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This paper presents an approach to measuring fluid flow from image sequences.
The approach centers around a motion-recovery algorithm that is based on principles
from fluid mechanics: The algorithm is constrained so that recovered flows observe
conservation of mass as well as physically motivated boundary conditions. Empirical
results from application of the algorithm to transmittance imagery of fluid flows,
where the fluids contained a contrast medium, are presented. In these experiments,
the algorithm recovered accurate and precise estimates of the flow. The significance
of this work is twofold. First, from a theoretical point of view it is shown how
information derived from the physical behavior of fluids can be used to motivate a
flow-recovery algorithm. Second, from an applications point of view the developed
algorithm can be used to augment the tools that are available for the measurement of
fluid dynamics; other imaged flows that observe compatible constraints might benefit
in a similar fashion. c© 2000 Academic Press

1. INTRODUCTION

1.1. Motivation

Physical modeling plays an important role in computer vision. Constraints derived from
physical considerations are often used to provide the basis for well-motivated algorithms.
This close tie between image interpretation and physical modeling suggests that measure-
ment problems in the physical sciences might be a fruitful source of research issues for
computer vision. A particular domain where this methodology is likely to be of value is
the measurement of fluid flow from image sequences. Here, applicable physical constraints
come naturally from fluid mechanics. For example, differential flow constraints can arise
from the continuity equations yielded by conservation of mass and momentum. Similarly,
realistic boundary conditions can be derived from physical considerations. Significantly,
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it is standard practice in experimental fluid mechanics to seed flows with tracers for the
sake of visualization. This practice yields imagery with the patterned contrast (i.e., tex-
ture) necessary to drive standard computer vision motion-analysis algorithms. Owing to
their physical underpinning, algorithms that are founded on these principles should exhibit
greater accuracy and precision than those based more simply on the matching of image
intensity patterns.

Motivated by these observations the current paper presents an algorithm, based in the
physics of fluid mechanics, for the recovery of fluid flow from image sequences. The
algorithm is particularly targeted to the recovery of two-dimensionally imaged motion
of three-dimensional media. Significantly, such two-dimensional information can be of
importance in and of itself, even though the actual three-dimensional motion is not made
explicit. As examples, in fluid mechanics, two-dimensional motion allows comparisons
between empirical data and theoretical models (Lanzillottoet al. [1]); in medical image
analysis, two-dimensional motion can be used to monitor blood flow in a meaningful fashion
(Amini [2], Nogawaet al. [3]); in meteorology, two-dimensional motion in atmospheric
image sequences can be used to support large-scale pattern analysis (Cohen and Herlin
[4], Larsenet al. [5], Memin and Perez [6]). The immediate application of the developed
algorithm is to the experimental study of fluidic devices. More generally, however, the
developed algorithm should be applicable to a variety of flow-recovery problems where the
kinematics of imaged motion is related to the continuum mechanics of the imaged media.
In particular, certain types of (i) medical transmittance imaging (e.g., X-ray time series of
biological tissue (Webb [7])) and (ii) visible reflectance imaging (e.g., uncalibrated image
sequences depicting dilation and/or angular rotation (Del Bimboet al. [8])) might be well
suited to the described algorithm.

1.2. Related Research

The recovery of optical flow, i.e., the apparent motion of image intensity patterns, has
been the subject of a great deal of research (Aggarwal and Nandhakumar [9], Beauchemin
and Barron [10]). Typically, optical flow algorithms are based on the brightness constancy
constraint (Horn [11]). Essentially, this dictates that the algorithms establish a mapping
between two images based directly on the similarities of the image intensities. Various
phenomenological extensions to this constraint have been proposed to make it less restrictive
(e.g., Cornelius and Kanade [12], Negahdaripour and Yu [13]). Other extensions have
been based on the analysis of the imaging of three-dimensional objects under perspective
projection (Nagel [14]). For many applications, algorithms based on brightness constancy or
the cited extensions have proven to be of value. However, these constraints fail to adequately
capture the nature of fluid flow and therefore are less clearly applicable to that problem
domain.

For the matters at hand, a natural constraint arises in the flow continuity equation as
derived from the principle of conservation of mass. This constraint dictates temporal image
transformations that are consistent with fluid flow behavior. Schunck [15] first applied the
conservation of mass constraint to the analysis of imaged motion. This work suggested
the possibility of using the conservation of mass constraint to model the imaged motion
of rotating and perspectively distorted objects; however, it did not propose a method to
solve for corresponding flows given image irradiance data. Fitzpatrick [16] appears to have
presented the first specific solution method, with the additional constraint that the flow
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is irrotational. While this work did not present an implemented algorithm, it did present
an analytic example. Subsequently, Fitzpatrick and Pedersen [17] documented the first
working algorithm with results on natural imagery. This algorithm incorporated not only
the conservation of mass and irrotational flow constraints, but also the use of physically
realistic boundary conditions. In conjunction with this work, Fitzpatrick [18] presented
a theoretical analysis that showed the relationships between a three-dimensional medium
that obeys the conservation of mass and its corresponding two-dimensional transmittance
image. In particular, this work justified the application of the conservation of mass continuity
equation in the image domain even for the case of discontinuous media, via consideration
of the blurring that is inherent in the imaging device. This work is of key importance for the
research that is reported in the current paper, where the conservation of mass is applied to
the analysis of two-dimensional transmittance imagery of three-dimensional discontinuous
fluids (i.e., fluids containing a contrast medium).

