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Abstract

Spatiotemoral stereo is concerned with the recovery of
the 3D structure of a dynamic scene from a temporal se-
quence of multiview images. This paper presents a novel
method for computing temporally coherent disparity maps
from a sequence of binocular images through an integrated
consideration of image spacetime structure and without ex-
plicit recovery of motion. The approach is based on match-
ing spatiotemporal quadric elements (stequels) between
views, as it is shown that this matching primitive provides
a natural way to encapsulate both local spatial and tempo-
ral structure for disparity estimation. Empirical evaluation
with laboratory-based imagery with ground truth and more
typical natural imagery shows that the approach provides
considerable benefit in comparison to alternative methods
for enforcing temporal coherence in disparity estimation.
1. Introduction

In a 3D dynamic environment a visual system must pro-
cess image data that derives from both the temporal and spa-
tial scene dimensions. Correspondingly, stereo and motion
are two of the most widely researched areas in computer
vision. Within this body of research, integrated investiga-
tion of stereo and motion has received relatively little atten-
tion. Ultimately, however, recovery of 3D scene structure
must respect dynamic information to ensure that estimates
are temporally consistent. Further, in situations where in-
stantaneous multiview matching is ambiguous (e.g., weakly
textured surfaces or epipolar aligned pattern structure), dy-
namic information has the potential to resolve correspon-
dence by further constraining possible matches.

In response to the above observations, this paper de-
scribes a novel approach to recovering temporally coherent
disparity estimates from a sequence of binocular images.
The key idea is to base stereo correspondence on match-
ing primitives that inherently encompass both the spatial
and temporal dimensions of image spacetime. In particu-
lar, each temporal stream of imagery is locally represented
in terms of its orientation structure, as captured by the spa-
tiotemporal quadric (also variously refered to as the orien-
tation tensor and covariance matrix, see, e.g., [10]). It will

be shown that by basing matching on this representation,
it is possible to recover temporally coherent disparity esti-
mates, without the need to make optical or 3D flow explicit.
Further, this representation allows spatial and temporal im-
age structure to resolve otherwise ambiguous matches in a
fashion consistent with both sources of information.

Early work combining stereo and motion concentrated
on punctate features (e.g., edges, corners). One of the
earliest attempts made use of heuristics for assigning spa-
tial and temporal matches based on model-based reason-
ing [12]. A rather different early approach exploited con-
straints on the temporal derivative of disparity [26]. Other
work matched binocular features to recover 3D estimates
for temporal tracking [29]. More recent research that re-
lies on loose coupling of stereo and motion has emphasized
the recovery of 3D motion using optical flow in conjunction
with multiple hypothesis disparity maps [5]. The proposed
research differs from such early work in being focused on a
more integrated approach to spatiotemporal processing and
in its emphasis on dense reconstruction.

More recent stereo research has seen increased interest
in scene recovery from multicamera (especially binocular)
video as constrained by 3D models. Some work has con-
centrated on the recovery of surface mesh models between
individual stereo pairs with tracking across time instances
serving to yield temporally consistent models [16]. Other
research considers multiple cameras, employs voxel carv-
ing for initial estimation and uses intensity-based matching
over spatiotemporal volumes without consideration of im-
age motion differences between different views [18]. Still
other work casts stereo and motion estimation as a generic
image matching problem solved variationally after backpro-
jecting the input images onto a suitable surface [20]. Again,
the present work puts emphasis on a more integrated ap-
proach to stereo and motion and in eschewing explicit sur-
face models, which can become problematic when dealing
with multiple objects and complex scenes.

