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Abstract
Spatiotemporal data is associated with vast amounts of

raw samples. Given the limited computational resources
typically available, an initial organization of this data sup-
porting semantically meaningful lines of inquiry would fa-
cilitate efficient processing. In this paper, a new represen-
tation for grouping raw image data into a set of coherent
spacetime regions is proposed. Unique in this proposal is
that coherency is related to a richer description of local
spacetime structure than generally considered. In partic-
ular, the representation describes the presence of particu-
lar oriented spacetime structures in a distributed manner.
A key advantage of this representation is its ability to sig-
nal the presence of multiple oriented structures at a given
spacetime location. More generally, the abstraction allows
for the description and grouping of motion and non-motion-
related patterns in a uniform manner. Empirical evaluation
of the grouping method on synthetic and challenging nat-
ural imagery suggests its efficacy.

1. Introduction
1.1. Motivation

Processing of temporal image sequences can be facili-

tated by an early grouping of the visual data into coherent

spacetime regions. Operations that can benefit from such an

organization include target recognition and tracking, para-

metric motion analysis, video indexing, compression and

coding. For all of these cases, delineated groupings serve to

define support regions that can be processed as wholes for

compact and efficient characterization.

A key challenge to spatiotemporal grouping arises from

the wide range of naturally occurring phenomena that

must be encompassed. The left panel of Fig. 1 shows

a natural scene containing several phenomena that should

be grouped into distinct regions. The various depicted

areas can be characterized as single motion, pseudo-

transparency (multiple superimposed motions), scintillation

(dynamic/stochastic texture), static (no motion) and un-

structured (lacking in enough spatiotemporal contrast to

characterize). More generally, additional phenomena are

likely to be encountered, including variations on trans-

parency (e.g., translucency) and rapid brightness change

(flicker). Critically, motion encompasses only a subset of

the spatiotemporal patterns that must be captured in group-

ing that is widely applicable to imagery of the natural world.

Extant approaches deal with such diversity on a case-by-

case basis, with motion predominant. Indeed, it appears

that no single previous approach to spatiotemporal group-

ing can be applied with success to a wide range of natural

phenomena.

The goal of the present work is the development of a

unified approach to spatiotemporal grouping that is broadly

applicable to the diverse phenomena encountered in the nat-

ural world. It is proposed that the choice of representation is

key to meeting this challenge: If the representation cannot

adequately characterize and distinguish the patterns of inter-

est, then no subsequent grouping algorithm will make the

appropriate delineations. For present purposes, local spa-

tiotemporal orientation is of fundamental descriptive power,

as it captures the first-order correlation structure of the data

irrespective of its origin (i.e., irrespective of the underlying

visual phenomena). Correspondingly, visual spacetime will

be represented according to its local 3D, (x, y, t), orienta-

tion structure. In particular, each point of spacetime will

be associated with a distribution of measurements that indi-

cates the relative presence of a particular set of spatiotem-

poral orientations. The middle panel of Fig. 1 shows a de-

composition of the working example according to its local

orientation structure.

Given the orientation-based representation, distinct re-

gions are defined as groups of (x, y, t) pixels coalesced ac-

cording to similarities of their orientation distributions. The

right panel of Fig. 1 shows the final grouping achieved by

the proposed approach for the working example. The results
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Figure 1. Overview of approach to spatiotemporal analysis. (left) An image sequence serves as input. (middle) Application of energy

filters decomposes the input into a distributed representation according to 3D, (x, y, t), spatiotemporal orientation. The example filter

outputs are selective for (left-to-right) flicker (purely temporal variation in image brightness), static (no motion) and rightward (motion)

spacetime structure. (right) A grouping process operates across the representation to coalesce regions of common spatiotemporal orientation

distributions. In the depicted example, input video (left) captures a complex scene: In the central region, a person moves rightward behind

a chain-link fence to yield (pseudo-) transparency; a second person to the right of the first person moves rightward in front of the fence to

yield a single dominant motion; at the available resolution of the image data, the facial regions have little spatial variation and thereby yield

unstructured regions; a windblown plant occupies the left area to yield a scintillating pattern; the remaining region made up of the fence

and varying background yields a static pattern. The output region grouping (right) accurately indicates the five major structural regions