Song and Leahy [19] derived the conservation of mass continuity equation in their pre-
sentation; however, they ultimately combined it with an incompressibility constraint to yield
the continuity equation for incompressible media. In implementation, this work reported an
algorithm that recovered three-dimensional flow from corresponding image sequence data
while enforcing a small divergence constraint. In this case, the small divergence constraint
was justified by the target application domain (analysis of cine computed tomograms of the
heart). Amini [2] also reported use of the conservation of mass constraint in conjunction
with incompressibility in an algorithm with application to the analysis of blood flow. In this
case it was shown that if incompressible flow along one of its three spatial dimensions is
equal to zero and the medium is described by a two-dimensional distribution in the other
spatial coordinates, then the continuity equation reduces to the brightness constancy con-
straint. Yet another approach to incorporating the conservation of mass constraint has been
to approximate its solution via application of least-squares methods to a truncated Taylor
series expansion of the continuity equation (Del Bimboet al. [20]).

Interestingly, not all work from the computer vision and image processing communities
that has been concerned with recovering fluid flow from imagery has made direct use of
conservation of mass inspired continuity constraints (J¨ahne and Waas [21], Maaset al.[22],
Cohen and Herlin [4], Larsenet al.[5], Memin and Perez [6]). Similarly, standard techniques
developed in experimental fluid mechanics for recovering fluid flow from imagery have not
made direct use of conservation of mass inspired continuity constraints. Instead, they have
relied on image correlation techniques (occasionally with extensions) or simple particle
trackers applied to images of fluids containing a contrast medium (Adrian [23], Lourenco
et al. [24], Willert and Gharib [25], Zhonget al. [26]). Finally, an alternative approach
developed especially for fluid dynamics phase portrait visualization relies on recovery of
the local tangent field to images depicting streamlines of the underlying flow (Fordet al.
[27], Ford and Strickland [28]).

The current work contributes to previous research mainly as follows. The conservation
of mass flow continuity equation is used in a variational formulation of a novel algorithm
for the recovery of fluid flow from image sequences. This algorithm has been implemented
and successfully evaluated with both synthetic and natural imagery of microfluidics. While
previous research has made use of the conservation mass constraint in the development of
algorithms for image motion analysis, it appears that the current work is the first that does
not require either irrotational or small-divergence flow. Indeed, there is a cause and effect
relationship between these various formulations and the flows that the algorithms recover.
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Ultimately, the appropriateness of one or another approach depends on the application
domain that is under consideration. Preliminary versions of the research that is reported in
the current paper have appeared previously (Wildeset al. [29, 30]).

1.3. Outline of Paper

The main body of this paper unfolds in four sections. The first section has served to mo-
tivate physics-based recovery of fluid flow from image data. Section 2 describes a technical
approach to this matter. In Section 3, experimental results of testing the approach in the
face of fluid flow imagery are provided. Section 4 provides a summary. Following the main
sections an appendix provides additional details on image formation.

2. TECHNICAL APPROACH

2.1. Algorithm Derivation

Let E(x, y, t) be an image, a function of spatial coordinates, (x, y), and time,t . Suppose
that this image depicts a fluid flow in such a way that the essential physical characteristics
of the flow are captured. In particular, suppose that the imaged intensities observe the
conservation of mass just as does the fluid density. For example, in the Appendix to this
paper it is shown that the two-dimensional transmittance image of a three-dimensional fluid
flow that respects conservation of mass in three dimensions is a two-dimensional flow that
respects the conservation of mass in two dimensions. This is true provided that there is
no material loss due to normal flow at the boundaries of the flow. In this case the two-
dimensional (imaged) flow is the density-weighted average of the three-dimensional flow,
taken along imaging rays. Correspondingly, application of the conservation of mass flow
continuity equation to a temporally varying image yields

Exu+ Eyv + Eux + Evy + Et = 0,

or more compactly

5 · (Ev)+ Et = 0, (1)

wherev = (u(x, y, t), v(x, y, t)) is the imaged flow,5 ≡ ( ∂
∂x ,

∂
∂y ) is the spatial gradient

operator, and subscripts denote partial differentiation (Streeter [31]). In essence, this con-
straint states that flow through the boundary of a region must be balanced by accumulation
in the region. The continuity equation (1) will be taken as the fundamental constraint for
relating image intensity measurements to fluid flow. In this regard, it can be contrasted with
the brightness constancy constraint

Exu+ Eyv + Et = 0, (2)

the standard constraint for optical flow algorithms. This constraint more simply insists on
identity of intensities between corresponding image elements across time. Notice that the
brightness constancy assumption is too restrictive a model for fluid flow, where material
particles may well deform (in a conservative fashion), whereas the conservation of mass
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continuity equation accurately captures such phenomena. In practice, to allow for imperfect
data, strict enforcement of the continuity constraint is replaced with minimization of

cc = (5 · (Ev)+ Et )
2, (3)

with respect tov over an image domain of interest.
To operate successfully with imperfect data, it is useful not only to avoid strict adherence

to the continuity constraint, but also to impose additional constraints on the recovered flow
that are intended to ameliorate the effects of noise. A useful constraint in this regard is to
encourage smoothness of the recovered flow. This notion can be captured by minimizing
the spatial variation of the flow; e.g.,

cs = u2
x + u2

y + v2
x + v2

y. (4)

Another way to look at this constraint is in terms of regularization theory, where constraints
of this form are taken to stabilize the solution (Tikhonov and Arsenin [32]). Without im-
position of this constraint, it was found that the imagery of interest was too noisy to yield
coherent flow fields.

