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This paper presents an approach to measuring fluid flow from image sequences.
The approach centers around a motion-recovery algorithm that is based on principles
from fluid mechanics: The algorithm is constrained so that recovered flows observe
conservation of mass as well as physically motivated boundary conditions. Empirical
results from application of the algorithm to transmittance imagery of fluid flows,
where the fluids contained a contrast medium, are presented. In these experiments,
the algorithm recovered accurate and precise estimates of the flow. The significance
of this work is twofold. First, from a theoretical point of view it is shown how
information derived from the physical behavior of fluids can be used to motivate a
flow-recovery algorithm. Second, from an applications point of view the developed
algorithm can be used to augment the tools that are available for the measurement of
fluid dynamics; other imaged flows that observe compatible constraints might benefit
in a similar fashion. © 2000 Academic Press

1. INTRODUCTION

1.1. Motivation

Physical modeling plays an important role in computer vision. Constraints derived frc
physical considerations are often used to provide the basis for well-motivated algorithi
This close tie between image interpretation and physical modeling suggests that mea:
ment problems in the physical sciences might be a fruitful source of research issues
computer vision. A particular domain where this methodology is likely to be of value
the measurement of fluid flow from image sequences. Here, applicable physical constre
come naturally from fluid mechanics. For example, differential flow constraints can ar
from the continuity equations yielded by conservation of mass and momentum. Simila
realistic boundary conditions can be derived from physical considerations. Significan
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it is standard practice in experimental fluid mechanics to seed flows with tracers for
sake of visualization. This practice yields imagery with the patterned contrast (i.e., t
ture) necessary to drive standard computer vision motion-analysis algorithms. Owing
their physical underpinning, algorithms that are founded on these principles should ext
greater accuracy and precision than those based more simply on the matching of in
intensity patterns.

Motivated by these observations the current paper presents an algorithm, based ir
physics of fluid mechanics, for the recovery of fluid flow from image sequences. T
algorithm is particularly targeted to the recovery of two-dimensionally imaged motic
of three-dimensional media. Significantly, such two-dimensional information can be
importance in and of itself, even though the actual three-dimensional motion is not m
explicit. As examples, in fluid mechanics, two-dimensional motion allows compariso
between empirical data and theoretical models (Lanzillettal. [1]); in medical image
analysis, two-dimensional motion can be used to monitor blood flow in a meaningful fash
(Amini [2], Nogawaet al. [3]); in meteorology, two-dimensional motion in atmospheric
image sequences can be used to support large-scale pattern analysis (Cohen and |
[4], Larsenet al.[5], Memin and Perez [6]). The immediate application of the develope
algorithm is to the experimental study of fluidic devices. More generally, however, t
developed algorithm should be applicable to a variety of flow-recovery problems where
kinematics of imaged motion is related to the continuum mechanics of the imaged me
In particular, certain types of (i) medical transmittance imaging (e.g., X-ray time series
biological tissue (Webb [7])) and (ii) visible reflectance imaging (e.g., uncalibrated ima
sequences depicting dilation and/or angular rotation (Del Bigtlad. [8])) might be well
suited to the described algorithm.

1.2. Related Research

The recovery of optical flow, i.e., the apparent motion of image intensity patterns, t
been the subject of a great deal of research (Aggarwal and Nandhakumar [9], Beauch
and Barron [10]). Typically, optical flow algorithms are based on the brightness constal
constraint (Horn [11]). Essentially, this dictates that the algorithms establish a mapp
between two images based directly on the similarities of the image intensities. Vari
phenomenological extensions to this constraint have been proposed to make itless restr
(e.g., Cornelius and Kanade [12], Negahdaripour and Yu [13]). Other extensions h
been based on the analysis of the imaging of three-dimensional objects under perspe
projection (Nagel [14]). For many applications, algorithms based on brightness constanc
the cited extensions have proven to be of value. However, these constraints fail to adequ
capture the nature of fluid flow and therefore are less clearly applicable to that probl
domain.

For the matters at hand, a natural constraint arises in the flow continuity equatior
derived from the principle of conservation of mass. This constraint dictates temporal im:
transformations that are consistent with fluid flow behavior. Schunck [15] first applied t
conservation of mass constraint to the analysis of imaged motion. This work sugge:
the possibility of using the conservation of mass constraint to model the imaged mot
of rotating and perspectively distorted objects; however, it did not propose a methoc
solve for corresponding flows given image irradiance data. Fitzpatrick [16] appears to h
presented the first specific solution method, with the additional constraint that the fl
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is irrotational. While this work did not present an implemented algorithm, it did prese
an analytic example. Subsequently, Fitzpatrick and Pedersen [17] documented the
working algorithm with results on natural imagery. This algorithm incorporated not on
the conservation of mass and irrotational flow constraints, but also the use of physic
realistic boundary conditions. In conjunction with this work, Fitzpatrick [18] presente
a theoretical analysis that showed the relationships between a three-dimensional me
that obeys the conservation of mass and its corresponding two-dimensional transmitt:
image. In particular, this work justified the application of the conservation of mass continu
equation in the image domain even for the case of discontinuous media, via considera
of the blurring that is inherent in the imaging device. This work is of key importance for tf
research that is reported in the current paper, where the conservation of mass is applit
the analysis of two-dimensional transmittance imagery of three-dimensional discontinu
fluids (i.e., fluids containing a contrast medium).

