.must be highly robust with accuracy and precision on
the order of 10 meters and below. For time critical applica-
tions real-time performance also is of importance.

The preceding remarks motivate the research described
in this paper. In particular, an algorithm is presented for
video georegistration, i.e., the spatial registration of video
imagery to geodetically calibrated reference imagery so that
the video can inherit the reference coordinates. The applica-
tion domain of particular concern is aerial video. In this do-
main, video typically comes with telemetry that can provide
an initial estimate of the camera view. Even so, the video
georegistration mapping is quite challenging: Spatial corre-
spondence is poorly defined owing to unreliable telemetry,
narrow (video) field of view, oblique viewing, rugged terrain
and appearance change between the video and reference. In-
deed, were telemetry perfect then the desired mapping es-
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sentially would be provided as input; however, this is hardly
the case in practice, where even precisely calibrated labora-
tory systems commonly have errors in excess of hundreds of
projected ground meters. Nevertheless, results presented in
this paper show that the developed video georegistration al-
gorithm is capable of an interesting level of performance in
the presence of the noted challenges.

A great deal of research has considered image registra-
tion [3]. Most closely related to the work that is presented
in the current paper are other efforts that have concentrated
on image georegistration. One class of previous approach
considers either implicit or explicit recovery of elevation in-
formation from video for subsequent matching to a reference
elevation map [14, 16, 17]. Appeal to an elevation represen-
tation for matching has the potential to be invariant to many
sources of video/reference difference; however, it relies on
recovery of elevation from video - a difficult task. A sec-
ond class of approach applies image rendering techniques to
account for telemetry supplied information so that the ref-
erence and video can be projected to similar views for sub-
sequent appearance based matching (10, 12, 13, 15]. While
the current work also falls into this second class, earlier work
was more limited in its ability to successfully match the two
sets of imagery (even following projection) in the presence
of significant remaining appearance differences (e.g., due to
poor telemetry or unmodeled seasonal variation).

In the light of previous research, the outstanding contri-
butions of the current work are as follows. First, a novel al-
gorithm for video georegistration is presented. While many
of the individual techniques that comprise this algorithm are
known in the literature, here they have been selected for
principled reasons derived from the challenges at hand and
combined to yield an integrated system for continuous video
georegistration. Second, the most extensive evaluation pub-
lished to date of any algorithm for video georegistration is
presented. Significantly, the results of this evaluation show
that the developed algorithm is capable of dealing with many
of the vicissitudes of real-world data.

2. Algorithm and system

There are three major algorithmic components to the devel-
oped system, see Figure 1. (i) The reference and video are
projected to a common coordinate frame based on available
telemetry. This projection establishes initial conditions for



video .

Preprocess
telemetry imagery
(initial ] S
Camera -

Project reference
model) !

correspondence

local global

matching matching

video registered

| g-with refcrence
(adjusted camera

- progressive model)}

refinement

- . “1o video
reference imagery

projected

(ortho + elevation) .
reference

Figure 1: Algorithmic Steps to Video Georegistration.

image-based alignment to improve on the telemetry-based
estimates of georegistration. (ii) The imagery is prepro-
cessed to bring it under a representation that captures both
the geometric and intensity structure of the imagery to sup-
port matching of video to reference. Geometrically, video
frame-to-frame alignments are calculated to relate succes-
sive video frames and extend the spatial context beyond that
of any single frame. For image intensity, the imagery is fil-
tered to highlight pattern structure that is invariant between
video and reference. (iii) A detailed spatial correspondence
is established between the video and reference imagery that
effects a precise alignment of the two imagery sources. Inte-
gral to the alignment process is an adjustment of the camera
model to better reflect the match of the video and reference.
A progressive refinement strategy is employed, proceeding
coarse-to-fine along several different dimensions, commen-
surate with uncertainty in the current state of processing.