Following the methodology of Horn and Schunck [33], the measures of continuity (3)
and smoothness (4) can be combined and evaluated over a domain of interest to yield a
problem of the form

min
∫ ∫

(λcc + cs) dx dy, (5)

with λ being a weighting parameter that trades off adherence to the continuity constraint
and smoothness of flow. Minimization of this integrated constraint equation with respect to
flow parameters (u, v) is a problem in the calculus of variations (Courant and Hilbert [34]).
In particular, the integrand of Eq. (5) has the formF(x, y, u, v,ux, uy, vx, vy). The corre-
sponding Euler–Lagrange equations, which provide necessary conditions for a minimum,
are

Fu − ∂

∂x
Fux −

∂

∂y
Fuy = 0

Fv − ∂

∂x
Fvx −

∂

∂y
Fvy = 0.

When these equations are evaluated in terms of the integrated constraint equation (5), a pair
of partial differential equations (PDEs) results,

52u = −λ(Etx + Exxu+ Eyxv + 2Exux + Eyvx + Exvy + Evyx + Euxx)E
(6)

52v = −λ(Ety + Exyu+ Eyyv + Eyux + Exuy + 2Eyvy + Euxy+ Evyy)E,

where52 ≡ ( ∂
2

∂x2 + ∂2

∂y2 ) is the Laplacian operator. These imaged fluid flow equations re-
late image intensity measurements to permissible flow field components as constrained by
conservation of mass and smoothness of flow.

In order for a variational problem, such as minimization of the integrated constraint
equation (5) to be well posed, it is necessary to enforce appropriate boundary conditions.
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Physical considerations can serve to provide the needed constraints. For fluidic systems, a
basic constraint is that the fluids must flow within their containing channels (essentially,
impenetrability of matter). This can be expressed by disallowing normal flow along the
boundaries of the domain in which the fluid lies. In the Appendix to this paper, it is shown
that operation of this constraint in a three-dimensional specimen implies a corresponding
two-dimensional boundary condition in its transmittance image; i.e.,

[n · v]∂ω = 0, (7)

wheren specifies the normals to the two-dimensional imaged boundary,∂ω, of the three-
dimensional specimen. Additionally, if the (imaged) channel boundaries do not completely
enclose the domain of interest (e.g., the apparent end of a channel as it runs off the end of
the image), then natural boundary conditions (Neuman boundary conditions) are enforced
at such points. Applying natural boundary conditions at channel endings is appropriate for
the steady state flows that are the subject of this paper’s experimental evaluation; however,
alternative constraints might be more applicable in other scenarios.

A numerical solution to the imaged fluid flow equations, (6), can be found via discretiza-
tion. Application of finite differences (Dahlquist and Bj¨orck [35]) to these equations yields

4(ūi, j − ui, j ) = −λ
[
Etx + Exxui, j + Eyxvi, j + 2Ex1xui, j + Ey1xvi, j + Ex1yvi, j

+ E1yxvi, j + 2E
(
ūx

i, j − ui, j
)]

E

4(v̄i, j − vi, j ) = −λ
[
Ety + Exyui, j + Eyyvi, j + Ey1xui, j + Ex1yui, j + 2Ey1yvi, j

+ E1xyui, j + 2E
(
v̄

y
i, j − vi, j

)]
E,

wherei, j is the index of image position,1xui, j = (ui+1, j − ui−1, j )/2 is the central dif-
ference,1xyui, j = (ui+1, j+1− ui+1, j−1− ui−1, j+1+ ui−1, j−1)/4 is the mixed difference,
ūx

i, j = (ui+1, j + ui−1, j )/2 and ūi, j = (ui+1, j + ui−1, j + ui, j+1+ ui, j−1)/4 are averaging
operators, etc. These equations can be written more compactly by lettingI be the identity
matrix,

A = −E

(
Exx − E Eyx

Exy Eyy− E

)
,

b(v) = E

(
Etx + 2Ex1xui, j + Ey1xvi, j + Ex1yvi, j + E1yxvi, j + Eūx

i, j

Ety + Ey1xui, j + Ex1yui, j + 2Ey1yvi, j + E1xyui, j + Ev̄y
i, j

)
,

v = (u, v)T andv̄ = (ū, v̄)T , to yield

(I + λA)v = v̄+ λb.

Various numerical methods exist that could solve the previous system forv (see, e.g.,
Dahlquist and Bj¨orck [35]). For example, in theory it would be possible to apply a method
such as Gauss–Jordan elimination directly to this discrete system. However, due to the
sparseness and size of the resulting matrix (i.e., the number of rows and columns equals
two times the number of image pixels), this is a needlessly costly approach. Instead, a
method that has been successful in the current context is algorithmic time discretization.
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In particular, application of the inverse ofI + λA to both sides of the previous equation
yields an iterative solution foru andv,

vn+1 = (I + λA)†(v̄n + λb(vn)), (8)

wherevn+1 is the value ofv = (u, v)> computed at iterationn+ 1 from the valuevn

computed at iterationn and† denotes the matrix inverse. Intuitively, these equations can
be taken as providing updated values for (u, v) based on local averages of the flow field as
corrected by deviation from conservation of mass dictated continuity.