Song and Leahy [19] derived the conservation of mass continuity equation in their p
sentation; however, they ultimately combined it with an incompressibility constraint to yie
the continuity equation for incompressible media. In implementation, this work reported
algorithm that recovered three-dimensional flow from corresponding image sequence
while enforcing a small divergence constraint. In this case, the small divergence constr
was justified by the target application domain (analysis of cine computed tomograms of
heart). Amini [2] also reported use of the conservation of mass constraint in conjunct
with incompressibility in an algorithm with application to the analysis of blood flow. In thi:
case it was shown that if incompressible flow along one of its three spatial dimension:
equal to zero and the medium is described by a two-dimensional distribution in the ot
spatial coordinates, then the continuity equation reduces to the brightness constancy
straint. Yet another approach to incorporating the conservation of mass constraint has |
to approximate its solution via application of least-squares methods to a truncated Ta
series expansion of the continuity equation (Del Bingbal. [20]).

Interestingly, not all work from the computer vision and image processing communiti
that has been concerned with recovering fluid flow from imagery has made direct use
conservation of mass inspired continuity constrairab (& and Waas [21], Maasal.[22],
Cohen and Herlin [4], Larsegt al.[5], Memin and Perez [6]). Similarly, standard techniques
developed in experimental fluid mechanics for recovering fluid flow from imagery have r
made direct use of conservation of mass inspired continuity constraints. Instead, they |
relied on image correlation techniques (occasionally with extensions) or simple parti
trackers applied to images of fluids containing a contrast medium (Adrian [23], Louren
et al. [24], Willert and Gharib [25], Zhongpt al. [26]). Finally, an alternative approach
developed especially for fluid dynamics phase portrait visualization relies on recovery
the local tangent field to images depicting streamlines of the underlying flow @taid
[27], Ford and Strickland [28]).

The current work contributes to previous research mainly as follows. The conservat
of mass flow continuity equation is used in a variational formulation of a novel algorith
for the recovery of fluid flow from image sequences. This algorithm has been implemen
and successfully evaluated with both synthetic and natural imagery of microfluidics. Wh
previous research has made use of the conservation mass constraint in the developme
algorithms for image motion analysis, it appears that the current work is the first that d
not require either irrotational or small-divergence flow. Indeed, there is a cause and ef
relationship between these various formulations and the flows that the algorithms reco
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Ultimately, the appropriateness of one or another approach depends on the applic:
domain that is under consideration. Preliminary versions of the research that is reporte
the current paper have appeared previously (Wittesd. [29, 30]).

1.3. Outline of Paper

The main body of this paper unfolds in four sections. The first section has served to r
tivate physics-based recovery of fluid flow from image data. Section 2 describes a techr
approach to this matter. In Section 3, experimental results of testing the approach in
face of fluid flow imagery are provided. Section 4 provides a summary. Following the m:
sections an appendix provides additional details on image formation.

2. TECHNICAL APPROACH

2.1. Algorithm Derivation

Let E(x, vy, t) be an image, a function of spatial coordinates y), and timet. Suppose
that this image depicts a fluid flow in such a way that the essential physical characteris
of the flow are captured. In particular, suppose that the imaged intensities observe
conservation of mass just as does the fluid density. For example, in the Appendix to
paper itis shown that the two-dimensional transmittance image of a three-dimensional f
flow that respects conservation of mass in three dimensions is a two-dimensional flow
respects the conservation of mass in two dimensions. This is true provided that ther
no material loss due to normal flow at the boundaries of the flow. In this case the tv
dimensional (imaged) flow is the density-weighted average of the three-dimensional fl
taken along imaging rays. Correspondingly, application of the conservation of mass fl
continuity equation to a temporally varying image yields

ExU + Eyv + EUy 4+ Evy + E; =0,
or more compactly

v-(EV)+E =0, 1)

wherev = (u(x, y, t), v(X, y, 1)) is the imaged flowy = % %) is the spatial gradient

operator, and subscripts denote partial differentiation (Streeter [31]). In essence, this
straint states that flow through the boundary of a region must be balanced by accumule
in the region. The continuity equation (1) will be taken as the fundamental constraint
relating image intensity measurements to fluid flow. In this regard, it can be contrasted v

the brightness constancy constraint
Exu+ Eyv + E; =0, 2

the standard constraint for optical flow algorithms. This constraint more simply insists
identity of intensities between corresponding image elements across time. Notice thai
brightness constancy assumption is too restrictive a model for fluid flow, where mate
particles may well deform (in a conservative fashion), whereas the conservation of m
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continuity equation accurately captures such phenomena. In practice, to allow for imper
data, strict enforcement of the continuity constraint is replaced with minimization of

o= (V- (EV) + Er)?, (3)

with respect tor over an image domain of interest.

To operate successfully with imperfect data, it is useful not only to avoid strict adherer
to the continuity constraint, but also to impose additional constraints on the recovered f
that are intended to ameliorate the effects of noise. A useful constraint in this regard i
encourage smoothness of the recovered flow. This notion can be captured by minimi:
the spatial variation of the flow; e.qg.,

cS:u)z(+u§+v§+v§. 4)

Another way to look at this constraint is in terms of regularization theory, where constrai
of this form are taken to stabilize the solution (Tikhonov and Arsenin [32]). Without in
position of this constraint, it was found that the imagery of interest was too noisy to yie
coherent flow fields.