(transparency, single motion, scintillation, static and unstructured) as five different grey-levels. Depicted are actual results recovered by

the approach described in Sec. 2. All data and results shown in this paper are available at: http://www.cse.yorku.ca/vision/
research/spacetime-grouping.

properly delineate the various groupings even given their

diverse nature. Significantly, subsequent analysis can build

on the proposed representation, e.g., both dynamic pattern

recognition and image motion analysis can exploit a distrib-

uted oriented image decomposition [22, 26].

1.2. Related work
The present work touches on two main lines of image

sequence analysis: representation of spacetime data and

grouping analysis. In terms of representation, most previ-

ous efforts centre on the notion of visual motion or tem-
poral/dynamic textures, with the former garnering the most

attention. For visual motion, the majority of work has fo-

cused on estimating optical flow, which is assumed to be in

close correspondence with the visual motion field [1]. Pre-

vious work also has considered the categorization of the

local spacetime orientation structure by way of an eigen-

value analysis of the local orientation tensor [16, 19]. Tem-

poral/dynamic texture related work is concerned with rep-

resenting and categorizing stochastic dynamic phenomena

[20, 12, 4], e.g., turbulent water and windblown vegetation.

Each of these strands of research covers a largely disjoint

portion of the space of visual spacetime phenomena.

Spatiotemporal oriented energy filters serve in defining

the representation employed in the current work. Previous

efforts have used similar operators in the analysis of image

sequences with application to optical flow estimation [18,

22, 16], motion layer separation [8], activity recognition [5,

11], pattern categorization [26], tracking [3] and spacetime

stereo [23]. Significantly, it appears that no previous work

has used the filter outputs to drive spatiotemporal grouping,

as shown here.

Grouping entails associating together tokens that respect

a measure of coherency. Generally, spacetime grouping

methods fall into one of two basic computational para-

digms: sequential and multi-dimensional methods. Se-

quential approaches interleave spatial and temporal group-

ing processes [24]. These methods are prone to propagat-

ing errors across the grouping stages. Multidimensional

approaches treat the image sequence and its extracted lo-

cal attributes as a higher-dimensional feature-space, where

grouping is performed. Examples of these methods include,

variational [7, 2], voting [21], graph partitioning [14], sta-

tistical parametric [17] and non-parametric (e.g., mean-shift
[9]). Common to the cited approaches is the neglect of the

rich underlying local structure of the image data: Group-

ing is based on overly restrictive measurements, e.g., of

colour and optical flow. In contrast, the proposed approach

to grouping leverages the more descriptive spatiotemporal

orientation structure of the data. As a grouping algorithm

mean-shift is employed; however, any of the above spa-

tiotemporal grouping schemes could be used, given the em-

phasis is on the choice of representation.

1.3. Contributions
In the light of previous research, the major contributions

of the present work are as follows. (i) A framework is pro-

posed that yields the first unified approach to representing

and grouping a wide range of juxtaposed spacetime pat-

terns (motion, static, flicker, (pseudo-)transparency, translu-

cency, scintillation/temporal texture, unstructured). Previ-

ous analyses of spacetime patterns operate on a case-by-

case basis, with image motion predominant. (ii) A partic-

ular spatiotemporal filtering formulation is developed for

measuring spatiotemporal oriented energy and is used as in-

put to a standard grouping mechanism (mean-shift). While

spacetime filters have been used before for analyzing image

sequences, they have not been applied to the delineation

of coherently structured spacetime regions. (iii) The ap-

proach’s ability to group image data in terms of meaningful



spatiotemporal structure is demonstrated both qualitatively

and quantitatively on a wide range of synthetic and chal-

lenging natural image sequences.