2.2. Algorithm Instantiation

The iterative solution for flow field components (8) has been embodied in a Gauss–Seidel
relaxation algorithm; i.e., new values ofv are entered into the computation as soon as they
are calculated rather than at the completion of an entire iteration cycle as done in Jacobi
relaxation (Dahlquist and Bj¨orck [35]). This algorithm accepts a pair of images as well as a
region of interest map and recovers a corresponding flow field. The region of interest map is
a binary map that demarks the areas over which flow is to be calculated. The algorithm first
solves for the flow along the channel boundary of the region of interest while enforcing the
null normal flow constraint (7). This constraint is practically instantiated in the following
fashion. Along each channel wall the imaged flow equations (6) are solved as restricted
to one dimension. This yields a single one-dimensional flow equation, with the direction
constrained to be tangential to the channel wall. To ensure that this problem also is properly
posed, natural boundary conditions (i.e., Neumann boundary conditions) are enforced at
the ends of the channel. These are implemented by introducing a new point at each end of
the channel boundary and copying over the one-dimensional solution at the neighboring
interior point at each iteration. Subsequently, the one-dimensional solution(s) are used as
the boundary conditions as the algorithm solves on the domain interior. During this process,
natural boundary conditions are enforced at loci where the channel walls do not completely
enclose the domain of interest (e.g., the apparent end of a channel as it runs off the end of
the image). The initial values foru andv are taken as zero everywhere.

This relaxation algorithm has been embedded in a hierarchical coarse-to-fine refinement
control structure to support extended spatial capture, i.e., recovery of multipixel motions,
and computational efficiency (Bergenet al. [36]). Operation begins by computing a series
of low-resolution versions of the input images (via successive one-octave low-pass filtering
and factor of 2 subsampling). The coarsest resolution is then used to recover an initial flow
estimate which is refined via reference to successively finer resolution images, finishing
with the original images. In this regard, it is important to note that the conservation of
mass flow continuity equation is applied at each iteration of the estimation process. It is a
heuristic assumption that the constraint is thereby enforced on the overall displacement that
results from the concatenation of the individual estimates. Nevertheless, empirical results
(as described in the next section of this paper) support this methodology.

In the experiments reported in this paper coarse-to-fine processing proceeded up to five
levels of resolution reduction. Iterations of the flow field solution (8) were calculated to
allow the most distant pixels at the coarsest resolution to broadcast their intensity values to
one another. For example, starting with a 512× 512 image reduced by 5 levels to yield a
16× 16 image leads tod16

√
2e = 23 iterations being calculated at each resolution level.
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Values forλ were selected empirically; specific values are documented in the context of
the experiments described in Section 3. This entire scheme has been implemented in the C
programming language. As currently installed, it executes from the UNIX command line
on Sun SPARCstations and as an Explorer module on Silicon Graphics workstations.

3. EXPERIMENTAL EVALUATION

It is hypothesized that the developed flow-recovery algorithm is widely applicable to
the measurement of fluid flow from imagery at a wide range of spatial scales. The current
application domain for the algorithm is microfluidics (Lanzillottoet al. [1]). Of particular
interest is employing the algorithm in conjunction with microradiography (Cosslettet al.
[37]) to enable the noninvasive assessment of microelectromechanical systems (MEMS).
Therefore, the reported experiments concentrate on microscale X-ray imagery. Further, all of
the considered flows have small Reynolds numbers, approximately equal to one. (Reynolds
number is the ratio of inertial to viscous forces; smaller values are associated with higher
stability of laminar (as opposed to turbulent) flow (Streeter [31]).)

3.1. Image Acquisition

The basic experimental rig is illustrated in Fig. 1. Experiments involved image sequences
of fluid emulsions driven through a variety of physical devices. The emulsions consisted
of a contrast medium mixed with a fluid and thereby yielded a spatially varying image
intensity pattern. After emulsification, the contrast medium was dispersed in the fluid as
tiny droplets (1–20µm). By the choice of a contrast medium with the same density as the
fluid (1-bromohexadecane in water) the droplets were made neutrally buoyant and followed

FIG. 1. Image acquisition. Image sequences of fluid emulsions driven through a variety of physical devices
were used to evaluate the performance of the recovery algorithm. The flow was imposed by a mechanically driven
syringe pump. Images were generated by a collimated monochromatic X-ray source in conjunction with a phosphor
screen and optics to image onto a CCD imager for digitization.
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the imposed flow. The flow was generated by a mechanically driven syringe pump that
could be controlled to force the fluid emulsion through the devices at 0.004 or 0.008µl/s.
Images were generated by a collimated monochromatic X-ray source in conjunction with a
phosphor screen and optics to image onto a CCD imager for digitization at 14-bit precision.
This system is capable of operating with two sets of spatiotemporal resolution parameters.
The first configuration has spatial resolution at 2.8µm/pixel with a temporal sampling rate
of 0.4 frames/s and an exposure time of 500 ms/frame. The second configuration has spatial
resolution a 1.6µm/pixel with a temporal sampling rate of 10 frames/s and an exposure
time of 100 ms/frame.

3.2. Synthetic Imagery

Synthetic imagery allows the testing of computer vision algorithms in the face of known
ground truth. Accordingly, synthetic images were generated to simulate the transmittance
imagery that is acquired with the image acquisition rig of Section 3.1. The first simulated
experimental preparation consisted of steady state fluid flow through cylindrical tubes. This
preparation is of interest because the expected flow can be predicted analytically according
to the fully developed circular pipe flow model [31]; therefore, recovered flows can be
evaluated against physically meaningful model predictions. The pipe flow model dictates a
parabolic displacement along the axis of the tube with the form

v

vmax
= 1− r 2

R2
, (9)

whereR is the tube radius,r is the perpendicular distance of any point in the tube from
the central axis,vmax is the maximal displacement along the central axis, andv is the
displacement along the tube axis at pointr . Flow in the orthogonal direction is taken as
zero.

To mimic this setup, virtual balls were generated and randomly dispersed within a cylin-
der. The density and diameters of the balls were chosen to be in accord with the fluid
emulsions used with the actual image acquisition rig. A raytracer was used to simulate
the transmission of X rays through these structures according to a standard linear absorp-
tion model, as given by Eq. (12) in the Appendix. The simulated spatial resolution was
2.8µm/pixel. The gray-level resolution was 16 bits. A second image was raytraced after
the spheres were shifted according to the pipe flow model (9). The left panel of Figure 2
shows an image from such a simulation experiment.