Following the methodology of Horn and Schunck [33], the measures of continuity (
and smoothness (4) can be combined and evaluated over a domain of interest to yie
problem of the form

min//(kcc+cs)dxd)/, (5)

with A being a weighting parameter that trades off adherence to the continuity constr:
and smoothness of flow. Minimization of this integrated constraint equation with respec
flow parametersy, v) is a problem in the calculus of variations (Courant and Hilbert [34])
In particular, the integrand of Eqg. (5) has the foFi{x, y, u, v, uy, Uy, vx, vy). The corre-
sponding Euler—Lagrange equations, which provide necessary conditions for a minim
are

d d
Fo— —Fy — —Fy, =0
Yo gy
d ad
F,— —F, — —F, =0
X oy "’

When these equations are evaluated in terms of the integrated constraint equation (5), ¢
of partial differential equations (PDES) results,

VZU = _)\.(Etx + Exxu + nyv + 2Exe + Eyvx + Exvy + Evyx + EuXx)E
(6)
v = —A(Ey + ExyU + Eyyv + Eyuy + Exuy + 2Eyvy + Euyy + Evyy)E,

wherey? = (;’—XZZ + 38—;2) is the Laplacian operator. These imaged fluid flow equations re
late image intensity measurements to permissible flow field components as constraine
conservation of mass and smoothness of flow.

In order for a variational problem, such as minimization of the integrated constra
equation (5) to be well posed, it is necessary to enforce appropriate boundary conditi
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Physical considerations can serve to provide the needed constraints. For fluidic syster
basic constraint is that the fluids must flow within their containing channels (essentia
impenetrability of matter). This can be expressed by disallowing normal flow along t
boundaries of the domain in which the fluid lies. In the Appendix to this paper, it is shov
that operation of this constraint in a three-dimensional specimen implies a corresponc
two-dimensional boundary condition in its transmittance image; i.e.,

[n-V]s =0, @)

wheren specifies the normals to the two-dimensional imaged boundaxyof the three-
dimensional specimen. Additionally, if the (imaged) channel boundaries do not complet
enclose the domain of interest (e.g., the apparent end of a channel as it runs off the el
the image), then natural boundary conditions (Neuman boundary conditions) are enfol
at such points. Applying natural boundary conditions at channel endings is appropriate
the steady state flows that are the subject of this paper’s experimental evaluation; howe
alternative constraints might be more applicable in other scenarios.

A numerical solution to the imaged fluid flow equations, (6), can be found via discretiz
tion. Application of finite differences (Dahlquist anddB¢k [35]) to these equations yields

4(Uij — Ui j) = —A[Eix + Exxij + Eyxvij + 2ExAxUij + EyAcuij + ExAyui |
+ EAyxvi,j + ZE(Ui)fj — Ui,j)] E

4(ij — vi,)) = —A[Ety + Exylij + Eyyvi ) + EyAxUij + ExAyui | + 2E Ay
+ EAxyui,j + ZE(WI - vi,j)] E.

wherei, j is the index of image positiomyxu; ; = (Ui+1,j — Ui—1,j)/2 is the central dif-
ference,AyyUi j = (Ui41j+1 — Ui+1,j—1 — Ui—1,j+1 + Ui—1 j—1)/4 is the mixed difference,
l?ifj = (Ui4+1j +Ui—1j)/2 andu; j = (Ui+1,j + Ui—1j + Ui j4+1 + Ui j_1)/4 are averaging

operators, etc. These equations can be written more compactly by [Ettieghe identity
matrix,

A- _E Exx — E Eyx ,
Exy Eyy— E
Eix + ZEXAXUi’j + EyAxvi,j + ExAyvi,j + EAyxvi,j + Eﬁffj )

b(v)=E
<Ety + EyAxUij + ExAyUi j + 2EyAyvi j + EAyyU j + El?fj

v=(u,v)"T andv = (U, v)", to yield
(T + LAV = V+ Ab.

Various numerical methods exist that could solve the previous system feee, e.g.,

Dahlquist and Bjrck [35]). For example, in theory it would be possible to apply a metho
such as Gauss—Jordan elimination directly to this discrete system. However, due to
sparseness and size of the resulting matrix (i.e., the number of rows and columns ec
two times the number of image pixels), this is a needlessly costly approach. Instea
method that has been successful in the current context is algorithmic time discretizat



252 WILDES ET AL.

In particular, application of the inverse @f+ 1.4 to both sides of the previous equation
yields an iterative solution far andv,

v = (7 4+ 2 A) (V" + Ab(V")), (8)

wherev™*! is the value ofv = (u, v)" computed at iteratiom + 1 from the valuev"
computed at iteration andt denotes the matrix inverse. Intuitively, these equations ca
be taken as providing updated values ford) based on local averages of the flow field as
corrected by deviation from conservation of mass dictated continuity.

2.2. Algorithm Instantiation

The iterative solution for flow field components (8) has been embodied in a Gauss—Se
relaxation algorithm; i.e., new valueswfre entered into the computation as soon as the
are calculated rather than at the completion of an entire iteration cycle as done in Ja
relaxation (Dahlquist and Bj¢k [35]). This algorithm accepts a pair of images as well as
region of interest map and recovers a corresponding flow field. The region of interest ma
a binary map that demarks the areas over which flow is to be calculated. The algorithm
solves for the flow along the channel boundary of the region of interest while enforcing t
null normal flow constraint (7). This constraint is practically instantiated in the followin
fashion. Along each channel wall the imaged flow equations (6) are solved as restric
to one dimension. This yields a single one-dimensional flow equation, with the directi
constrained to be tangential to the channel wall. To ensure that this problem also is prop
posed, natural boundary conditions (i.e., Neumann boundary conditions) are enforce
the ends of the channel. These are implemented by introducing a new point at each er
the channel boundary and copying over the one-dimensional solution at the neighbo
interior point at each iteration. Subsequently, the one-dimensional solution(s) are use
the boundary conditions as the algorithm solves on the domain interior. During this proce
natural boundary conditions are enforced at loci where the channel walls do not comple
enclose the domain of interest (e.g., the apparent end of a channel as it runs off the er
the image). The initial values farandv are taken as zero everywhere.