2. Technical approach
The proposed approach to spatiotemporal grouping con-

sists of an initial local, oriented decomposition of the input

datastream, followed by spatiotemporal aggregation across

the decomposition that reveals intra-region similarity. The

major assumption used in the grouping analysis is smooth-

ness of spacetime structure surfaces in a higher-dimensional

feature-space for each coherent region (cf. [21]). Invoking

this assumption avoids the burden of explicitly modeling the

set of spatiotemporal structures that may be encountered.

2.1. Distributed spatiotemporal orientation
The local spacetime orientation of a visual pattern cap-

tures significant, meaningful aspects of its temporal varia-

tion (e.g., static vs. moving vs. unstructured) [26]; there-

fore, a spatiotemporal oriented decomposition of an input

pattern is an appropriate basis for spacetime grouping. Un-

der this representation, coherency of spacetime is defined

in terms of consistent patterns across the decomposition. A

contiguous region of spacetime might be grouped on the

basis of it giving rise to a significant response in only one

component of the decomposition, corresponding to a partic-

ular single orientation (e.g., motion); another region might

be grouped because it gives rise to significant responses

in multiple components of the decomposition, correspond-

ing to transparency-based superposition; yet another region

might be grouped as significant, approximately equal mag-

nitude responses arise across all bands of the decomposi-

tion, corresponding to scintillation. Sill other regions might

arise as they are distinguished by their lack of local struc-

ture. Indeed, Figs. 1 and 2 show such a five-way grouping.

The desired spacetime orientation decomposition is real-

ized using broadly tuned 3D Gaussian second derivative fil-

ters, G2θ̂
(x, y, t), and their Hilbert transforms, H2θ̂

(x, y, t),
with the unit vector θ̂ capturing the 3D direction of the fil-

ter symmetry axis. The responses are pointwise rectified

(squared) and summed to yield the following energy mea-

sure,

Eθ̂(x, y, t) = (G2θ̂
∗ I)2 + (H2θ̂

∗ I)2, (1)

where I ≡ I(x, y, t) denotes the input imagery and ∗ con-

volution.

Each oriented energy measure, (1), is confounded with

spatial orientation. Consequently, in cases where the spa-

tial structure varies widely about an otherwise coherent dy-

namic region (e.g., single motion of a surface with varying

spatial texture), the responses of the ensemble of oriented

energies will reflect this behaviour and thereby support spu-

rious region segregation. To ameliorate this difficulty, the

spatial orientation component is discounted by “marginal-

ization” of this attribute, as follows.

In general, a pattern exhibiting a single spacetime orien-

tation (e.g., velocity) manifests itself as a plane through the

origin in the frequency domain [25]. Correspondingly, sum-

mation across a set of x-y-t-oriented energy measurements

consistent with a single frequency domain plane through the

origin is indicative of energy along the associated space-

time orientation, independent of purely spatial orientation.

Since Gaussian derivative filters of order N = 2 are used

in the oriented filtering, (1), it is appropriate to consider

N + 1 = 3 equally spaced directions along each frequency

domain plane of interest, as N + 1 directions are needed

to span orientation in a plane with Gaussian derivative fil-

ters of order N [15]. Let each plane be parameterized in

terms of its unit normal, n̂; a set of equally spaced N + 1
directions within the plane are given as

θ̂i = cos
(

2πi

N + 1

)
θ̂a(n̂)+sin

(
2πi

N + 1

)
θ̂b(n̂), 0 ≤ i ≤ N,

(2)

with

θ̂a(n̂) = n̂ × êx/‖n̂ × êx‖ θ̂b(n̂) = n̂ × θ̂a(n̂) (3)

where êx denotes the unit vector along the ωx-axis1. In

the case where the spacetime orientation is defined by

velocity (ux, uy), the normal vector is given by n̂ =
(ux, uy, 1)�/‖(ux, uy, 1)�‖.