Simulated flow sequences were generated for tube diameters of 1000, 800, and 600µm.
For each tube, flow rates were simulated to yield a range of maximum image displacements.
The flow-recovery algorithm was executed on the resulting image sequences. In these
experimentsλ = 0.01, an empirically selected value. To quantify performance, the root
mean square error between the recovered and simulated velocities in the direction of the
tube axis was calculated in the following fashion,

RMS(error)=
√∑r=D/2

r=−D/2(vrecovered(r )− vsimulated(r ))2

D
,

with D being the tube diameter. (The recovered velocities in the orthogonal direction were
inconsequential.) The results are shown in the right Fig. 2. For small displacements the error
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FIG. 2. Root mean square (RMS) error results using synthetic imagery: (left) a synthetic radiograph of
emulsion particles flowing through a cylindrical tube; (right) the RMS error of recovered vs veridical displacements
for a range of simulated tube diameters.

is small for all tubes. With increased displacement the error rises, especially for smaller
tubes. While not apparent in these plots, the error typically comes as an underestimate of the
true flow. The errors are due to the fact that the algorithm requires more spatial support in the
recovery of larger displacements. The narrower tubes may not offer sufficient information to
support the recovery of large displacements. Still, the algorithm proves capable of subpixel
precision for an interesting range of experimental parameters.

The convergence of the flow-recovery algorithm is illustrated in Fig. 3. The RMS error is
plotted as a function of iteration for two of the simulated tube flows: the lowest flow rate in
the widest tube and the highest flow rate in the narrowest tube. These examples have been
selected as they capture the extremes of the simulations (i.e., the smallest displacement with
the most spatial support and the largest displacement with the least spatial support). In both
cases the error decreases at a reasonable rate.

FIG. 3. Algorithm convergence as a function of the iteration number. The plots show RMS error in recovered
displacement as a function of the iteration number for synthetic flow through two cylindrical tubes.
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FIG. 4. Velocity profiles recovered from synthetic imagery of fluid flow through a converging channel. (upper
left) A schematic of the simulated flow experiment. Flow is downward between a pair of converging plates open
at the top and bottom (shown as a truncated triangle for simplicity; i.e., the plates extend from the plane of the
figure) and projected along the horizontal axis. (upper right) A corresponding synthetic radiograph of emulsion
particles flowing through the channel. The direction of projection yields a rectangular image region. (lower) The
average recovered vertical flow profiles for conservation of mass,♦, and brightness constancy,+, constrained
flow recovery algorithms. The analytically predicted flow profile for this experiment also is shown (solid line).

The second simulated experimental preparation consists of fluid flow between a pair of
converging plates. A schematic of this device is shown in the upper left panel of Fig. 4. This
preparation is of interest because the expected flow is well understood from an analytic
point of view [31], with velocity increasing as the channel converges while trailing to zero
along the channel walls. For present purposes, it is illustrative to take the transmittance
projection of this three-dimensional flow in the direction that is shown in the schematic,
i.e., along the horizontal. (A practical application of such a projection comes about when
the optical depth of the device is too great to allow projection in the direction orthogonal to
the schematic.) A simulated image for this preparation is shown in the upper right panel of
Fig. 4. Notice that the average local intensity decreases from top to bottom as the projected
matter decreases and that the convergent shape is no longer apparent as it is integrated
across. For the simulated convergence angle,π/2, the image displacement parallel to the
direction of convergence has the form

v

vmax
= −1

y
, (10)
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where increasingy is taken opposite to the direction of convergence with origin at the apex
of convergence andvmax is the maximal displacement at the outlet, located at some positive
y. Flow in the orthogonal direction is assumed to be zero. With reference to Fig. 4 the flow is
downward and increasing from top to bottom. The results of executing the conservation of
mass constrainted flow recovery algorithm, withλ = 0.01, on a corresponding image pair
is illustrated in the lower panel of Fig. 4. Here, the average recovered velocity in the vertical
direction is plotted against image position. (Recovered velocity in the orthogonal direction
was inconsequential.) For comparison, the analytically predicted velocity is shown in the
same plot. The RMS error of the recovered flow is 0.2 pixel, mostly due to a slight tendency
to underestimate the larger displacements. The plot also shows the results of replacing the
conservation of mass constraint in the algorithm with the brightness constancy constraint
(2), while keeping all other parameters constant. In this case, the recovered flow grossly
underestimates the larger displacements. Correspondingly, the overall RMS error is elevated
to 3.1 pixels.

3.3. Natural Imagery

Following on the experiments with synthetic imagery, the algorithm has been evaluated
in the face of natural imagery of steady state flow through cylindrical tubes. In particular, the
image acquisition rig described in Section 3.1 was used to capture the flow of fluid through
small-diameter quartz capillary tubes. An initial set of experiments considered flow through
an 800-µm-diameter tube. Two flow rates were considered: 0.004 and 0.008µl/s. The spatial
resolution was 2.8µm/pixel with a temporal sampling rate of 0.4 frame/s and an exposure
time of 500 ms/frame. A single frame from the lower flow rate sequence is shown in Fig. 5a.