Other lines of recent research have emphasized more in-
tegrated approaches to stereo and motion. Some of this
work has concentrated on static scenes with variable light-
ing [4]. Others have focused on defining appropriate tempo-



ral integration windows, e.g., as part of correspondence [28]
or simply reinforce disparity estimates from the previous
frame using optical flow [9]. Further, combined stereo and
motion estimation has been formulated in terms of PDEs
[25, 11] as well as MRFs [27, 15]. Still other work has
used direct methods for integrated recovery of structure and
egomotion [24, 17]. The proposed research shares with
these efforts an emphasis on tight integration of binocu-
lar imagery with time. It is novel in basing its matching
on the representation of image spacetime in terms of local
spatiotemporal orientation, which provides richer image de-
scriptions than raw image intensities.

A major tool that is employed in the proposed approach
is the representation of spacetime imagery in terms of ori-
ented spatiotemporal structure. Various research documents
optical flow recovery [2], tracking [3] and grouping [7] us-
ing spatiotemporal orientation tuned filters. More specifi-
cally, previous research has used the spatiotemporal quadric
to capture orientation in image spacetime, with application
to motion estimation, restoration and enhancement [10].
However, it appears none has exploited spatiotemporal ori-
entation, in general, or the spatiotemporal quadric, specifi-
cally, for stereo disparity estimation. Previous stereo work
has defined binocular correspondence based on a bank of
spatial filters [13]. The proposed approach also extracts
its measures of orientation via application of a filter bank;
however, it is significantly different in employing filters
that span both the space and time domains, thereby basing
matching on a fundamentally richer representation.

In the light of previous research, the main contribu-
tions of this work are as follows. (i) The spatiotemporal
quadric is proposed as a matching primitive for spatiotem-
poral stereo. This primitive captures both local spatial and
temporal structure and thereby enables matching to account
for both sources of data without need to estimate optical
flow or 3D motion. (ii) The geometric relationships be-
tween corresponding spatiotemporal quadrics across binoc-
ular views are derived and used to motivate a match cost.
The spatiotemporal match primitives and cost are incorpo-
rated in local and global matchers. (iii) Extensive empiri-
cal evaluation of these matchers is presented. Testing en-
compasses quantitative evaluation on laboratory acquired
binocular video with ground truth and qualitative evaluation
on more naturalistic imagery. The datasets and associated
ground truth are available for download [23].

2. Technical Approach
2.1. Spatiotemporal matching primitive

In dealing with temporal sequences of binocular images,
it is possible to conceptualize of stereo correspondence in
terms of image spacetime, which naturally encompasses
both spatial and temporal characteristics of local pattern
structure, see Fig. 1a. While image spacetime can be op-

erated on directly, using intensities, consideration of local
spatiotemporal orientation provides access to a richer repre-
sentation. Local orientation has visual significance: orienta-
tions parallel to the image plane capture the spatial pattern
of observed surfaces (e.g. spatial texture); whereas, orien-
tations that extend into the temporal dimension capture dy-
namic aspects (e.g. motion). By integrating the temporal di-
mension into the primitive, matching will be inherently con-
strained to observe temporal coherence. Further, via com-
bination of temporal and spatial structure in the descriptor,
match ambiguities that might exist through consideration of
only one data source have potential to be resolved.

To extract a representation of orientation from imagery,
one can filter the data with oriented filters. In the current
work, 3D Gaussian, second-derivative filters, G2, and their
Hilbert transforms, H2 [8], are applied to the data with re-
sponses pointwise rectified (squared) and summed. Filter-
ing is executed across a set of 3D orientations given by unit
column vectors, ŵi. Hence, a measure of local energy, E,
is computed according to
E(x; ŵi) = [G2(ŵi) ∗ I(x)]2 + [H2(ŵi) ∗ I(x)]2, (1)

where x = (x, y, t) are spatiotemporal image coordinates, I
is the image sequence and ∗ denotes convolution [8]. Filter-
ing is applied separately to left and right image sequences.
Here, filters are oriented along normals to icosahedron faces
with antipodal directions identified, as this uniformly sam-
ple the sphere and spans 3D orientation for the employed
filters. After filtering, every point in spacetime has an asso-
ciated set of values that indicate how strongly oriented the
local structure is along each spacetime direction.