In this paper mappings between points in various coordi-
nate frames will be presented (e.g., world-to-image, image-
to-image). These mappings will be represented in terms of
a 4 x 4 homogeneous transformation matrix, II operating on
4 x 1 column vectors, m = (z,y, z,w) ", i.e.,

mey: = Imy,. D

Specific forms for II, m;, and m,,; will be introduced at
appropriates places in the exposition. (Nonlinear effects,
e.g., radial lens distortion are neglected here, but could
be accounted for via composition of additional transforma-
tions.) Video frames and projected reference images will
be denoted via v and r; particular points will be denoted
with j. For example, homogeneous coordinates for a cor-
responding point in video and reference will be symbolized
as m,,, m,,, respectively. Two-dimensional image coordi-
nates for the same point will be given as py; = (p5,75)y =
(zj/wj,y5/w;)y s Pr; = (15,v5)r = (Tj/wj,y5/w;), , as
standard. The remainder of this section details the 3 major
algorithmic components to video georegistration: projection
of reference and video to a common coordinate frame, image
preprocessing and correspondence.

2.1. Project reference to video frame

The first algorithmic step in the developed approach is to
project the reference and video imagery to a common co-
ordinate frame. The goal is to make use of the available
telemetry implied camera model to bring the reference and
video into an initial alignment that can support further au-
tomated registration. Critical to the projection process is to
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make use of the reference image elevation information to ac-
count for as much 3D relief-based variation as possible so
that subsequent image matching can be largely 2D in nature.
For this reason, the reference orthoimage is projected into the
video frame, since the orthoimage already is coregistered to
the elevation map. The projection is accomplished via stan-
dard texture map-based rendering [7]. The digital elevation
map is triangulated to yield a 3D mesh. The orthoimage is
regarded as a texture, coregistered to the mesh. The mesh
vertices are parametrically mapped to the image plane based
on the telemetry implied camera projection matrix. Hidden
surfaces are removed via Z-buffering. The output of this first
algorithmic step is a view, r, of the reference orthoimage ac-
cording to the rough indication of the camera model provided
by telemetry, i.e., as the result of a projective mapping where
the general point transformation matrix (1) is specialized to

al a2 a3 ai4
Prender_ a2 az2 a3 a24 (2)

w,T 0 0 0 1
4] @42 Q43 Q44

with the matrix entries derived via composition of the camera
interior and exterior orientation parameters [20] that is ap-
plied to vertices of the triangulated mesh. Input world points
are symbolized as m,,; and output projected reference points
are m,;. To account for inaccuracies in the telemetry-based
projection, the support of the area covered in the projected
image is extended beyond the implied field of view. For the
sake of efficiency, reference images are not projected for ev-
ery frame of a video sequence but only on an intermittent
basis when the last registered video frame is near the border
of the current reference projection.

2.2. Preprocess imagery

The second algorithmic step in the developed approach is to
bring the video and projected reference imagery under a rep-
resentation that supports subsequent image-based matching.
There are two subcomponents to this stage of processing. (i)
A geometric alignment of successive frames in the video is
established so that more information than that provided by
any one frame can be brought to bear in matching to the ref-
erence imagery. (ii) Image intensity structure is processed to
facilitate matching between the video and reference imagery
by highlighting invariant pattern structure.

Frame-to-frame alighment When considered individu-
ally, any single frame in a video can lack sufficient distinc-
tive structure to disambiguate matching to a reference image.



This difficulty can be ameliorated by considering collections
of frames simultaneously to effectively increase the field of
view that is considered in the matching process. To facili-
tate such matching, the frame-to-frame alignment of adjacent
‘frames in the video sequence is recovered. The recovered
parameters subsequently are used as geometric constraints in
the matching of collections of frames to reference imagery.
Significantly, the alignment parameters are not used to con-
struct a single monolithic mosaic for matching, but rather are
reserved for constraints, which allows for greater flexibility
in the final match to reference.

In current implementation, the frame-to-frame alignment,
Fu u+1, is recovered as an affine mapping, i.e., a specializa-
tion of the transformation (1) according to

a;1 a2 0 a3
affine  _ a1 a2 0 a23
Fv,v+1 - 0 0 1 0 (€)
0 0 0 1

with the input and output to the mapping of the forms
m,;, = (Ij y Yis 0, 1)1—1‘—: my+1; = (Ij7 Yis 0, 1)11;—+1’ respec-
tively. Empirically, it has been found that the affine transfor-
mation provides an adequate description of frame-to-frame
alignment for video rate (30 fps) capture of the aerial im-
agery of concern. Parameter values for F are recovered
via a gradient-based, coarse-to-fine, Gauss-Newton estima-
tor working over a Laplacian pyramid [2]. For a collection
of n video frames, a set of n — 1 alignment matrices are cal-
culated for subsequent processing.