The flow-recovery algorithm was executed on both the 0.004- and 0.008-µl/s capillary
tube image sequences. In these experiments,λ = 0.0001, an empirically selected value.
The recovered flow for the lower flow rate is shown as a vector plot in Fig. 5b. Qualitatively,
the recovered flow is in agreement with inspection of the image sequence by eye: The

FIG. 5. Velocity field recovered from natural imagery of fluid flow through a capillary tube. (left) A frame from
a radiographic image sequence of an emulsion flowing through an 800-µm-diameter capillary tube. (right) The
recovered velocity field from two successive frames. The recovered flow is in accord with one’s visual impression
upon viewing the image sequence.
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FIG. 6. Velocity profiles recovered from natural imagery of fluid flow through capillary tubes. (left) The
average recovered axial flow profiles for two different flow rates through an 800-µm-diameter capillary tube (dotted
lines). Analytically predicted flow profiles for these experiments also are shown (solid lines). (right) The recovered
axial flow profiles for two different capillary tube diameters in dimensionless coordinates. The results for 200- and
100-µm-diameter tubes are plotted with the symbolss and h, respectively. The corresponding analytically
predicted flow profile is shown as a solid line.

magnitude is greatest along the center line and trails toward zero at the side; the direction
is predominantly along the tube axis (i.e., vertical), with somewhat more variation in the
center than at the side. The average recovered velocity profiles in the axial direction are
shown in Fig. 6a. For comparison, the profiles predicted by fully developed pipe flow (9)
averaged along imaging rays also are plotted in Fig. 6. (Recall that the imaged flow should
be an average of the three-dimensional flow due to the properties of transmittance imaging.)
The recovered flow is in good agreement with the predictions of the model for both flow
rates.

Additional capillary tube experiments have been executed for flow at 0.004µl/s in cap-
illary tubes with diameters of 200 and 100µm. For these cases the spatial resolution was
1.6µm/pixel with a temporal sampling of 10 frames/s and an exposure time of 100 ms/frame;
λ = 0.00001, an empirically selected value. The results for these experiments are collapsed
into a single nondimensional plot in Fig. 6b. The radius of the tube,R, and the maximum
velocity, vmax, were used to nondimensionalize the plot. A pipe flow velocity profile (9)
also is superimposed on this plot. In both cases, the recovered profiles are in reasonable
agreement with the theoretical prediction. Interestingly, it appears that no previous study
has documented the flow of fluids through cylindrical tubes with diameters under 1000µm.

A second set of studies involved microradiography of more complicated devices where
analytic predictions of the flow were not available. The first device was a ramped step
channel. The second device was a serpentine channel. Both devices were etched in silicon
and covered with glass. Parameters for both studies were the same: Injected flows were
0.004µl/s; the spatial resolution was 1.6µm/pixel with a temporal sampling 10 frames/s
and an exposure time of 100 ms/frame.λ = 0.00001, an empirically selected value. An
image of the ramped step channel and a recovered velocity field are shown in Fig. 7. The
results are in accord with one’s visual impression. The flow is fastest at the upper inlet and
loses speed while expanding thereafter; the speed is smallest near the channel walls. An
image of the serpentine channel and a recovered velocity field are shown in Fig. 8. Again,
the results are in accord with one’s visual impression. The flow follows the channel’s bends
most closely along the boundaries and less so in the center; the speed is smallest near the
channel walls.
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FIG. 7. Velocity field recovered from natural imagery of fluid flow through a ramped step channel. (left) A
frame from a radiograph sequence of an emulsion flowing through a ramped step channel etched in silicon and
covered with glass. (right) The velocity field recovered from two successive frames. The recovered flow is in
accord with one’s visual impression upon viewing the image sequence.

3.4. Discussion

In general, the algorithm for recovering fluid flow from image sequence data has per-
formed well in empirical evaluation: For cases where the expected flow can be predicted
analytically, the recoverd flow is in accord with theory. For complex flows, where the re-
sults cannot be predicted analytically, the recovered velocity fields agree with qualitative
expectations. Also, the algorithm exhibits a reasonable rate of convergence.

In order to achieve the reported level of performance, it has been necessary to use more
than one numerical value for the smoothing parameter,λ. Significantly, however, it has been

FIG. 8. Velocity field recovered from natural imagery of fluid flow through a serpentine channel. (left) A
frame from a radiograph sequence of an emulsion flowing through a serpentine channel etched in silicon and
covered with glass. (right) The velocity field recovered from two successive frames. The recovered flow is in
accord with one’s visual impression upon viewing the image sequence.
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possible to use a single value for each experimental configuration: 0.01 for the synthetic
image experiments and 0.0001 and 0.00001 for the low and high (respectively) spatiotem-
poral resolution natural image experiments. More generally, the algorithm is reasonably
stable with respect to minor variations in the value ofλ for any of the three configurations.
For example, halving or doubling the value ofλ keeps the RMS error at the same order
of magnitude. Further, the fact that it has been possible to use a single level of smoothing
for multiple experiments with each configuration attests to this stability. Still, the level of
smoothness is relatively large and can be seen as in conflict with previous results suggesting
that recovered flow can lose accuracy due to oversmoothing (e.g., Song and Leahy [19]).
This apparent discrepancy is likely due to the fact that the flows that are considered in the
current paper are inherently smoother than those reported in the previous work. (For ex-
ample, the flows studied by Song and Leahy included vortex structures that are not present
in the current studies.) It also is worth noting that the level of smoothing that is reported
in the current natural image studies is a reflection of the high level of noise that is inherent in
the applied imaging methodology. Significantly, even given the weight that is placed on the
smoothing term (4), the proposed algorithm does not reduce merely to interpolating the
boundary conditions with first-order smoothness vector splines. The patterns of recovered
flow away from the boundaries would not be present if that were the case. For illustration,
consider the pipe flow examples. The “null normal flow” boundary condition (7) yields
the same constraint on the left and right sides of the imaged channel. The natural bound-
ary condition at the imaged channel ends, i.e., top and bottom as depicted in the figures,
does not in and of itself vary across the horizontal dimension. Taking the preceding two
observations in tandem, it becomes clear that the interpolation of the boundary conditions
with first-order smoothing splines cannot yield variation of the flow profile as one proceeds
along the horizontal dimension. In contrast, the recovered flow profile has a pronounced
parabolic profile parameterized along the horizontal dimension.