To proceed, the individual energy measures are recast in
terms of the spatiotemporal quadric. This particular repre-
sentation captures local orientation as well as the variance
of spacetime about that orientation. This construct cap-
tures the local shape of spacetime (e.g. point- vs. line- vs.
plane-like) in addition to direction for a local descriptor that
is richer than if (dominant) orientation alone is considered
[10]. Furthermore, the quadric casts structure in terms of
spacetime coordinates, x = (x, y, t), where it is convenient
to formulate binocular match constraints. In the context of
binocular matching, this quadric will be referred to as the
stequel, spatio-temporal quadric element, Q. In particular,

Q =
∑

i

Êiŵiŵ>i , (2)

where summation is across the set of filter orientations, ŵi,
and Êi is the corresponding local energy response (1) nor-
malized such that

∑
i Êi(x) = 1. In constructing Q, the

dyadic product, ŵiŵ>i , sets the local frame implied by ori-
entation ŵi weighted by its response, Êi, [10].

For a binocular sequence, the stequel, Q, is computed
pointwise in spacetime and separately for the left and right
image sequences to provide matching primitives; thus, it is



(a) (b) (c)
Figure 1. Image Spacetime. (a) Spacetime can be conceptualized as a spatiotemporal volume xyt. An instantaneous motion trajectory,
v (shown in red), traces an orientation in this volume. (b) An exemplar xt slice of the spatiotemporal volume for the left view (c) The
corresponding xt slice in the right view. ṽlxt and ṽrxt are the projections of the vl and vr onto the xt slice; wl and wr are arbitrary vectors
(shown in green) in correspondence in xyt space and δr = w̃r − ṽr , δl = w̃l − ṽl (shown in blue); δr = Aδl as explained in text.

Figure 2. Stereo Geometry. A Euclidean coordinate system is set
at the midpoint of the stereo baseline, O. Cameras are rectified
with a half-baseline B = [B, 0, 0]> and focal lengths f . Left and
right optical centres are at Ol = −B and Or = B, resp. Point P
undergoes an arbitrary displacement V from time 0 to 1.

parametrized as Ql(x) and Qr(x), in reference to the left
and right views, resp. Significantly, the implied calcula-
tions are modest. The calculation of local energy is realized
through steerable filters requiring only 3D separable convo-
lution and pointwise nonlinearities and is thereby amenable
to compact, efficient implementation [6]. Construction of Q
from the filter responses requires only matrix summation, as
specified in (2).

2.2. Spatiotemporal epipolar constraint
In establishing correspondence between binocular se-

quences, it is incorrect simply to seek the most similar
stequels, as local spatiotemporal orientation is expected to
change between views due to the geometry of the situation.
In this section, constraint is derived between correspond-
ing stequels subject to rectified and otherwise calibrated
binocular viewing. This constraint is derived in two steps.
First, the relationship between local spatiotemporal orien-
tations in left and right image spacetime is derived as a 3D
scene point P suffers an arbitrary (infinitesimal) 3D dis-
placement, V, relative to the imaging system. While the
relationship between left- and right-based flow has been in-
vestigated previously (e.g., [26]), the present derivation sets
it in the light of left/right spatiotemporal orientation differ-
ences with application to disparity estimation. Second, the
left/right flow relationships are generalized to capture the
relationship between arbitrary orientations in left and right
spacetimes. These results lead directly to the desired rela-

tionship between binocular stequels in correspondence.

In the following, bold and regular fonts denote vectors
and scalars (resp.), uppercase denotes points relative to the
world, lowercase denotes points relative to an image, su-
perscripts l and r denote left and right cameras (resp.), sub-
scripts x, y, z, t specify coordinate components, and vectors
in image spacetime taken from time t = 0 to t = 1 will
be distinguished further with tilde. As examples: Pl

t =[
P lx P ly P lz

]>
is the left camera representation of P

at time t; plt =
[
plx ply

]>
is the left image coordinate of

Pl
t; w̃ =

[
wx wy 1

]>
is a vector in image spacetime

xyt from t = 0 to t = 1.