Image intensity representation There can be a great deal
of appearance change between a video and its correspond-
ing reference orthoimage, even following projection to a
common coordinate frame. Many sources contribute to this
change, including, variation in sensor characteristics, diurnal
and seasonal cycles and scene structure (e.g., new construc-
tion). To ameliorate such difficulties, it is desirable to'choose
a representation of image intensity that highlights pattern
structure that is common to the two image sources that are
to be brought into alignment.

Features with the potential to serve in the desired fash-
ion are those that exhibit a local dominant orientation or well
localized point-like structures that can be thought of as cap-
turing a range of orientations, e.g., roads, tree lines, edges
of buildings, compact isolated structures and the like. Simi-
larly, the local distribution of orientations that are present in
an image can be indicative of texture structure. Correspond-
ingly, an image representation is employed that decomposes
intensity information according to local spatial orientation.
This representation is derived via application of a bank of
filters that are tuned for spatial orientation and scale to both
the video imagery as well as the (projected) reference image.
In particular, the filtering has been implemented in terms of
second derivative of Gaussian filters, G5, at orientation # and
their Hilbert transforms, H,, [11]. The filters are taken in
quadrature (i.e., for any given 6, G2, and Hj, in tandem)
to eliminate phase variation by producing a measure of local
energy, eg(z, y) within an orientation band, according to
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69(.’17, y) = (G2o (a:,y) * 2(.’17, y))2 + (H29 (‘Ta y) * ’L(.’II, y))2a

with * symbolizing convolution and i(z, y) images to be fﬁ)
tered, i.e., for current purposes video frames and projected
reference images. This filtering is applied at a set of four
orientations, vertical, horizontal and two diagonals to yield
a corresponding set of “oriented energy images” [8] for both
the video and reference imagery. Further, the entire repre-
sentation is defined over a Gaussian pyramid [11] to support
multiresolution analysis during subsequent processing.

Owing to the rectification of the oriented filter outputs, the
oriented energy representation is invariant to contrast rever-
sals. Still, the value of any one oriented energy measure is a
function of both orientation and contrast. To avoid this con-
found and get a purer measure of orientation the response of
each filter is normalized by the sum of the consort, i.e.,
€9,

S EE—— 4)
Lreo,(a,y) T €

éo, (z,y) =
with & ranging over the four orientations and € a small bias to
prevent instabilities when overall energy is small. (In current
implementation, this bias is set to about 1 % of the maximum
(expected) energy.) The final set of normalized oriented ener-
gies comprise an image representation that captures the local
first-order geometric structure of image patterns with robust-
ness to contrast variation. In what follows, matching oper-
ations that serve to define the correspondence between the
video and projected reference will be performed with respect
to normalized oriented energy images, as defined by formu-
las (4) and (5). For the sake of simplicity, this dependency
will not be made explicit in the notation.

2.3. Correspondence

The third algorithmic step in the developed approachiis to es-
tablish a detailed spatial correspondence between the video
and projected reference imagery and thereby effect a pre-
cise geometric alignment of the two. There are a number of
challenges that must be met in establishing such a correspon-
dence. Uncertainty in camera geometry (e.g., as provided by
telemetry) necessitates large search ranges. Matching with
small spatial support leads to ambiguity; matching with large
spatial support can be too sensitive to change between video
and reference. In response to these issues, a local to global
matching scheme is employed, with progressive refinement.
This scheme operates by simultaneously considering a col-
lection of consecutive video frames, that moves across the
input stream with a sliding window. For example, in current
implementation collections of 3 “key” frames are considered
at a time, with key frame selected to have 50% overlap and
their frame-to-frame alignments taken as the concatenation
of the video rate frame-to-frame estimates.