Given the range of experimental results that have been presented in the current paper, it
is interesting to consider how alternatives to the applied algorithm might fare if given the
same data. At one extreme, it is worth noting that for the cylindrical pipe and converging
plate experiments the flow is essentially one-dimensional. Correspondingly, one of the
velocity components in the continuity equation (1) can be set to zero and the remaining
component can be solved for uniquely given appropriate boundary conditions (although, in
practice, some enforcement of smoothing (5) will still be necessary to combat the effects of
noise). These observations suggest the applicability of a restricted one-dimensional version
of the flow-recovery algorithm; however, the use of such an algorithm will necessarily
be limited to situations where the considered flow is itself one-dimensional. It also is
interesting to consider the applicability of previously developed algorithms that have made
use of conservation of mass as bolstered by irrotational (Fitzpatrick [16], Fitzpatrick and
Pedersen [17]) and small-divergence (Song and Leahy [19]) constraints. In this regard,
it is illustrative to consider the two flow patterns that were given analytically, projected
pipe flow (9) and projected converging plates (10). For the pipe flow case, notice that the
curl of the flow,5× v, evaluates to−2vmax

r
R2 . Typically, this formula will evaluate to

nonzero values and thereby calls into question use of the irrotational constraint for this
case. This effect will be most pronounced when the magnitude ofr is relatively large
(i.e., near the channel walls). For the converging plates case, notice that the divergence
of the flow,5 · v, evaluates tovmax

1
y2 . Again, this formula generally evaluates to nonzero

values and thereby calls into question use of the small divergence constraint for this case.
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Here, the effect will be most pronounced when the magnitude ofy is relatively small (i.e.,
near the channel outlet). Finally, it is appropriate to discuss the relative performance of
conservation of mass and brightness constancy constrained algorithms, as illustrated by
the converging plates preparation. Empirically, the brightness constancy algorithm exhibits
a notably greater departure from ground truth than the conservation of mass algorithm.
The inferior performance arises as the brightness constancy algorithm attempts to establish
correspondence between similar image brightness patterns where it is not appropriate to
do so. In particular, recall that for projected converging plates, the flow pattern decreases
in its local average gray level along its path even while increasing in speed due to the
convergent geometry and direction of projection. In contrast, the conservation of mass
constraint accurately captures this state of affairs.

4. SUMMARY

An algorithm for measuring fluid flow from image sequences has been presented. The
algorithm was derived from three constraints. First, a physics-based flow continuity equa-
tion, motivated by the principle of conservation of mass, was used to relate image data
to fluid behavior. Second, a generic smoothness constraint was imposed to regularize the
image data. Third, realistic boundary conditions were used to further ensure the physical
significance of the recovered flow. The calculus of variations was used to combine the
constraints to yield a pair of partial differential equations that relate the spatiotemporal
derivatives of image intensity to the underlying flow components. These equations were
discretized to produce an iterative solution for flow given image sequence data. A corre-
sponding numerical algorithm has been implemented in the C programming language for
execution on standard computer workstations. This instantiation has received preliminary
testing on both synthetic and natural image fluid flows. The results of these experiments
show the promise of the approach as a measurement technique for fluid mechanics. It is
conjectured that the algorithm also could be applicable to other imaged flows that are gov-
erned by similar physical constraints. More generally, this research provides an illustration
of the place of physical analysis in the derivation of effective computer vision algorithms.

APPENDIX: TRANSMITTANCE IMAGE FORMATION

Conservation of mass is a reasonable constraint for fluid flow. However, it is less obvious
that the flow captured in a corresponding image sequence is subject to such a constraint.
This Appendix shows that for transmittance imagery, the constraint is indeed appropriate. In
particular, it is shown that the two-dimensional transmittance image of a three-dimensional
flow that respects three-dimensional conservation of mass is a two-dimensional flow that
respects two-dimensional conservation of mass, subject to certain constraints on normal
flow. The results that are derived in this Appendix are an extension of previous work on
the analysis of transmittance imaging (Fitzpatrick [18]). The current derivation adds to
previous results in its analysis of the relevant boundary conditions. In particular, previous
results required that the boundaries of integration be outside the region for which the flow is
nonzero or that the flow at opposite boundary points along the path of integration be equal,
whereas the current analysis shows that it suffices for the normal flow along the boundaries
of integration to be equal to zero. Further, the relationship between boundary conditions in
the world and boundary conditions in the image is made explicit.
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Let ρ(x, y, z, t) be the density of a fluid, a function of spatial coordinates, (x, y, z),
and time,t , that is subject to a velocity fieldV(x, y, z, t) = (U (x, y, z, t),V(x, y, z, t),
W(x, y, z, t)). Assuming that this fluid respects the conservation of mass, the density and
velocity are related according to

5 · (ρV)+ ∂ρ
∂t
= 0, (11)

with5 the three-dimensional spatial gradient operator. Transmittance image formation can
be modeled as yielding intensities that are proportional to an object’s density, integrated
along the path of the impinging energy. For incident energy parallel to thez direction and
an image recorded in the (x, y) plane, the image is given as