Now, energy along a spacetime direction, n̂, with spatial

orientation discounted through marginalization, is given by

summation across the set of measurements, Eθ̂i
, as

Ẽn̂(x, y, t) =
N∑

i=0

Eθ̂i
(x, y, t) (4)

with θ̂i one of N + 1 = 3 specified directions (2) and each

Eθ̂i
calculated via the oriented energy filtering, (1). (cf. [22]

where a similar formulation is developed, but only applied

to image motion analysis and without inclusion of the H2θ,

which provides phase independence). In the present imple-

mentation, six different spacetime orientations are made ex-

plicit, namely, leftward, rightward, upward and downward

motion, static (no motion/orientation orthogonal to the im-

age plane) and flicker/infinite motion (orientation orthogo-

nal to the temporal axis); although, due to the broad tuning

of the filters employed, responses arise to a range of orien-

tations about the peak tunings.

Finally, the resulting energy measurements in (4) are

confounded by the local contrast of the signal and as a result

increase monotonically with contrast. This makes it impos-

sible to determine whether a high response for a particular

spacetime orientation is indicative of its presence or is in-

deed a low match that yields a high response due to signif-

icant contrast in the signal. To arrive at a purer measure of

spacetime orientation, the energy measures are normalized

1Depending on the spacetime orientation sought, êx can be replaced

with another axis to avoid the case of an undefined normal vector.
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Figure 2. Distributed representation of visual spacetime. The

grouping result (centre) is taken from Fig. 1. Each image loca-

tion carries a distribution representing the degree that the local

spacetime structure is consistent with a particular 3D spatiotem-

poral orientation. The central region of the input, corresponding

to transparency, gives rise to two peaks (moving object and static

pseudo-transparent foreground); whereas the rightmost region of

the input, corresponding to a single moving object, gives rise to a

single peak. The leftmost bottom region, corresponding to scin-

tillation, gives rise to a uniform distribution. The facial regions,

being devoid of discernable pattern structure at the available res-

olution, give rise to near zero responses (not shown). The region

not attributed to the people or plant, corresponding to static, yields

a single peak.

by the sum of consort planar energy responses at each point,

Ên̂i
(x, y, t) = Ẽn̂i

(x, y, t)/
( M∑

j=1

Ẽn̂j
(x, y, t) + ε

)
, (5)

where M denotes the number of spacetime orientations con-

sidered, and ε a constant introduced as a noise floor and

to avoid instabilities at points where the overall energy is

small. Conceptually, (1) - (5) can be thought of as taking

an image sequence, I(x, y, t), and carving its power spec-

trum into a set of planes, with each plane corresponding to

a particular spacetime orientation, to provide a relative in-

dication of the presence of structure along each plane.

The constructed representation enjoys a number of at-

tributes that are worth emphasizing. First, owing to the

bandpass nature of the Gaussian derivative filters (1), the

representation is invariant to additive photometric bias. Sec-

ond, owing to the normalization (5), the representation is

invariant to absolute contrast in the input signal. Third, ow-

ing to the marginalization (4), the representation is invari-

ant to changes in appearance manifest as spatial orientation

variation. Overall, these three invariances allow grouping

abstractions to be robust to pattern changes that do not cor-

respond to dynamic pattern variation, even while making

explicit local orientation structure that arises with tempo-

ral variation (motion, flicker, scintillation, etc.). Fourth, the

representation is efficiently realized via linear (separable

convolution, pointwise addition) and pointwise non-linear

(squaring, division) operations; thus, efficient computations

are realized [10]. Overall, each of the normalized oriented

energies can be viewed as expressing the evidence for the

presence of a particular, spacetime oriented structure, see,

Fig. 2.