Initially, correspondences are established on the basis of
purely local matching (i.e., matching between single video
frames and projected reference). Subsequently, a global
alignment is established via a procedure that simultaneously
considers all local correspondences for all frames under con-
sideration to estimate a set of alignment parameters opti-
mized for all, i.e., akin to a bundle adjustment [20]. This



two stage (local/global) matching scheme iterates in a pro-
gressive refinement framework. Early iterations effect coarse
alignment via consideration of matching primitives based on
low spatial frequency information derived with large spatial
support to serve large search ranges but low-order alignment
models. Later iterations effect fine alignment via considera-
tion of matching primitives based on higher spatial frequency
information to serve smaller search ranges and higher-order
alignment models. At each stage, results at the previous stage
serve as initial conditions, with telemetry providing the ini-
tial estimate for the entire routine. The next several para-
graphs detail the local and global matching as well as the
progressive refinement strategy. :

Local matching Local matching concentrates on estab-
lishing correspondences between individual video frames
and the reference image. Primitives for this stage of process-
ing are spatially overlapping tiles that define a grid over a
frame of concern. The size and scale (i.e., pyramid level) of
the tiles vary according to the progressive refinement strat-
egy. In current implementation, three refinements are per-
formed, coarse, medium and fine. As examples: For the
coarsest stage of refinement, a tile is the entire image taken
at level 3 in a Gaussian pyramid; at the finest stage of re-
finement, a 6 x 8 grid of tiles is formed at pyramid level 1.
(Recall that the oriented energy representation is built on top
of the (Gaussian) pyramid levels to effect an overall bandpass
characteristic in the filtering of the tiles.)

Primitives (i.e., tiles) are matched in terms of correlation
search in translation over the (projected) reference image.
The search range varies according to the progressive refine-
ment iteration, from hundreds of pixels at the coarsest stage
to single pixels at the finest. The resulting match (for a prim-
itive) is represented as a function 'y, (11, v) giving “probabil-
ity” that point j in a given video frame, v, has displacement
(1, V) in a reference image, r, c.f. [1]. Match functions are
computed as normalized correlation scores of a patch about j
in v shifted by (i, v) inr (i.e., a discrete correlation surface).
Independent correlation surfaces are computed for each band
in the oriented energy representation, which subsequently are
multipled together to establish consensus. By representing
the local matches in terms of correlation surfaces, it is possi-
ble to eschew assigning unique displacement vectors where
they are unwarranted (e.g., aperture effects) and make use of
more of the available information in subsequent processing.

To serve as a constraint on global matching, the domi-
nant peak, i.e., highest value, in a correlation surface, I';; is
further characterized in terms of its covariance structure. In
particular, let y(u, v) correspond to a portion of the correla-
tion surface I that derives from its dominant mode. Support
for «y is recovered based on a mean-shift procedure that itera-
tively reassigns points to local maxima in the distribution of
I' [4]. The covariance of + is defined as

C= EZ,U:_S’Y(/L, U)f)pT/EZ,V:—s7(y7 V)

where p = (p — po,v — w)' with pp =

Spy(p,v)/Ey(p, v), similarly for vy and limits on the
summation the same as for C, i.e, so as to cover 7. Finally,
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the scale of the peak is used as a normalization to yield a
measure of covariance shape

C=cCrr(C?) /2

The final component of local matching is outlier rejec-
tion. Due to the difficulty of the matching problem that is
under consideration, false local matches are likely and must
be removed to avoid corruption of global matching. Indeed,
experience has shown that false matches can exceed 50% in
the initial matching stage. Since true matches must be con-
sistent with some alignment model, RANSAC [6] is applied
on a frame-by-frame basis to estimate that model and remove
outliers among the matches. (The specific alignment mod-
els considered will be introduced when global matching is
considered below. For now it suffices to note that the mod-
els can be represented parametrically to map between (pro-
jected) reference and video imagery, i.e., according to trans-
formation (1).) For current purposes, the residual, R?, for
point j used in the RANSAC computation is taken to be the
covariance weighted distance

Rf = (pu,- - ﬁv,—)Tc—l(ij - f)v_,-)

with py;, = (ftv,7,); mappings of the reference point p;
into the video under the current trial’s estimated alignment
model. For cases where RANSAC cannot be defined, i.e.,
coarse matches of entire video frames to projected reference,
outliers are rejected by dropping matches that do not derive
from unimodal correlation surfaces, I'. The overall result is
a set of (local) video to reference matches for each frame
under current consideration, all of which are to be considered
during global matching.