E(x, y, t) =
∫ z2(x,y)

z1(x,y)
ρ(x, y, z, t) dz, (12)

wherez1(x, y) andz2(x, y) are the bounding surfaces of the specimen that is being imaged.
(Here, the mass absorption coefficient has been absorbed into the density for the sake of
convenience.) This formulation is a reasonable model of collimated monochromatic X-ray
image formation [38], e.g., as used in the experimental work described in this paper. (Key
assumptions underlying this model of image formation include monochromatic photons,
detector robustness to scatter, narrow beam, and small aperture. These constraints are rea-
sonably well satisfied in the experimental apparatus used for the empirical results reported
in the current paper. For example, this apparatus employs a highly collimated synchroton
X-ray source with spatial resolution approaching 1µm and energies,e, precisely tuned
with narrow bandpassδee ≈ 6× 10−4 [1]. More commonplace devices, e.g., medical CT
devices, will have images less well modeled by the idealized relationship (12). For exam-
ple, the X-ray beam in such devices contains a broader range of energies that attenuate by
different amounts. Nevertheless, the idealized imaging relationship can still be used with
practical advantage, as attested to by its providing the basis for tomographic reconstruction
[38].) Application of this model of image formation to the continuity equation (11) suggests
integration along thez axis according to∫ z2(x,y)

z1(x,y)
5 · (ρV) dz+

∫ z2(x,y)

z1(x,y)

∂ρ

∂t
dz= 0. (13)

The first term (i.e., the spatial term) of the integrated continuity equation (13) can be
rewritten as ∫ z2

z1

5 · (ρV) dz=
∫ z2

z1

5x,y · (ρVx,y) dz+
∫ z2

z1

∂

∂z
(ρW) dz, (14)

whereVx,y(x, y, z, t) = (U (x, y, z, t),V(x, y, z, t)) and5x,y is the two-dimensional gra-
dient operator in (x, y). It is useful to bring the (two-dimensional) gradient operator to the
outside of the first term on the right-hand side of the expanded integral (14). To perform
this operation, recall that, in general, if

F(r ) =
∫ β(r )

α(r )
f (r, s) ds,
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then

F ′(r ) = β ′(r ) f (r, β(r ))− α′(r ) f (r, α(r ))+
∫ β

α

∂ f (r, s)

∂r
ds

(Buck [39]). Applying this formula to the first integral on the right-hand side of (14) yields∫ z2(x,y)

z1(x,y)
5x,y · (ρVx,y) dz= 5x,y ·

∫ z2

z1

ρVx,y dz− [(5x,yz) · (ρVx,y)]z2
z1
. (15)

The second integral on the right-hand side of (14) evaluates to [ρW]z2
z1

. This expression can
be recombined with the rightmost term of (15) to yield

[−(5x,yz) · (ρVx,y)]z2
z1
+ [ρW]z2

z1
= [ρn · V]z2

z1
,

with n = (− ∂z
∂x ,− ∂z

∂y , 1) normal vectors to the surfacesz1 andz2. The right-hand side of this
expression can be physically interpreted as material flow in the normal direction weighted
by the surface gradient, evaluated at the extremes of the specimen. Equation (14) now can
be written as ∫ z2

z1

5 · (ρV) dz= 5x,y ·
∫ z2

z1

ρVx,y dz+ [ρn · V]z2
z1
. (16)

This new form of the spatial part of the integrated continuity equation (16) can be sub-
stituted into the original integrated continuity equation (13) to yield

5x,y ·
∫ z2

z1

ρVx,y dz+
∫ z2

z1

∂ρ

∂t
dz+ [ρn · V]z2

z1
= 0. (17)

Now, define a new two-dimensional velocity field as the density-weighted average of the
original three-dimensional velocity field; i.e., let

v ≡
∫ z2

z1
ρVx,y dz∫ z2

z1
ρ dz

. (18)

Using this two-dimensional velocity (18) along with the model of image formation (12)
allows the integrated continuity equation to be interestingly rewritten as

5x,y · Ev+ ∂

∂t
E = −[ρn · V]z2

z1
. (19)

For the case of null normal flow at the boundaries, the right-hand side of this last equation
vanishes. In this case the transmittance image of a three-dimensional flow that observes
continuity is a two-dimensional flow that observes continuity, with the flow being the
density-weighted average of the three-dimensional flow, i.e., definition (18). For example,
this is the situation in the experiments that are reported in this paper. In contrast to the case
of null normal flow at the boundaries, the general projected flow expression violates two-
dimensional continuity. Equation (19) shows that this deviation from continuity is governed
by the material flow across the boundaries of the projected specimen.
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Finally, it is of interest to understand the image ramifications of the three-dimensional
world null normal flow boundary condition

[N · V]∂Ä = 0, (20)

where∂Ä is the three-dimensional boundary of a specimen of interest. In order for a part
of the three-dimensional boundary∂Ä to appear as a boundary,∂ω, in the image it must be
positioned relative to the sensor as an “occluding contour.” Keeping the geometry of image
formation introduced above (collimated rays along thez axis impinging on the (x, y)-plane
image), this condition can be captured as

N · (0, 0, 1)= 0,

implying that along such contours,N = (Nx, Ny, 0). When the constraint that thez compo-
nent ofN is equal to 0 is placed on the three-dimensional null normal flow condition (20),
it yields

(Nx, Ny) · (Vx,Vy) = 0. (21)

Following the operative geometry of image formation, letn ≡ (Nx, Ny) be the (image) nor-
mal along imaged boundary contours,∂ω. Combining this definition ofn and the definition
of v (18) with the constraint (21) shows that that the three-dimensional null normal flow
boundary condition (20) implies a two-dimensional image domain null boundary condition,

[n · v]∂ω = 0,

as presented earlier in this paper as Relationship (7).
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