2.2. Grouping
To group the oriented energy feature vectors into coher-

ent regions of structure, mean-shift clustering [6] is em-

ployed. Note, however, that the focus of the current work

is the underlying representation (i.e., distributed measure-

ments of spacetime orientation) rather than a particular

grouping mechanism. For the purpose of promoting space-

time coherency within recovered clusters, positional infor-

mation is included in the feature vector as coordinates in

space (x, y) and time t. Putting the above features together

yields a 9D feature vector (six oriented energies plus three

for spacetime location), per image point. Implicitly this

grouping strategy enforces spatial and temporal smoothness

simultaneously in the 9D space. This strategy avoids addi-

tional assumptions on the camera model, parametric motion

model (e.g., translation, affine, etc.) or the number of dis-

tinct coherent spacetime structure regions.

Conceptually, mean-shift regards the feature-space as an

empirical distribution. Each feature-point is associated with

a mode (local maximum) of the distribution and thereby

all points associated with a particular mode are grouped

together. In its simplest formulation (i.e., based on the

Epanechnikov kernel), the mean-shift property can be writ-

ten as (see [6], for details)

∇̂f(xc) ∝
(

mean
xi∈Sh,xc

{xi} − xc

)
, (6)

where f(x) denotes the underlying probability density

function of a n-dimensional space, x, {xi} the given set

of samples, and Sh,xc a n-dimensional hyper-ball with ra-

dius h (the so-called kernel density bandwidth) centered at

xc. Repeated application of (6) converges to a local mode

of the distribution. In the present case, modes arise as par-

ticular values across the 9D spatiotemporal feature vectors

and all (x, y, t) pixels contributing to a mode are grouped.

3. Empirical evaluation
A variety of grouping experiments have been performed

on a set of synthetic and real world image sequences. Algo-

rithm parameter settings are as follows. The ε bias for con-

trast normalization, (5), empirically has been set to ≈ 1%
of the maximum expected response. Mean-shift cluster-

ing has four input parameters: the bandwidths, hspace, htime

and hrange, which determine the resolution of mode detec-

tion along the spatial, temporal and range (here, spacetime

orientation) dimensions, resp., and the merging threshold,

τ , which determines the distance between points that are

grouped via transitive closure in the 9D feature space. Un-

less otherwise stated, the mean-shift bandwidth parame-

ters for the space, time and range dimensions are set to

hspace = 32, htime = 10, and hrange = 0.12, resp. Groupings

containing less than 40 pixels/frame are considered outliers

and removed via merging.
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Figure 3. Grouping with various levels of data abstraction. (a) Syn-

thetic input image sequence. (a.1) Bandpass white noise with spa-

tial horizontal/vertical structure enhanced moving upward, (a.2)

same pattern as previous with contrast increased by 25%, (a.3)

bandpass white noise with spatial diagonal structures enhanced

moving upward, (a.4) spacetime pink noise (scintillation) and

(a.5) superimposed pink noise patterns moving rightward/leftward

(transparency). All motion-related structures move with a speed

of 1 pixel/frame. (b) Ideal grouping result with shadings denoting

coherent groupings. (c)-(h) Grouping results based on: (c) pro-

posed representation, (d) optical flow, (e) normal flow (f) normal-

ized oriented energy (5) without appearance marginalization (4),

(g) spacetime gradient, (h) thresholded frame-to-frame intensity

difference, and (i) raw pixel-wise intensity; white denotes outlier

components. For each representation, the mean-shift parameters

were empirically optimized.

3.1. Representation comparisons
Figure 3 shows a comparison of mean-shift grouping re-

sults based on several common spacetime representations

in the literature and the proposed distributed representation.

The input contains three distinct spacetime structures con-

sisting of upward motion, a scintillating pattern in the form

of pink noise and transparency in the form of left/right su-

perimposed motion. The upward moving region contains

three subregions that differ only in spatial appearance and

therefore should be grouped together from a spatiotempo-

ral perspective due to their common dynamic structure (i.e.,

upward motion).

Representations that do not adequately discount pure

spatial appearance (normalized oriented energy (5) with-

out appearance marginalization (4), spatiotemporal gradi-

ent, normal flow and raw pixel-wise intensity) correspond-

ingly fail to support grouping of the coherently moving re-

gion as such. Successive frame differencing fails in mak-

ing the pattern distinctions sought because it is limited

to making binary distinctions between stationary and non-

stationary patterns. All of these approaches also fail to

group successfully the transparency and scintillation cases.