This relaxation algorithm has been embedded in a hierarchical coarse-to-fine refinen
control structure to support extended spatial capture, i.e., recovery of multipixel motio
and computational efficiency (Bergehal.[36]). Operation begins by computing a series
of low-resolution versions of the input images (via successive one-octave low-pass filter
and factor of 2 subsampling). The coarsest resolution is then used to recover an initial f
estimate which is refined via reference to successively finer resolution images, finish
with the original images. In this regard, it is important to note that the conservation
mass flow continuity equation is applied at each iteration of the estimation process. It |
heuristic assumption that the constraint is thereby enforced on the overall displacement
results from the concatenation of the individual estimates. Nevertheless, empirical res
(as described in the next section of this paper) support this methodology.

In the experiments reported in this paper coarse-to-fine processing proceeded up to
levels of resolution reduction. Iterations of the flow field solution (8) were calculated
allow the most distant pixels at the coarsest resolution to broadcast their intensity value
one another. For example, starting with a 54812 image reduced by 5 levels to yield a
16 x 16 image leads t§16./2] = 23 iterations being calculated at each resolution level
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Values fori were selected empirically; specific values are documented in the context
the experiments described in Section 3. This entire scheme has been implemented in
programming language. As currently installed, it executes from the UNIX command li
on Sun SPARCSstations and as an Explorer module on Silicon Graphics workstations.

3. EXPERIMENTAL EVALUATION

It is hypothesized that the developed flow-recovery algorithm is widely applicable
the measurement of fluid flow from imagery at a wide range of spatial scales. The cur
application domain for the algorithm is microfluidics (Lanzillottbal. [1]). Of particular
interest is employing the algorithm in conjunction with microradiography (Cossiett
[37]) to enable the noninvasive assessment of microelectromechanical systems (MEN
Therefore, the reported experiments concentrate on microscale X-ray imagery. Further, :
the considered flows have small Reynolds numbers, approximately equal to one. (Reyn
number is the ratio of inertial to viscous forces; smaller values are associated with hig
stability of laminar (as opposed to turbulent) flow (Streeter [31]).)

3.1. Image Acquisition

The basic experimental rig is illustrated in Fig. 1. Experiments involved image sequen
of fluid emulsions driven through a variety of physical devices. The emulsions consis
of a contrast medium mixed with a fluid and thereby yielded a spatially varying ima
intensity pattern. After emulsification, the contrast medium was dispersed in the fluid
tiny droplets (1-2Qum). By the choice of a contrast medium with the same density as tl
fluid (1-bromohexadecane in water) the droplets were made neutrally buoyant and follo

N e 2 B S B s

Syringe
Pump

Visible Light

FIG. 1. Image acquisition. Image sequences of fluid emulsions driven through a variety of physical devi
were used to evaluate the performance of the recovery algorithm. The flow was imposed by a mechanically d
syringe pump. Images were generated by a collimated monochromatic X-ray source in conjunction with a phos
screen and optics to image onto a CCD imager for digitization.
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the imposed flow. The flow was generated by a mechanically driven syringe pump t
could be controlled to force the fluid emulsion through the devices at 0.004 or QIG08
Images were generated by a collimated monochromatic X-ray source in conjunction wi
phosphor screen and optics to image onto a CCD imager for digitization at 14-bit precisi
This system is capable of operating with two sets of spatiotemporal resolution paramet
The first configuration has spatial resolution at 2r8/pixel with a temporal sampling rate
of 0.4 frames/s and an exposure time of 500 ms/frame. The second configuration has sy
resolution a 1.Gum/pixel with a temporal sampling rate of 10 frames/s and an exposu
time of 100 ms/frame.

3.2. Synthetic Imagery

Synthetic imagery allows the testing of computer vision algorithms in the face of knov
ground truth. Accordingly, synthetic images were generated to simulate the transmitta
imagery that is acquired with the image acquisition rig of Section 3.1. The first simulat
experimental preparation consisted of steady state fluid flow through cylindrical tubes. T
preparation is of interest because the expected flow can be predicted analytically accor
to the fully developed circular pipe flow model [31]; therefore, recovered flows can |
evaluated against physically meaningful model predictions. The pipe flow model dictate
parabolic displacement along the axis of the tube with the form

r2

—1- — )

2 9
Umax R

v

whereR is the tube radiug, is the perpendicular distance of any point in the tube from
the central axispmax is the maximal displacement along the central axis, arisdl the
displacement along the tube axis at painFlow in the orthogonal direction is taken as
zero.