Left-Right Flow Relationship. Consider how a 3D
point, P, is observed by the cameras as a function of time,
t, while it is displaced along 3D direction, V. The geom-
etry of the situation is shown in Fig. 2. Cameras share a

common intrinsic matrix K =
[
f 0 0
0 f 0
0 0 1

]
, where other

components of the matrix are accounted for by calibration
and neglected. At time t, the projections of P to the left and
right views are given by

Pl
t = K ((Pt=0 −B) + tV) = Pl

t=0 + tKV (3)
Pr
t = K ((Pt=0 + B) + tV) = Pr

t=0 + tKV.
Note that both moving and stationary points are encom-
passed in this formulation, as V is arbitrary. The corre-
sponding image coordinates are found in the usual way, e.g.
for the left view

pl =
[
plx
ply

]
=
[
P lx/P

l
z

P ly/P
l
z

]
=

1
P lz

[
P lx
P ly

]
= Z−1Pl

2×1, (4)

where P lz = Z is the distance along the Z-axis to the point
of regard, P, and P2×1 is the upper 2× 1 component of P.
Analogously for right view, pr = Z−1Pr

2×1.

In the image spacetime coordinate system, xyt, without
loss of generality, consider flows ṽl and ṽr in the left and
right views from temporal instance 0 to 1:

ṽl =
[

plt=1 − plt=0

vlt

]
=
[

plt=1 − plt=0

1

]
, (5)

where vlt = 1 by definition, as time has been taken from



t = 0 to t = 1. Analogously for the right view

ṽr =
[

prt=1 − prt=0

1

]
. (6)

To relate the left and right spatiotemporal orientations, it
is useful to cast the left-camera flow vectors (5) and their
right camera counterparts in terms of temporally varying
position (3) and (4). Left camera-based flow is given by (5)
and substitution from (4) yields

ṽl2×1 = Z−1
t=1P

l
2×1,t=1 − Z−1

t=0P
l
2×1,t=0.

Further substitution for Pl according to (3) and letting all
subscripts pertain to time (i.e, 0 and 1 denote t = 0 and
t = 1, resp.) yields

ṽl2×1 =
Z0 − Z1

Z0Z1
KP0 +

1
Z1

KV − Z0 − Z1

Z0Z1
KB, (7)

where K = K2×3 is the top two rows of K. Similarly, for
the right camera-based flow

ṽr2×1 =
Z0 − Z1

Z0Z1
KP0 +

1
Z1

KV +
Z0 − Z1

Z0Z1
KB. (8)

Finally, the relationship between the left (7) and right (8)
flows is revealed by taking their difference

ṽr − ṽl =
[

2 (Z0 − Z1) KB/ (Z0Z1)
0

]
=

[
∆
0
0

]
, (9)

where ∆ = 2Bf (Z0 − Z1) / (Z0Z1) captures the instanta-
neous change in disparity.

General Left/Right Orientation Relationship. The re-
lationship (9) was derived only for dominant motion orien-
tation; whereas, stequels capture information from all di-
rections w̃ in (x, y, t), which now are considered.

Consider directions w̃r and w̃l in the left and right
views, resp., that are in binocular correspondence, but oth-
erwise arbitrary in (x, y, t). Discounting the effects of right
and left flows, ṽr and ṽl, yields vectors

δr = w̃r − ṽr =
[
δrx δry 0

]>
, (10)