Global matching Global matching is accomplished with
respect to an operative parametric alignment model, Q, .,
that maps between the (projected) reference(s) 7 and video
frames v to serve in essence as a camera model. Estima-
tion proceeds by simultaneously recovering parameters for a
set of mappings for a corresponding set of video frames un-
der consideration (in a sliding temporal window), akin to the
photogrammetric notion of bundle adjustment (20]. During
this process multiple projected references also can be under
consideration as it becomes necessary to project more than
one view of the reference orthoimage to accommodate the
extent of the current collection of video frames.

Most generally, the form of the mapping Q;, is as
given in the general transformation (1), with input m,, =
(z;,¥4,0,1)] and output m,;, = (z;,95,0,w;)] . Depend-
ing on the stage of progressive refinement, different align-
ment models are employed, with models varying from lower
to higher order as refinement proceeds coarse to fine. During
the coarse iteration, a global shift is employed to establish
the center of projection, i.e.,

1 0 0 aia
shift __ 0 1 0 a2
Qr,v - 00 1 o0

00 0 1

During the intermediate iteration, an affine camera model is
employed, i.c., Q2" has the same form as the frame-to-
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Figure 2: Geometric constraints on global alignment. Frame-to-frame constraints and reference-to-frame constraints are shown
in the left and right panels, respectively. Dotted arrows show (i) known relations, Py, ., Py r+1 that map the world w to projected
references r and 7 + 1 based on telemetry and (ii) constraints, frame-to-frame constraints F, ,; that maps video frame v to
v + 1 and reference-to-frame constraints from local matches between reference and video. Solid arrows show transformations
to be recovered, Q’s that map between the projected references and video frames. Square brackets show error to be minimized.

frame transformation F:ff,’fl, (3). Finally, during fine align-

ment, a 2D projective camera model is employed, i.e.,

a;r a2z 0 auq
2dProj __ a21 a2 0 a2
TV - 0 0 1 0

ae31 azx2 0 a3q

Significantly, this last model is related to the general 3D pro-
jective camera model, e.g., as used for projecting the refer-
ence to video frame (2), via an assumption that the z terms
deviate little from a plane to yield a sparser projection matrix,
in particular, an homography mapping between two planes
[5]. The local planarity assumption is based on the ability of
the projection of the reference to the video coordinate frame
to compensate for significant 3D relief effects. In theory,
it would be possible to include additional modeling stages,
e.g., full 3D projective (2); however, in practice halting with
2D projective has allowed for acceptable alignments without
over fitting of the data.

Given an operative alignment model, global matching
takes into consideration 2 sets of constraints in order to
achieve an overall best alignment between the portion of
the video under consideration and the reference imagery, see
Figure 2. (i) Frame-to-frame constraints are derived from
the frame-to-frame alignments that were computed as part
of the (video) image representation. (ii) Reference-to-frame
constraints are derived from the reference-to-(video)-frame
matches that were computed by local matching. The next 2
paragraphs detail these constraints.

Frame-to-frame constraints embody the frame-to-frame
alignments that were computed as a part of the image prepro-
cessing. Deviations from these constraints are measured in
terms of the geometric displacement between the same point
J as it appears in a projected reference, and the mapping of
that point onto a video frame, then to the next frame and fi-
nally back to (projected) reference. In the most general case,
two projected references will be involved (i.e., when the two
video frames involved are related to separate projected refer-
ences), leading to an error term of the form

-1
Ef2f =0 (mT+lj1Qr+l7u+]F‘U,‘U+lQT,'UmTJ‘) )
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where the reference point pair m,;, m,1, are obtained us-
ing the (known) world to projected reference mapping (i.e.,
as provided by transformation (2)), while the composite pro-
jection is a chain of mappings from reference r to frame v,
then to frame v+1 and finally to reference r+1. Here, frame-
to-frame alignment is given by F, ,4 in accord with trans-
formation (3) as a constraint, while mappings from video
frames v,v + 1 to (projected) references r,r + 1 are de-
scribed by Q:,};: Q;EMH, respectively and é(mg, mg) is
a distance metric. In current implementation, this metric is
instantiated in terms of the covariance weighted Euclidean
distance between the equivalent 2D (image) coordinates, i.e.,
Po = (Ta/Wa, Yo /we) " and similarly for 3 to yield

§(mq, mg) = (pa — Pg)' C 1 (Pa — Pg)

As a special case, if the two video frames, v and v+ 1, related
via a frame-to-frame constraint, F, ,1, map to the same pro-
jected reference, then the frame-to-frame error term has the
same form but with 7 and r + 1 equated.