To mimic this setup, virtual balls were generated and randomly dispersed within a cyl
der. The density and diameters of the balls were chosen to be in accord with the fl
emulsions used with the actual image acquisition rig. A raytracer was used to simul
the transmission of X rays through these structures according to a standard linear ab:s
tion model, as given by Eq. (12) in the Appendix. The simulated spatial resolution w
2.8 um/pixel. The gray-level resolution was 16 bits. A second image was raytraced af
the spheres were shifted according to the pipe flow model (9). The left panel of Figur
shows an image from such a simulation experiment.

Simulated flow sequences were generated for tube diameters of 1000, 800, ard.600
For each tube, flow rates were simulated to yield a range of maximum image displaceme
The flow-recovery algorithm was executed on the resulting image sequences. In tt
experiments. = 0.01, an empirically selected value. To quantify performance, the roc
mean square error between the recovered and simulated velocities in the direction of
tube axis was calculated in the following fashion,

v r)—v r 2
RMS(errOr) \/Zr_D/Z( recovereé ) Slmulate(( )) ’

with D being the tube diameter. (The recovered velocities in the orthogonal direction wi
inconsequential.) The results are shown in the right Fig. 2. For small displacements the e
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FIG. 2. Root mean square (RMS) error results using synthetic imagery: (left) a synthetic radiograph
emulsion particles flowing through a cylindrical tube; (right) the RMS error of recovered vs veridical displaceme

for a range of simulated tube diameters.

is small for all tubes. With increased displacement the error rises, especially for sma
tubes. While not apparent in these plots, the error typically comes as an underestimate ¢
true flow. The errors are due to the fact that the algorithm requires more spatial support ir
recovery of larger displacements. The narrower tubes may not offer sufficient informatior
support the recovery of large displacements. Still, the algorithm proves capable of suby.
precision for an interesting range of experimental parameters.

The convergence of the flow-recovery algorithm is illustrated in Fig. 3. The RMS error
plotted as a function of iteration for two of the simulated tube flows: the lowest flow rate
the widest tube and the highest flow rate in the narrowest tube. These examples have
selected as they capture the extremes of the simulations (i.e., the smallest displacemen
the most spatial support and the largest displacement with the least spatial support). In
cases the error decreases at a reasonable rate.

1 2 T T T T T
"diameter1000" -o—
s “diameter0600" —+--

RMS (error)
o
T
¥

20 40 60 80 100 120 140
Iteration

FIG. 3. Algorithm convergence as a function of the iteration number. The plots show RMS error in recovel
displacement as a function of the iteration number for synthetic flow through two cylindrical tubes.
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FIG. 4. Velocity profiles recovered from synthetic imagery of fluid flow through a converging channel. (upp
left) A schematic of the simulated flow experiment. Flow is downward between a pair of converging plates oj
at the top and bottom (shown as a truncated triangle for simplicity; i.e., the plates extend from the plane of
figure) and projected along the horizontal axis. (upper right) A corresponding synthetic radiograph of emuls
particles flowing through the channel. The direction of projection yields a rectangular image region. (lower)
average recovered vertical flow profiles for conservation of masand brightness constancy, constrained
flow recovery algorithms. The analytically predicted flow profile for this experiment also is shown (solid line).

The second simulated experimental preparation consists of fluid flow between a pai
converging plates. A schematic of this device is shown in the upper left panel of Fig. 4. T
preparation is of interest because the expected flow is well understood from an anal
point of view [31], with velocity increasing as the channel converges while trailing to ze
along the channel walls. For present purposes, it is illustrative to take the transmitta
projection of this three-dimensional flow in the direction that is shown in the schemat
i.e., along the horizontal. (A practical application of such a projection comes about w
the optical depth of the device is too great to allow projection in the direction orthogonal
the schematic.) A simulated image for this preparation is shown in the upper right pane
Fig. 4. Notice that the average local intensity decreases from top to bottom as the proje
matter decreases and that the convergent shape is no longer apparent as it is integ
across. For the simulated convergence angl@, the image displacement parallel to the
direction of convergence has the form

S (10)
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where increasing is taken opposite to the direction of convergence with origin at the ap
of convergence anghax is the maximal displacement at the outlet, located at some positi
y. Flow in the orthogonal direction is assumed to be zero. With reference to Fig. 4 the flov
downward and increasing from top to bottom. The results of executing the conservatiol
mass constrainted flow recovery algorithm, wite= 0.01, on a corresponding image pair
is illustrated in the lower panel of Fig. 4. Here, the average recovered velocity in the verti
direction is plotted against image position. (Recovered velocity in the orthogonal direct
was inconsequential.) For comparison, the analytically predicted velocity is shown in
same plot. The RMS error of the recovered flow is 0.2 pixel, mostly due to a slight tendel
to underestimate the larger displacements. The plot also shows the results of replacin
conservation of mass constraint in the algorithm with the brightness constancy constr
(2), while keeping all other parameters constant. In this case, the recovered flow gro
underestimates the larger displacements. Correspondingly, the overall RMS error is elev
to 3.1 pixels.

3.3. Natural Imagery

Following on the experiments with synthetic imagery, the algorithm has been evalua
in the face of natural imagery of steady state flow through cylindrical tubes. In particular, |
image acquisition rig described in Section 3.1 was used to capture the flow of fluid throt
small-diameter quartz capillary tubes. An initial set of experiments considered flow throt
an 800xm-diameter tube. Two flow rates were considered: 0.004 and @RQ8 he spatial
resolution was 2.&m/pixel with a temporal sampling rate of 0.4 frame/s and an exposu
time of 500 ms/frame. A single frame from the lower flow rate sequence is shown in Fig..