δl = w̃l − ṽl =
[
δlx δly 0

]>
(11)

that capture the purely spatial orientation of corresponding
elements (see Fig. 1b,c). For the special case of fronto-
parallel surfaces δr = δl, i.e. disregarding motion, oriented
texture appears the same across binocular views. For the
more general case where surfaces are slanted with respect to
the imaging system, the imaged orientation of correspond-
ing elements changes across views, even in the absence of
motion. For present matters, this change can be modeled by
a linear transformation δr = Aδl. Considering that the third
element of the δ vectors is always zero by construction, and
δry = δly due to conventional stereo epipolar constraints for
rectified setups, this relationship takes the form

δr = Aδl, where A =

[
a1 a2 0
0 1 0
0 0 1

]
. (12)

Substituting (10), (11) into (12) and rearranging yields,
w̃r = Aw̃l − Aṽl + ṽr. (13)

Further substitution of (9) results in

w̃r = Aw̃l +
(
−Aṽl + ṽl +

[
∆ 0 0

]>)
(14)

=

[
a1 a2 0
0 1 0
0 0 1

]
w̃l +

[
1− a1 −a2 ∆

0 0 0
0 0 0

]
ṽl

=

[
a1 a2

(
(1− a1)ṽlx − a2ṽly + ∆

)
0 1 0
0 0 1

]
w̃l

Finally, letting h1 = a1 − 1, h2 = a2 and h3 =(
(1− a1)ṽlx − a2ṽ

l
y + ∆

)
yields the desired transforma-

tion between arbitrary corresponding vectors w̃l and w̃r

w̃r = Hw̃l, where H =

[
1 + h1 h2 h3

0 1 0
0 0 1

]
(15)

With (15) in place, it is possible to relate corresponding
stequels. By design, (2), stequel Q reveals the amount of
intensity variation along all directions in spacetime, and the
response φ to unit direction ŵ = w/

√
wTw is

φ = ŵ>Qŵ, (16)
see, e.g., [10]. Assuming that spatiotemporal correspon-
dences vary in orientation pattern, but not in the intensity
per se1, the responses, φl, φr, of corresponding stequels,
Ql,Qr, must be the same for related directions, ŵl, ŵr, i.e.

ŵl>Qlŵl = ŵr>Qrŵr.

Expanding the normalizations of ŵl and ŵr and substitut-
ing from (15) produces

w̃l>Qlw̃l

w̃l>w̃l
=

w̃l>H>QrHw̃l

w̃l>H>Hw̃l
,

while noticing that w̃l = ‖w̃l‖ŵl yields
ŵl>Qlŵl

ŵl>ŵl
=

ŵl>H>QrHŵl

ŵl>H>Hŵl
. (17)

Since (17) holds for arbitrary orientations ŵl when Ql and
Qr are stequels in correspondence, it provides the sought
for general constraint on binocular stequels. It will be re-
ferred to as the stequel correspondence constraint and used
to derive an approach to stereo matching.

2.3. Stequel match cost
To determine whether two stequels Ql(x, y, t) and

Qr(x + d, y, t) are in correspondence with disparity d, a
match cost must be defined. In this section, this cost is de-
rived based on the stequel correspondence constraint, (17),
and is taken as the error residual that results from solving
for h =

[
h1 h2 h3

]>
given two candidate stequels.

For a given direction vector ŵl
m at some particular ori-

entation m and matching stequels, Ql and Qr, the stequel
correspondence constraint, (17), yields a quadratic equation

1This is a weak form of brightness constancy as any additive and mul-
tiplicative intensity offsets between correspondences are compensated for
by the bandpass and normalized filters used in stequel construction (2).



in the unknowns of h of the form
fm(h) =

(
ŵl>
m Qlŵl

m

) (
ŵl>
m H>Hŵl

m

)
(18)

− (
ŵl>
m ŵl

m

) (
ŵl>
m H>QrHŵl

m

)
= 0.