Reference-to-frame constraints embody the local matches
that were computed during the first stage of the correspon-
dence process. Deviations from these constraints are mea-
sured in terms of the geometric displacement between a lo-
cal match and mapping of the same point j onto a common
reference from a corresponding video frame, i.e.,

Er‘lf = 6 (mrj y Q;"}yml}]) N
with m,; the position of point m,; in reference r given by
local matching and Q;. , to be estimated in global matching.

Combination of the frame-to-frame and reference-to-
frame error terms leads to a total error

E = Z (alE?Zf + azEfzf)

that is to be minimized with respect to the reference-to-frame
mappings Q,,. Here, summation is taken over all local
matches computed for a set of video frames under simulta-
neous consideration and weights o 2 determine the relative
contribution of each error terms. In current implementation,
o and @y are equal. Minimization of E is accomplished in a



Test Case 1 2 3 4 5 6 7 8
GSD (m/pixel) 0.7 2.1 0.7 24 2.6 1.2 0.5 0.2
Obliquity (deg) 45 45 45 60 60 15 70 15

3D relief flat hilly mountain flat hilly flat flat flat
Ground Cover urban/forest | farm/forest | bare earth | farm/forest | farm/forest | urban/forest | urban/forest | urban/forest
ref/vid similarity similar different similar different different similar similar similar

Figure 3: Characteristics of test data sets.

weighted least squares sense, with weights provided by local
match covariance. Estimation of the parameters for the Q, ,
is performed via the Levenberg-Marquardt method [9].

From global matching a detailed registration of the two
sources of imagery allows the video to inherit the geodetic
coordinates of the reference. Also, via a composition of the
recovered alignment models with the initial telemetry-based
camera model, adjusted mode! parameters are produced that
reflect the available video and reference information.

3. Empirical evaluation

This section presents a study that quantitatively evaluates
the accuracy of the developed algorithm for video georeg-
istration as a function of several key factors. In particular,
variables of concern are (i) video ground sampling distance,
GSD, (meters/pixel derived from telemetry), (ii) obliquity
of camera angle (degrees from nadir derived from teleme-
try, i.e., nadir = 0), (iii) terrain 3D relief (e.g., flat, hilly,
mountainous, from human inspection of DEM), (iv) terrain
surface cover (e.g., urban, farm, forest, bare earth, from hu-
man inspection of ortho and video) and (v) reference/video
appearance similarity (e.g., same/different due to seasonal
variation, from human inspection of ortho and video). These
factors have been selected to shed light on the developed ap-
proach for both researchers and potential users.

Eight specific test cases are documented in Fig. 3, which
cover a wide range of parameter values for the experimen-
tal factors of interest. Each test case corresponds to a 2
minute video clip with supporting telemetry captured from
an aerial platform flying along (mostly) straight paths at ap-
proximately 80 knots. Corresponding reference data consists
of USGS digital orthophoto quarter-quads (1 meter GSD)
and NIMA Digital Terrain Elevation Data Level 1 (=100 me-
ter postings) [19]. Registration accuracy is reported in terms
of absolute Euclidean distance of registered points from hand
mensurated ground truth. Error is calculated in orthoimage
coordinates, i.e., 1 pixel implies 1 meter. Hand mensurated
ground truth was built by human operators using a GUI to
select corresponding points in video and reference. An at-
tempt was made to select both natural and artificial feature
correspondences. On average, 150 ground truth points were
selected for each video clip.

