
SUBMITTED TO THE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 1

Spacetime Stereo and 3D Flow via Binocular
Spatiotemporal Orientation Analysis
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Abstract—This paper presents a novel approach to recovering estimates of 3D structure and motion of a dynamic scene from
a sequence of binocular stereo images. The approach is based on matching spatiotemporal orientation distributions between
left and right temporal image streams, which encapsulates both local spatial and temporal structure for disparity estimation. By
capturing spatial and temporal structure in this unified fashion, both sources of information combine to yield disparity estimates
that are naturally temporal coherent, while helping to resolve matches that might be ambiguous when either source is considered
alone. Further, by allowing subsets of the orientation measurements to support different disparity estimates, an approach to
recovering multilayer disparity from spacetime stereo is realized. Similarly, the matched distributions allow for direct recovery of
dense, robust estimates of 3D scene flow. The approach has been implemented with real-time performance on commodity GPUs
using OpenCL. Empirical evaluation shows that the proposed approach yields qualitatively and quantitatively superior estimates
in comparison to various alternative approaches, including the ability to provide accurate multilayer estimates in the presence of
(semi)transparent and specular surfaces.

Index Terms—Stereo, motion, spacetime, spatiotemporal oriented energy, scene flow, multilayer reconstruction, transparency,
specular.

F

1 INTRODUCTION

1.1 Motivation

T HE goal of traditional binocular stereo is, given a
pair of spatially separated 2D projections of a scene,

recover the unknown third dimension of depth. This
seemingly straightforward, versatile and essentially passive
method of depth acquisition has been researched and ma-
tured for decades [45], [8]. Significantly, many applications
acquire imagery over time and thereby allow for incor-
poration of the temporal dimension into processing. This
additional information has the potential to resolve stereo
matches that might be ambiguous when only instantaneous
binocular views are considered. Further, availability of
such information can help make 3D structure estimates
temporally coherent and consistent with scene dynamics.
Moreover, access to the temporal dimension supports re-
covery of 3D scene flow.

In response to these observations, the present work
proposes a novel approach to spacetime stereo that relies
on representing temporal image streams in terms of a
distribution of 3D oriented energy measurements in visual
spacetime, (x, y, t). These energies are computed via appli-
cation of a bank of spatiotemporal filters tuned to different
orientations and applied separately to the left and right
image streams for subsequent matching. Spacetime oriented
analysis effectively captures both spatial and temporal

• M. Sizintsev is with SRI International Sarnoff, Princeton, New Jersey,
USA and R.P. Wildes is with the Department of Computer Science and
Engineering and Centre for Vision Research, York University, Toronto,
Ontario, Canada.
E-mail: see http://www.cse.yorku.ca/vision

structure in a unified fashion, which allows their combina-
tion to drive matching for resolution of situations that might
be ambiguous when either source is considered alone and
increased temporal continuity. Further, by allowing subsets
of the orientation measurements to support different esti-
mates, a natural approach to multilayer disparity recovery
arises that yields accurate results in the presence of depth
discontinuities, (semi)transparency and specular reflections.
Additionally, since spatiotemporal filter responses naturally
encode scene dynamics, a direct method for recovery of 3D
flow from orientation responses is derived.

1.2 Related research

Various attempts have been made to understand how the
availability of temporal information can enhance binocu-
lar stereo. Some approaches smooth binocularly derived
disparity estimates across consecutive temporal instants
along optical flow directions [6] or along the temporal axis
subject to change detection and background modeling [32].
Similarly, binocularly recovered surface mesh models have
been smoothed across time by tracking [35], [38]. Other
approaches reinforce disparity hypotheses by propagating
correlation scores from the previous frame using optical
flow [20]. A variety of other methods consider temporal
information by extending a regularizing spatial MRF to
include time and thereby allow for smoothing along the
temporal direction, variously respecting flow displacements
[31], either accounting for detected change [57] or not [34].

Other work has addressed simultaneous structure and
motion estimation that combines intraframe (spatial) and
interframe (temporal) image pairwise constraints in a wide
variety of fashions. The formulations range from explicit
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stereo matching to recover depth for subsequent depth-flow
estimation [52], [41], [18], [56], [26] to joint optimization
formulations that simultaneously solve for structure and
motion [53], [64], [27], [25], [55]. Typically, 3D flow
estimation is the primary objective of these approaches,
as they use availability of stereo information primarily to
deduce the depth motion component and rely on standard
binocular correspondence procedures for depth estimation.

Still other research combined binocular stereo and mo-
tion processing via explicit application of the brightness
constancy constraint equation [23] across both modalities.
For example, research has considered infinitesimal motion
and stereo disparity estimation via a single brightness
constancy formulation [43], [44]. Research along these lines
also has made use of direct methods for integrated recovery
of 3D scene structure and egomotion [22], [50], [36].

Another strand of research has been more generally
concerned with recovering consistent depth maps across
temporal image streams. For example, a bundle adjustment
optimization approach for consistent depth map recovery
across a monocular video sequence was proposed [62],
which subsequently was extended to recover consistent
depth maps across multiple synchronized video streams
[59], [60], [28]. Other work also has considered recovery
of consistent depth maps from multiple stationary video
cameras [33]. While this body of research shares the current
concern of depth map temporal consistency, it does not
specifically address estimation from binocular video nor
does it encompass other matters of concern (e.g., match dis-
ambiguation, multilayer estimates, scene flow estimation).