Taking a set of M directions, reasonably selected along the
same spanning set of directions used to construct Ql, yields
a set of M equations in the three unknowns of h. Thus, h
can be estimated by minimizing a sum of squared errors

E4 =
M∑
m=1

fm(h)2, (19)

which is quartic in the entries of h. While such a solu-
tion could be sought through analytic or numerical means,
it has potential to be expensive to compute and noise sen-
sitive owing to its order. Therefore, it is useful to linearize
each error Eqn. (18) through expansion as a Taylor series in
h and retention of terms only through first-order to get

gm(h) = fm(0) +∇f>m(0)h, (20)
with 0 being the M × 1 zero vector. Using (20), the final
function to be minimized with respect to h becomes

E2 =
M∑
m=1

(
fm(0) +∇f>m(0)h

)2
, (21)

which is simply quadratic in the elements of
h, and thereby can be solved for via standard
linear least-squares. More specifically, letting
G = [∇f>1 (0),∇f>2 (0), . . . ,∇f>M (0)]> and
c = −[f1(0), f2(0), . . . , fM (0)]> yields

h =
(
G>G

)−1
G>c; (22)

E2 = ‖Gh− c‖22 = c>c− (G>c
)> (

G>G
)−1

G>c.
For two stequels under consideration for stereo correspon-
dence this residual, E2, will serve as the local match cost2.

3. Empirical Evaluation
A software implementation has been developed that in-

puts a binocular video, computes stequels Ql(x, y, t) and
Qr(x, y, t) for both sequences according to formula (2)3

and calculates the local match cost, (22), for any given dis-
parity d, i.e., for stequels related as Ql(x, y, t) and Qr(x +
d, y, t). To show the applicability of this approach to dis-
parity estimation, the local match cost, (22), has been em-
bedded in a coarse-to-fine local block-matching algorithm
with shiftable windows [22] working over a Gaussian pyra-
mid and also in a global graph-cuts with occlusions matcher
[14] operating at the finest scale only; these matchers will be

2Significantly, preliminary experiments showed that match cost based
on the linearized error, (21), yielded slightly superior results to consid-
ering the original nonlinear error, (19). This can be explained by noting
that interest is in a discriminative error measure that reliably penalizes bad
matches, and not in the precise error value per se (see [23] for details).

3Preliminary experiments considered alternative stequel definition Q =∑∇I(∇I)>, with ∇ = [IxIyIt]> is the spatiotemporal gradient and
summation is over local spacetime regions (see [23] for details), but found
generally inferior results; so, this approach is considered no further.

denoted ST-local and ST-global. Pixel-based disparity esti-
mates are brought to subpixel precision via a Lucas-Kanade
type refinement for stequels [1, 23].

To compare with non-stequel matching, versions of
the local and global matchers that work simply on single
left/right frame pixel comparisons are considered; these
matchers will be denoted noST-local and noST-global,
resp. Here, the normalized cross-correlation was used as
the data cost term for local and global matching. Finally,
to compare to an alternative method for enforcing tempo-
ral coherence, optical flow is estimated and used to define
a spatiotemporal direction for match cost aggregation that
operates over an equivalent number of frames as does the
oriented filtering used in stequel construction (1). Here, op-
tical flow is recovered from the stequel representation itself
(see [23] and [10] for discussion) to make the comparison
fair. The optical flow-based temporal aggregation is used
only in conjunction with the local matcher, as incorpora-
tion into the global matcher by constructing a spatiotem-
poral MRF graph [15] is beyond the scope of this paper.
The local flow-based aggregation matcher will be denoted
flowAg-local.

Three data sets are considered. The first is a laboratory
sequence (Lab1) captured with BumbleBee stereo camera
[19] with (framewise) ground truth disparity and disconti-
nuity maps recovered according to a well-known structured
light approach [21], see Fig. 3. This scene includes planes
slanted in depth with texture oriented along epipolar lines
(upper-central part of the scene), various bar-plane arrange-
ment with identical repetitive textures (lower-central part
of the scene) and complicated objects with non-trivial 3D
boundaries and non-Lambertian materials (e.g., the teddy
bear and gargoyle). For this sequence the stereo camera
makes a complicated motion that translates along horizon-
tal and depth axes, while part of the scene moves up and
down; both camera and scene are on motorized stages.