While optical flow (estimated as in [16]) proves capable of

supporting correct grouping of the coherently upward mov-

ing regions, it is incapable of dealing with scintillating and

transparency patterns due to violations of the underlying as-

sumption of brightness conservation. Among these abstrac-

tions, only the proposed distributed representation success-

fully supports the partition of the input into its three con-

stituent structures, coherent motion, scintillation and super-

imposed motion.

3.2. Quantitative results on natural imagery
Figure 4 shows a set of challenging natural image se-

quences containing a broad range of spacetime structures,

including but not restricted to motion, and their grouping

results (see caption for description of inputs). The challeng-

ing aspects of this data set include, regions that are unstruc-

tured, exhibit significant temporal aliasing due to fast mo-

tion, contain superimposed motion and non-motion struc-

ture (e.g., transparency and scintillation). These sequences,

consisting of juxtaposed natural and man-made structures,

were obtained from a variety of sources: a Canon HF10

camcorder, the BBC documentary “Planet Earth” and the

“BBC Motion Gallery” online video repository. Each se-

quence spans 10 frames.

Beginning with (a), the clear sky (unstructured) is cor-

rectly delineated from the building (moving structure). The

unstructured region represents a situation where there is in-

sufficient information to determine flow. In (b), although

the spatial appearance alone is insufficient to make the sur-

face distinctions, the two surfaces are successfully parti-

tioned based on their spacetime structure signatures. In (c),

the stabilized foreground (static) is clearly delineated from

the rightward moving background. In (d), although signifi-

cant temporal aliasing is present due to the rapid motion of

the leopard, the portion attributed to the leopard is success-

fully delineated from the static tree. An optical flow abstrac-

tion, although feasible, would require preprocessing the in-

put with a stabilization procedure (e.g., pyramid processing

[19]) to bring the speed of the leopard within its operating

speed range (∼ 1 pixel/frame). In (e), similar to (d), cor-

rect delineation is achieved in the presence of significant

temporal aliasing. In (f), the sequence is successfully par-

titioned into two coherent regions, one consisting of a left-

ward motion while the second consisting of a scintillating

region. Inspection of our oriented energy representation re-

veals a fairly uniform energy distribution at each point con-

sistent with scintillation. Since the assumption of bright-

ness conservation is clearly violated, optical flow would be

inappropriate here. From a semantic viewpoint, the water

group is consistent with one’s impression that some coher-

ent process is being imaged. In (g), the recovered domi-

nant coherent structures consist of: unstructured (the wall),

static (the painting) and flicker (the hallway). The paint-

ing is partially over-segmented along the boundaries due

to the strong one-dimensional structure along the painting’s

boundaries that induce an oriented energy signature consis-

tent with the aperture problem. At this level of analysis, this



Spacetime 
Grouping

Ground
TruthInput

(a)

(b)

(c)

Input

(f)

(g)

(h)

(d)

(e)

(i)

(j)

x

y

t

Spacetime 
Grouping

Ground
Truth

Figure 4. Successful grouping results on a diverse and challenging set of natural imagery. In each example, the input sequence, a frame from

the human-labeled ground truth and grouping result, resp. are given. (a) A panning sequence consisting of a clear sky (i.e., unstructured)

and a building (source: HF10). (b) Motion parallax sequence consisting of two mountain faces, where the foreground surface moves rapidly

revealing a slower moving surface (source: “Planet Earth”). (c) Tree in foreground being coarsely stabilized by moving camera operator

with resulting background motion (source: HF10). The background consisting of the ground plane is not fronto-parallel with respect to the

camera, as a result the motion varies across the surface. (d) A leopard rapidly moving leftward behind a static tree (source: “Planet Earth”).