The flow-recovery algorithm was executed on both the 0.004- and Q.08&apillary
tube image sequences. In these experiments,0.0001, an empirically selected value.
The recovered flow for the lower flow rate is shown as a vector plot in Fig. 5b. Qualitative
the recovered flow is in agreement with inspection of the image sequence by eye:
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FIG.5. \elocity field recovered from naturalimagery of fluid flow through a capillary tube. (left) A frame frorm
a radiographic image sequence of an emulsion flowing through an.88@iameter capillary tube. (right) The
recovered velocity field from two successive frames. The recovered flow is in accord with one’s visual impres:
upon viewing the image sequence.
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FIG. 6. Velocity profiles recovered from natural imagery of fluid flow through capillary tubes. (left) The
average recovered axial flow profiles for two different flow rates through an@@@liameter capillary tube (dotted
lines). Analytically predicted flow profiles for these experiments also are shown (solid lines). (right) The recove
axial flow profiles for two different capillary tube diameters in dimensionless coordinates. The results for 200- :
100-um-diameter tubes are plotted with the symb@lsand [J, respectively. The corresponding analytically
predicted flow profile is shown as a solid line.

magnitude is greatest along the center line and trails toward zero at the side; the direc
is predominantly along the tube axis (i.e., vertical), with somewhat more variation in t
center than at the side. The average recovered velocity profiles in the axial direction
shown in Fig. 6a. For comparison, the profiles predicted by fully developed pipe flow (
averaged along imaging rays also are plotted in Fig. 6. (Recall that the imaged flow shc
be an average of the three-dimensional flow due to the properties of transmittance imagi
The recovered flow is in good agreement with the predictions of the model for both flc
rates.

Additional capillary tube experiments have been executed for flow at Qu084n cap-
illary tubes with diameters of 200 and 1@®n. For these cases the spatial resolution wa:
1.6um/pixel with atemporal sampling of 10 frames/s and an exposure time of 100 ms/frar
A = 0.00001, an empirically selected value. The results for these experiments are collay
into a single nondimensional plot in Fig. 6b. The radius of the thend the maximum
velocity, vmax, Were used to nondimensionalize the plot. A pipe flow velocity profile (9
also is superimposed on this plot. In both cases, the recovered profiles are in reasor
agreement with the theoretical prediction. Interestingly, it appears that no previous st
has documented the flow of fluids through cylindrical tubes with diameters undept000

A second set of studies involved microradiography of more complicated devices wh
analytic predictions of the flow were not available. The first device was a ramped s
channel. The second device was a serpentine channel. Both devices were etched in si
and covered with glass. Parameters for both studies were the same: Injected flows \
0.004ul/s; the spatial resolution was 1.8n/pixel with a temporal sampling 10 frames/s
and an exposure time of 100 ms/frame= 0.00001, an empirically selected value. An
image of the ramped step channel and a recovered velocity field are shown in Fig. 7.
results are in accord with one’s visual impression. The flow is fastest at the upper inlet :
loses speed while expanding thereafter; the speed is smallest near the channel walls
image of the serpentine channel and a recovered velocity field are shown in Fig. 8. Ag
the results are in accord with one’s visual impression. The flow follows the channel’s bel
most closely along the boundaries and less so in the center; the speed is smallest ne:
channel walls.
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FIG. 7. Velocity field recovered from natural imagery of fluid flow through a ramped step channel. (left) .
frame from a radiograph sequence of an emulsion flowing through a ramped step channel etched in silicor
covered with glass. (right) The velocity field recovered from two successive frames. The recovered flow i
accord with one’s visual impression upon viewing the image sequence.

3.4. Discussion

In general, the algorithm for recovering fluid flow from image sequence data has
formed well in empirical evaluation: For cases where the expected flow can be predic
analytically, the recoverd flow is in accord with theory. For complex flows, where the r
sults cannot be predicted analytically, the recovered velocity fields agree with qualita
expectations. Also, the algorithm exhibits a reasonable rate of convergence.

In order to achieve the reported level of performance, it has been necessary to use |
than one numerical value for the smoothing paramgt&ignificantly, however, it has been

FIG. 8. Velocity field recovered from natural imagery of fluid flow through a serpentine channel. (left) ,
frame from a radiograph sequence of an emulsion flowing through a serpentine channel etched in silicon
covered with glass. (right) The velocity field recovered from two successive frames. The recovered flow i
accord with one’s visual impression upon viewing the image sequence.
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possible to use a single value for each experimental configuration: 0.01 for the synth
image experiments and 0.0001 and 0.00001 for the low and high (respectively) spatiot
poral resolution natural image experiments. More generally, the algorithm is reasone
stable with respect to minor variations in the value.débr any of the three configurations.
For example, halving or doubling the value Jokeeps the RMS error at the same order
of magnitude. Further, the fact that it has been possible to use a single level of smoott
for multiple experiments with each configuration attests to this stability. Still, the level
smoothness is relatively large and can be seen as in conflict with previous results sugge
that recovered flow can lose accuracy due to oversmoothing (e.g., Song and Leahy |[!
This apparent discrepancy is likely due to the fact that the flows that are considered in
current paper are inherently smoother than those reported in the previous work. (For
ample, the flows studied by Song and Leahy included vortex structures that are not pre
in the current studies.) It also is worth noting that the level of smoothing that is report
in the current natural image studies is a reflection of the high level of noise that is inheren
the applied imaging methodology. Significantly, even given the weight that is placed on
smoothing term (4), the proposed algorithm does not reduce merely to interpolating
boundary conditions with first-order smoothness vector splines. The patterns of recove
flow away from the boundaries would not be present if that were the case. For illustrati
consider the pipe flow examples. The “null normal flow” boundary condition (7) yield
the same constraint on the left and right sides of the imaged channel. The natural bol
ary condition at the imaged channel ends, i.e., top and bottom as depicted in the figu
does not in and of itself vary across the horizontal dimension. Taking the preceding t
observations in tandem, it becomes clear that the interpolation of the boundary conditi
with first-order smoothing splines cannot yield variation of the flow profile as one procee
along the horizontal dimension. In contrast, the recovered flow profile has a pronoun
parabolic profile parameterized along the horizontal dimension.