Visual inspection of the image results (Fig. 3) shows that
noST-local performs relatively poorly. Planar regions with
epipolar aligned texture are generally difficult. Simple tem-
poral aggregation provided by flowAg-local is seen to im-
prove on these difficulties; however, performance degrades
near 3D boundaries due to unreliable recovery of flow esti-
mates in such areas. ST-local does the best of the three local
matchers as its ability to include temporal information al-
lows it to resolve match ambiguities without explicit flow re-
covery. As particular improvements of ST-local over noST-
local and flowAg-local, consider the lower right and left re-
gions marked with red rectangles in Fig. 3, which highlight
the complex outline of the gargoyle wings and the vertical
bar in front of plane both having identical textures (cam-
ouflage). ST-local is quite accurate in these challenging
regions, while the other local methods perform relatively
poorly. Objects located at different depths in space give rise



Lab 1 Left frame 12 GT disparity flowAg-local disparity flowAg-local error

noST-local disparity noST-local error ST-local disparity ST-local error

noST-global disparity noST-global error ST-global disparity ST-global error

Figure 3. Lab1 Tests. Example left frame 12 (out of 28 frames) with ground truth disparity at a single time instance. Labeled boxes show
recovered disparity maps for compared algorithms and disparity-ground truth absolute differences. A few regions of particular interest in
comparing results are highlighted with red rectangles, best seen in color.

Lab 2 Left frame 10 GT disparity flowAg-local disparity flowAg-local error

noST-local disparity noST-local error ST-local disparity ST-local error

noST-global disparity noST-global error ST-global disparity ST-global error

Figure 4. Lab2 Tests. Example left frame 10 (out of 40 frames) with ground truth disparity at a single time instance. Labeled boxes show
recovered disparity maps for compared algorithms and disparity-ground truth absolute differences. A few regions of particular interest in
comparing results are highlighted with red rectangles, best seen in color.

to different image motions, even if they undergo the same
world motion – and this difference is captured with stequels
not allowing for improper matches.

For the global matchers, it is seen even with noST-global
that it is possible to recover more precisely the compli-
cated 3D boundaries and to achieve good disparity estimates
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Figure 5. Error statistics for the Lab1 and Lab2 Tests. An error is taken as greater than 1 pixel discrepancy between estimated and
groundtruth disparity. Bar plots show average error across entire sequences: White bars are for points within 5 pixels of a surface disconti-
nuity; black bars show overall error. Error by frame plots show percentage of points in error overall for each frame separately.

in low texture regions via propagation from better defined
boundary matches. However, noST-global performs poorly
in the regions with epipolar aligned texture and camou-
flage, as initially incorrect estimates are not subsequently
corrected. While increasing the smoothness improves on
epipolar-aligned textures, it comes at the expense of camou-
flage resolution and vice versa. In comparison, ST-global
is able to recover disparity reliably in these regions, as once
again the stequel representation supports proper resolution
of situations that are ambiguous from the purely spatial in-
formation. Another apparent advantage of the ST-global is
more temporally consistent results – occasional mismatches
in noST-global can be significantly amplified by propagat-
ing into nearby regions.

A second lab sequence, Lab2, is constructed in the same
controlled environment as Lab1, but acquired with signifi-
cant depth motion and out-of-plane rotation. This particular
motion configuration is the most difficult for spatiotempo-
ral stereo, as it results in significantly different left and right
spatiotemporal volumes due to slanted surfaces and depth
motion. Furthermore, large image motions are present in
the individual left and right sequences. Figure 4 presents
sample frame results for all five algorithmic instantiations
considered above. Here, the conclusions reached from the
analysis of Lab1 are reinforced. With respect to the local
methods, ST-local provides the most benefit both in weakly
textured regions and near 3D boundaries. The performance
of flowAg-local is hampered by large image motions, which
are problematic to recover explicitly in this case; whereas,
direct stequel-based matching is still able to capitalize on
temporal information without resolving flow and thereby
operates well in the presence of nontrivial motions. With
respect to the global methods, the stequel-based matching
ST-global significantly outperforms its pixel-based coun-
terpart noST-global, especially for weakly-textured highly
slanted foreground surfaces.