(e) A flying bird crudely tracked by the camera operator to yield a slow moving target and a rapidly moving background (source: “Planet

Earth”). (f) A ship moving over a scintillating water surface (source: “BBC Motion Gallery”). (g) A painting hanging on an unstructured

wall with a light flickering in an adjacent hallway (source: HF10). (h) A translucency sequence realized by projecting (using an LCD

projector) a walking person over a static painting (source: HF10). (i) A pseudo-transparency sequence consisting of a person walking

behind a fence (source: HF10). (j) A juxtaposed motion and pseudo-transparency sequence consisting of two people moving rightward,

one moving in front of a fence while the second is moving behind it (source: HF10).

is a reasonable interpretation/grouping: The regions near

the border of the painting against the unstructured wall are

uniformly consistent as being characterized by the aperture

problem. In (h), the translucent region (static background

with superimposed moving person) is successfully distin-

guished from the purely static background, although the sta-

tic background is slightly over-segmented due to low texture

regions. Optical flow is inappropriate in the translucency re-

gion since it cannot be described by a single motion. In (i),

the sequence is partitioned into the two constituent coher-

ent structures: static structure vs. superimposed static and

leftward motion (i.e., pseudo-transparency). Finally in (j),

the sequence is partitioned into the two constituent coherent

structures: rightward motion vs. superimposed static and

rightward motion (i.e., pseudo-transparency). Notice, even

with an oriented structure mutually shared in both patterns

(rightward motion), successful segregation is achieved on

the basis of the additional static orientation in one of the

patterns due to the fence.

The grouping results in Fig. 4 provide compelling quali-

tative evidence that the proposed approach to grouping per-

forms well on image sequences containing a variety of spa-

tiotemporal structures. To quantify performance, results

are compared with frame-by-frame human labeled (spa-

tial) boundary ground truth. Following a standard evalua-

tion methodology for image segmentation [13], mean pre-

cision/recall scores were calculated across all the image se-

quences illustrated in Fig. 4 and are shown as tuning curves

in Fig. 5. These curves characterize the grouping perfor-

mance over a range of the input parameters. Precision is



Figure 5. Precision/recall curves. Points along the curve corre-

spond to variations of the range bandwidth within [0.04, 0.18].

defined as the percentage of detected boundary pixels in the

recovered grouping2 that correspond to ground truth bound-

ary pixels:

Precision = Matched(Sr, Sg)/|Sr|, (7)

where Sr and Sg represent the grouping result and ground

truth, resp., Matched(Sr, Sg) denotes the number of bound-

ary pixels in Sr that were matched in Sg within a neigh-

bourhood of radius ρ and | · | denotes the cardinality of the

set of boundary pixels. Recall is defined as the percentage

of ground truth boundary pixels that were detected in the

recovered grouping:

Recall = Matched(Sg, Sr)/|Sg|. (8)

Over-segmentation is characterized in the curves by high

recall but low precision, and the converse holds for under-

segmented images.

For mean-shift, there are four input parameters, the

bandwidths, {hspace, htime, hrange}, and the merging thresh-

old, τ . Through preliminary experimentation it was found

that the largest differences between grouping results are

realized when varying the range bandwidth and merging

threshold parameters. In Fig. 5, points along the curve

correspond to varying the range bandwidth, hrange, within

[0.04, 0.18] while fixing the spatial and temporal band-

widths to (hspace, htime) = (32, 10) and merging threshold

to τ ∈ {0.05, 0.10}. Matching was carried out using a

distance threshold ρ = 8, which is reasonable given that

the oriented energy filtering support also spans eight pix-

els. The consistently high recall indicates that the recovered

groupings show little tendency to under-segment and thus

one can conclude that the combination of representation and

grouping methods captures salient image structure. At the

same time, a relatively high precision is attained, which in-

dicates that significant over-segmentation is not prevalent.

3.3. Additional examples
Figure 6 illustrates a successful grouping result on a syn-

thetic input sequence consisting of a counter-clockwise ro-

tating pink noise disc over a stationary pink noise back-

ground. This example indicates the approach’s ability to

2Boundaries in the labeled groupings are identified as any pixel that

has at least a single neighbour with a differing label. This is followed by a

thinning procedure to realize 1 pixel width boundaries.