Fig. 4 presents test case 1 results. Visual inspection of the
ortho and video for the featured frame in the top row shows
the considerable geometric compensation required to effect
registration. Even following projection of the reference via
telemetry, gross misalignment remains. Nevertheless, the fi-
nal results of automated alignment yield a precise registra-
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tion of the video to reference. Quantitative results compiled
across the entire test case are shown in the bottom row. Com-
parison of the error histograms for telemetry only and final
registration shows vast overall improvement from the pro-
posed algorithm. Consideration of mean and maximum er-
ror as functions of percentage of total mensurated points fur-
ther underlines this improvement. The final mean error is
under 10 meters (pixels) at all percentiles; the final maxi-
mum error is under 10 meters through the 80th percentile
and never above 35 meters. Remaining errors in final reg-
istration arise mostly when nondistinctive appearance makes
fine correspondence ambiguous (e.g., uniform vegetation).

Fig. 5 presents test case 2 results. In this case, there is an
extreme appearance change between the reference and video
due to their being acquired in summer and winter, respec-
tively. (Test cases 4 and 5 derive from similar conditions.)
Here, the algorithm is still capable of providing a precise
registration as shown in the final overlay. Note, for exam-
ple, how the frozen bodies of water in the video have been
precisely aligned with their reference image counterparts de-
spite even full contrast reversal, e.g., a bit less than half way
down the left side of the final result. The error plots show
quantitatively the considerable improvement afforded by the
algorithm over telemetry only registration. Finally, note that
worst case errors in registration for this test are inflated com-
pared to test 1 due predominantly to the extreme appearance
variation between reference and video.

Fig. 6 presents test case 3 results. Challenging aspects
of this case include high 3D relief (600m elevation variation
across the clip) and the paucity of features to drive registra-
tion over bare earth surface cover. In this case the algorithm
can still perform well: The projection of the reference or-
thoimage to the video frame, taking into account reference
elevation data compensates for much of the relief effects; the
approach to image representation and matching allows for
exploitation of the available features (e.g., ridge and gully
lines). This allows, e.g., the average error to be under ap-
proximately 15m for 90% of the data. Maximum error also
is generally improved; although at 90% this is not the case
as registration does not adequately compensate over a region
of particularly high relief variation. This limitation lies in
the coarse resolution of the reference elevation data that has
been used as it does not support the projection of the ref-
erence to account for the operative 3D effects in the region
under consideration. Improved reference data would greatly
ameliorate this type of error. Overall, this case represents
the algorithm’s worst performance for the set under consid-
eration. Still, improvement is demonstrated over telemetry.
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Further, the present limitations lie more in the quality of the
reference data (i.e., elevation) than in the algorithm per se.
Summary results for all § test clips, both telemetry-based
and final algorithm registration, are shown as Box Plots [18]
in Fig. 7. (Note that the ordinate scale on the telemetry re-
sults is a factor of 10 greater than the final results.) A number
of overall observations are possible: (i) The best telemetry-
based registration is worse than the worst case algorithm reg-
istration, save case 8. Close examination of case 8 shows
that the algorithm still improves on the telemetry by a fac-
tor of 2. (i1) The central tendencies of the regisiration re-
sults are smaller and less variable than the telemetry results:
While the median error scores for the final results span ap-
proximately 2-14 meters, the corresponding span for teleme-
try is approximately 7-75. (iii) The dispersion of the results
is smaller following algorithm registration for every case. As
noted above, worst case performance is due predominantly
to attempts to register in the presence of nondistinctive im-
age appearance (leading to ambiguous correspondence) and
low resolution reference elevation data (limiting ability to ac-
count for 3D relief). In future work, these limitations could
be addressed by making use of larger collections of video
frames for global matching (to increase spatial context and
disambiguate matches) and incorporating improved resolu-
tion reference elevation data. Overall, the results show the
algorithm’s ability to perform in a robust fashion with accu-
racy and precision across a wide range of challenging cases.

4. Summary

An algorithm for video georegistration has been presented.
The input to the algorithm is a video stream with telemetry
and geodetically calibrated reference imagery. The output is
a spatial registration of the video to the reference so that the
video inherits the available geodetic coordinates. The video
is processed in a continuous fashion to yield a correspond-
ing stream of georegistered results. The algorithm has been
quantitatively evaluated through empirical testing with data
derived from the application domain of most interest, aerial
video. The results of this evaluation show that the developed
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approach is robust in the presence of challenging test cases
and capable of producing accurate and precise registration of
video to reference. On the basis of these results, it is sug-
gested that the developed approach can provide valuable in-
put to the analysis and interpretation of aerial video.
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