Given the range of experimental results that have been presented in the current pap
is interesting to consider how alternatives to the applied algorithm might fare if given t
same data. At one extreme, it is worth noting that for the cylindrical pipe and convergi
plate experiments the flow is essentially one-dimensional. Correspondingly, one of
velocity components in the continuity equation (1) can be set to zero and the remain
component can be solved for uniquely given appropriate boundary conditions (althougt
practice, some enforcement of smoothing (5) will still be necessary to combat the effect:
noise). These observations suggest the applicability of a restricted one-dimensional ver
of the flow-recovery algorithm; however, the use of such an algorithm will necessar
be limited to situations where the considered flow is itself one-dimensional. It also
interesting to consider the applicability of previously developed algorithms that have me
use of conservation of mass as bolstered by irrotational (Fitzpatrick [16], Fitzpatrick a
Pedersen [17]) and small-divergence (Song and Leahy [19]) constraints. In this reg
it is illustrative to consider the two flow patterns that were given analytically, projecte
pipe flow (9) and projected converging plates (10). For the pipe flow case, notice that
curl of the flow, v x v, evaluates t0-2vmaxgz. Typically, this formula will evaluate to
nonzero values and thereby calls into question use of the irrotational constraint for t
case. This effect will be most pronounced when the magnitude isfrelatively large
(i.e., near the channel walls). For the converging plates case, notice that the diverge
of the flow, v - v, evaluates to)maxy—lz. Again, this formula generally evaluates to nonzero
values and thereby calls into question use of the small divergence constraint for this ¢
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Here, the effect will be most pronounced when the magnitudeisfelatively small (i.e.,
near the channel outlet). Finally, it is appropriate to discuss the relative performance
conservation of mass and brightness constancy constrained algorithms, as illustrate
the converging plates preparation. Empirically, the brightness constancy algorithm exhi
a notably greater departure from ground truth than the conservation of mass algorit
The inferior performance arises as the brightness constancy algorithm attempts to esta
correspondence between similar image brightness patterns where it is not appropria
do so. In particular, recall that for projected converging plates, the flow pattern decree
in its local average gray level along its path even while increasing in speed due to
convergent geometry and direction of projection. In contrast, the conservation of m
constraint accurately captures this state of affairs.

4. SUMMARY

An algorithm for measuring fluid flow from image sequences has been presented.
algorithm was derived from three constraints. First, a physics-based flow continuity eq
tion, motivated by the principle of conservation of mass, was used to relate image ¢
to fluid behavior. Second, a generic smoothness constraint was imposed to regularize
image data. Third, realistic boundary conditions were used to further ensure the phys
significance of the recovered flow. The calculus of variations was used to combine
constraints to yield a pair of partial differential equations that relate the spatiotempc
derivatives of image intensity to the underlying flow components. These equations w
discretized to produce an iterative solution for flow given image sequence data. A co
sponding numerical algorithm has been implemented in the C programming language
execution on standard computer workstations. This instantiation has received prelimir
testing on both synthetic and natural image fluid flows. The results of these experime
show the promise of the approach as a measurement technique for fluid mechanics.
conjectured that the algorithm also could be applicable to other imaged flows that are ¢
erned by similar physical constraints. More generally, this research provides an illustra
of the place of physical analysis in the derivation of effective computer vision algorithm

APPENDIX: TRANSMITTANCE IMAGE FORMATION

Conservation of mass is a reasonable constraint for fluid flow. However, it is less obvit
that the flow captured in a corresponding image sequence is subject to such a consti
This Appendix shows that for transmittance imagery, the constraint is indeed appropriate
particular, it is shown that the two-dimensional transmittance image of a three-dimensic
flow that respects three-dimensional conservation of mass is a two-dimensional flow |
respects two-dimensional conservation of mass, subject to certain constraints on no
flow. The results that are derived in this Appendix are an extension of previous work
the analysis of transmittance imaging (Fitzpatrick [18]). The current derivation adds
previous results in its analysis of the relevant boundary conditions. In particular, previc
results required that the boundaries of integration be outside the region for which the floy
nonzero or that the flow at opposite boundary points along the path of integration be eq
whereas the current analysis shows that it suffices for the normal flow along the bounde
of integration to be equal to zero. Further, the relationship between boundary condition
the world and boundary conditions in the image is made explicit.
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Let p(x, y, z,t) be the density of a fluid, a function of spatial coordinates,y( z),
and time,t, that is subject to a velocity field(x, y, z,t) = (U(X, V, z, t), V(X, v, Z,1),
W(X, Y, z,t)). Assuming that this fluid respects the conservation of mass, the density &
velocity are related according to