Figure 6. Grouping on a (synthetic) smoothly varying spacetime

structure. (left) Input consisting of a counter-clockwise rotating

pink noise disc over a stationary pink noise background. (right) A

sample frame from the successful bipartite grouping result.

Figure 7. Grouping of a target initially at rest, then in motion. (left-

to-right) Input frame of initially static scene; input frame taken

after the onset of motion; grouping result of initial frame shows

no foreground/background delineation as person and surround are

both static; grouping result as person is in motion. Correct group-

ing is maintained throughout person’s subsequent motion.

Figure 8. Grouping on a set of (synthetically combined) dynamic

textures used in [4]. (left-to-right) Input frame of two widely

differing dynamic textures (turbulent water and rising bubbles);

grouping result using the proposed approach; input frame consist-

ing of two instances of turbulent water moving left and right, re-

spectively, both textures share the same appearance but differ in

dynamics; grouping result using the proposed approach.

recover groupings in cases where spacetime structure varies

smoothly. A similar example has been successfully demon-

strated using the tensor voting framework [21]; however,

that approach relies on flow, while the examples of Fig.

3 show that flow yields difficulties in situations involving

more complicated patterns (e.g., transparency and scintilla-

tion). Significantly, in the present framework the cases of

grouping smoothly varying flow as well as non-motion dy-

namic structure can be handled in a uniform fashion.

Figure 7 shows a successful grouping result on a natural

input sequence, where spacetime structure changes over

time, as a foreground target initially at rest goes into motion

against a static background. This example demonstrates the

approach’s ability to deal with both spatial and temporally

juxtaposed structure in a uniform manner.

Figure 8 shows successful grouping results on two dy-

namic texture examples [4]. Previously reported results on

these examples require knowledge of the number of textures

as well as hand contour initialization and show significant

under-segmentation on the second example [4]. The present

approach does not require similar a priori knowledge, yet

yields comparable (first example) or superior (second ex-

ample) results.



4. Discussion and summary
The main contribution of the presented research is the

representation of visual spacetime via spatiotemporal orien-

tation distributions so that diverse structures can be grouped

readily into coherent spacetime regions. The work builds

upon previous efforts on spacetime oriented filtering but

differs markedly in that filtering is executed to capture

the (possibly multi-) oriented structure of raw dynamic vi-

sual data rather than the recovery of an assumed flow field

(i.e., the dominant spacetime orientation). Significantly, the

same oriented representation supports further abstractions

of visual spacetime data, both qualitative [26] and quantita-

tive [22].

In contrast to the main theme of representation and

grouping of spacetime information with a distributed repre-

sentation of spatiotemporal orientation, the specific details

of implementation are less important. In terms of oriented

filtering, a variety of different filters could have been uti-

lized, such as higher-order directional cosine, Gabor, log-
normal and causal-time filters [19]. Similarly for grouping,

mean-shift can be replaced by one of the alternatives cited

in Sec. 1.2. Nevertheless, it is promising that the straight-

forward use of a popular grouping mechanism with a fairly

simple set of single scale filters operating in a coarsely

quantized orientation space have worked on a variety of nat-

ural image sequences.

In summary, this paper has presented a unified approach

to representing and grouping a wide range of juxtaposed

spacetime patterns (motion, static, flicker, (pseudo-) trans-

parency, translucency, scintillation/temporal texture, un-

structured). The approach is based on a distributed char-

acterization of visual spacetime in terms of 3D, (x, y, t),
spatiotemporal orientation. Empirical evaluation on a wide

variety of imagery demonstrates the approach’s ability to

parse spacetime imagery into coherently structured regions.

The delineated coherent regions, in conjunction with the un-

derlying representation of spatiotemporal orientation, can

serve as building blocks for further organization and inter-

pretation of visual spatiotemporal information.
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