Error plots for both Lab1 and Lab2 quantify the improve-
ments of stequel-based matching in comparison to rivals
noST and flowAg (Fig. 5). Average errors across the se-
quences show the benefit of stequels near discontinuities
and overall for both local and global matchers. Plots of er-

Left frame 28 Left frame 53

flowAg-local frame 28 flowAg-local frame 53

ST-local frame 28 ST-local frame 53

Figure 6. Rover Tests. Top row shows left view at frames 28 and
53. Recovered disparity maps at corresponding times are shown
below for two algorithms under consideration.

ror/frame reinforce the average improvements, but also doc-
ument improved temporal coherence, as the stequel-based
plots vary relatively little across frames, especially in com-
parison to purely spatial matching provided by noST. Incor-
poration of the temporal dimension also benefits flowAg,
as its frame-by-frame statistics are relatively stable (albeit
overall inferior to stequels); however, the more naturalistic
imagery of the next example further emphasizes the supe-
rior temporal coherence offered by stequels, even in com-
parison to flowAg.

The third data set, Rover, is an outdoor sequence ac-
quired from a robot rover traversing rugged terrain, includ-
ing a receding foreground plane, a central diagonal rock



outcropping, left side cliff, various boulders and bushes.
Here the comparison focuses on the improvements to tem-
poral coherence offered by ST-local over the rival method
for consideration of temporal information, flowAg-local.
As results of depicted frames show, flow-based aggrega-
tion, while providing mostly temporally coherent estimates
is inferior at recovery of 3D boundaries (boulders’ outlines)
and still susceptible to occasional gross errors (e.g. on the
ground plane) due to errors in the recovered flow. In com-
parison, stequel-based matching, ST-local, does not exhibit
such problems, as it uses spatiotemporal information in a
more direct and complete way.

4. Discussion
This paper described a novel approach to recovering tem-

porally coherent disparity estimates using stequels as a spa-
tiotemporal matching primitive. Temporal coherence arises
naturally, as the primitives and the match cost inherently in-
volve the temporal dimension. Further, matches that are
ambiguous when considering only spatial pattern are re-
solved through the inclusion of temporal information. The
stequel matching machinery is simple and involves linear
computations only, (22). Thorough experimental evaluation
on various datasets shows the benefit of stequel matching as
incorporated both in local and global algorithms. Stereo
sequences with ground truth have been introduced and are
available online for comparison with other algorithms, [23].

A particularly notable benefit of stequel matching is the
ability to incorporate temporal information without image
motion recovery. Optical flow estimation is challenging
near 3D boundaries, weakly-textured regions and suscepti-
ble to an aperture problem – importantly, this paper demon-
strated that stequels are powerful in exactly these situations
and provide truly temporally coherent estimates with fewer
isolated gross errors. Apparently, stequels allow stereo
matching to capitalize on available spatiotemporal struc-
ture, even when optical flow recovery is difficult. Further,
note that it is non-trivial to model continuity in time with,
e.g. an MRF prior model as, strictly speaking, temporal
graph links have to be defined by flow (as in [15]). Ste-
quels, on the other hand, are directly applicably to standard
2D MRF graphs and their successful performance has been
documented in this paper.

In conclusion, a computationally tractable and simple so-
lution to spatiotemporal stereo has been presented, which
proved to be very reliable, versatile and robust in practice.
Future work will concentrate on exploiting the spatiotem-
poral profile for explicit non-Lambertian and multi-layer
matching, as well as extensions to 3D motion recovery.
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