0
v (V) + 5 =0, (11)

with v the three-dimensional spatial gradient operator. Transmittance image formation
be modeled as yielding intensities that are proportional to an object’s density, integrs
along the path of the impinging energy. For incident energy parallel ta thiection and
an image recorded in the& (y) plane, the image is given as

22(X,Y)
(. y.t) = / p(%, v, 2,1)dz, (12)
z1(X,y)

wherez; (X, y) andzy(x, y) are the bounding surfaces of the specimen that is being image
(Here, the mass absorption coefficient has been absorbed into the density for the sal
convenience.) This formulation is a reasonable model of collimated monochromatic X-I
image formation [38], e.g., as used in the experimental work described in this paper. (I
assumptions underlying this model of image formation include monochromatic photo
detector robustness to scatter, narrow beam, and small aperture. These constraints ar
sonably well satisfied in the experimental apparatus used for the empirical results repo
in the current paper. For example, this apparatus employs a highly collimated synchrc
X-ray source with spatial resolution approachinguth and energiesg, precisely tuned
with narrow bandpaséf ~ 6 x 10~* [1]. More commonplace devices, e.g., medical CT
devices, will have images less well modeled by the idealized relationship (12). For exe
ple, the X-ray beam in such devices contains a broader range of energies that attenua
different amounts. Nevertheless, the idealized imaging relationship can still be used v
practical advantage, as attested to by its providing the basis for tomographic reconstruc
[38].) Application of this model of image formation to the continuity equation (11) sugges
integration along the axis according to

2(x.y) 20Y) g
/ v-(pV)dZ+/ L dz=o0. (13)
Z(x.y) a(xy) 0

The first term (i.e., the spatial term) of the integrated continuity equation (13) can
rewritten as

Z 2z 22 J

[ v ovdz= [ vuy - (Vapdze [ oW dz (14
Z Z Z

whereV, y(X, Y, z,t) = (U(X, y, 2, t), V(X, ¥, Z, 1)) and v y is the two-dimensional gra-

dient operator inX, y). It is useful to bring the (two-dimensional) gradient operator to the

outside of the first term on the right-hand side of the expanded integral (14). To perfo

this operation, recall that, in general, if

B(r)
F(r) =/ f(r,s)ds,
o(r)
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then

5 ot
FO=FO10 80 - O Car)+ [ 0Dd

(Buck [39]). Applying this formula to the first integral on the right-hand side of (14) yield

2(X,Y) b2}
/ Ty (PVry) dZ= Ty - / PNVrydz— [(Vxy?) - (Vay)Z.  (15)
z1(X,Y) F21

The second integral on the right-hand side of (14) evaluatgswg$:. This expression can
be recombined with the rightmost term of (15) to yield

[=(Vxy2) - (0Vx)IZ + [PWIZ = [on - VIZ,

withn = (— ax, §—§ 1) normal vectors to the surfacesandz,. The right-hand side of this
expression can be physically interpreted as material flow in the normal direction weigh
by the surface gradient, evaluated at the extremes of the specimen. Equation (14) now
be written as

22 2
/ v~(pV)dz=vx.y-/ PNy dz+ [on - V]Z. (16)
V4

1 2

This new form of the spatial part of the integrated continuity equation (16) can be st
stituted into the original integrated continuity equation (13) to yield

Z 2 a
Vx,y'/ pVX,de—i—/ —dZ+[pn V]Zz— a7)

Z1 2

Now, define a new two-dimensional velocity field as the density-weighted average of
original three-dimensional velocity field; i.e., let

2 5V, ydz
vz Ju PVxy 92 Jp pxdyz . (18)

Using this two-dimensional velocity (18) along with the model of image formation (1-
allows the integrated continuity equation to be interestingly rewritten as

0
Vxy  EV+ —E

SE = —[pn-VIZ. (19)

For the case of null normal flow at the boundaries, the right-hand side of this last equa
vanishes. In this case the transmittance image of a three-dimensional flow that obse
continuity is a two-dimensional flow that observes continuity, with the flow being tt
density-weighted average of the three-dimensional flow, i.e., definition (18). For examj
this is the situation in the experiments that are reported in this paper. In contrast to the «
of null normal flow at the boundaries, the general projected flow expression violates t
dimensional continuity. Equation (19) shows that this deviation from continuity is govern
by the material flow across the boundaries of the projected specimen.
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Finally, it is of interest to understand the image ramifications of the three-dimensiol
world null normal flow boundary condition

[N-V]3e =0, (20)

whered (2 is the three-dimensional boundary of a specimen of interest. In order for a p
of the three-dimensional bounda¥§2 to appear as a boundafyy, in the image it must be
positioned relative to the sensor as an “occluding contour.” Keeping the geometry of im:
formation introduced above (collimated rays alongzlais impinging on thex, y)-plane
image), this condition can be captured as

N.(0,0,1) =0,

implying that along such contounld, = (N, Ny, 0). When the constraint that ta&ompo-
nent ofN is equal to 0 is placed on the three-dimensional null normal flow condition (2C
it yields

(Nxv Ny) : (Vx, Vy) =0. (21)

Following the operative geometry of image formationylet (Nx, Ny) be the (image) nor-
mal along imaged boundary contouds;. Combining this definition of and the definition
of v (18) with the constraint (21) shows that that the three-dimensional null normal flc
boundary condition (20) implies a two-dimensional image domain null boundary conditic

[n 'V]3w = 0,

as presented earlier in this paper as Relationship (7).
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