The proposed approach explicitly combines spatial and
temporal support in stereo matching and thereby is most
closely related to other research with similar concerns. One
such method for spacetime stereo was initially developed
in conjunction with temporally varying structured light-
ing [11]. Other work generalized this approach to model
temporal disparity change [63]. Still other work extends
the notion of spatially adaptive aggregation to include the
temporal dimension [42]. Most closely related to the pro-
posed approach is previous work by the authors that used
measurements of spatiotemporal orientation as the basis for
stereo matching [49]. That work encapsulated spacetime
orientation in the spatiotemporal quadric or stequel (also
referred to as the orientation tensor and covariance matrix
[21], [4]) and was shown to yield disparity estimates with
some degree of temporal coherence and ability to resolve
otherwise ambiguous matches. However, representation in
terms of the stequel fundamentally limits the ability to
characterize the presence of multiple orientations at a point
(as all are collapsed to a single quadric) that might further
help distinguish matches, especially in situations involving
multilayer surfaces (e.g., transparency) and near surface dis-
continuities. In contrast, the current approach makes more
complete use of spacetime orientation measurements to
allow for better resolution of difficult matching situations,
including ability to resolve multilayer surfaces.

A major component of the proposed approach is the
representation of imagery in terms of a distribution of

spatiotemporal oriented energy measurements. While pre-
vious research has exploited such measurements toward a
variety of ends, e.g., optical flow recovery [2], dynamic
texture analysis [16], tracking [9], video anomaly detection
[61] and activity recognition [10], [13], it appears that
no previous work has applied this approach directly to
spacetime stereo. Other previous work made use of purely
spatial orientation measurements in stereo matching [29],
but it did not consider the temporal dimension.

1.3 Contributions
In the light of previous research, the outstanding contri-
butions of the proposed approach are as follows. First, a
novel method for spacetime disparity estimation is pro-
posed based on direct matching of distributions of image
spacetime orientation measurements. Second, the first ap-
proach to recovering multilayer disparity estimates from
spacetime stereo processing is proposed. It is shown to
allow for recovery of multiple layers in the presence of
(semi)transparent and specularly reflecting surfaces. Inter-
estingly, previous work in multilayer surface recovery from
multiple images largely considers stereo (e.g., [46], [7],
[54] and motion (e.g., [3], [5]) only independently. Even
previous work that combined multihypothesis disparity and
optical flow for recovery of 3D motion estimates made
use of purely binocular stereo considerations in its dis-
parity estimation [12]. Third, a novel approach for direct
estimation of dense 3D scene flow from binocular stereo-
matched spatiotemporal orientation primitives is presented.
Excepting previous work by the authors [49], this approach
is the first to make use of binocularly matched spacetime
orientation measurements for scene flow estimation and
thereby enables recovery without the need for explicit tem-
poral image correspondences. Moreover, it does so without
the need to construct an intermediate stequel representation
and thereby provides a more direct estimation approach
compared to [49]. Fourth, the approach is realized in
local and global stereo matchers with real-time GPU-based
performance for the local version. Fifth, the developed
implementations have been subject to extensive qualitative
and quantitative empirical evaluation. A preliminary version
of this research has appeared previously [48].

2 TECHNICAL APPROACH
2.1 Background
2.1.1 Interpretation of spatiotemporal orientation
Local oriented measurements in image spacetime, (x, y, t),
have visual significance. For example, orientations parallel
to the image plane capture the spatial pattern of observed
surfaces (e.g., texture); whereas, orientations that extend
into the temporal dimensions capture dynamics (e.g., mo-
tion). The major proposition of this paper is that exploiting
spatiotemporal orientation energy distributions (STE’s) as
primitive dynamic scene descriptors can provide a useful
basis for spacetime stereo matching.

Figure 1 provides an illustrative example. Depicted is
a dynamically rich scene containing moving people in
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Fig. 1. Example of Spatiotemporal Volume and Pointwise Orientation Distributions. Top row: consecutive frames
from a sample volume (originally presented in [14]). In the depicted scene, two persons move to the right, one
in front and one behind a chain-link fence, rapidly moving foliage is in the lower left and the remainder is static.

Middle row: response to particular spacetime orientations: rightward motion (ŵ =
[
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]>
), leftward

motion (ŵ =
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), downward motion (ŵ =

[
0 1√

2
1√
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]>
), static (ŵ =

[
0 0 1

]>), and

flicker (ŵ =
[

1 0 0
]>). Bottom row: spherical oriented energy distributions for points marked at the “frame

t” image, as well as the base steerable filter quadrature pairs used to extract energies.

front of and behind the pseudo-transparent fence as well
as flickering foliage in the lower left. The top row of
the figure shows 5 time-consecutive frames. This exam-
ple illustrates important points to motivate the choice of
matching primitive. First, as shown in the second row,
different orientations capture different meaningful aspects
of the scene structure and dynamics. Those that capture
purely spatial static structure, e.g., ŵ =

[
0 0 1

]>
,

characterize surface texture for spatially driven matching;
whereas, those that extend along spatiotemporal diagonals,

e.g., ŵ =
[

1√
2

0 1√
2

]>
, capture motion to allow

dynamics to constrain matching. Further, spatiotemporal
orientations can capture flicker, e.g., ŵ =

[
1 0 0

]>
,

where temporal coherence breaks down. Second, as shown
in the third row, by combining a sampling of oriented
energy measurements along multiple directions at each
point, a distribution is derived that can serve as a feature
vector for subsequent matching. Both the static (point 1)
and moving (point 2) samples have unique distributions
that jointly characterize their spatial texture and dynam-
ics. Further, the semitransparent point 3 shows a strongly
bimodal distribution with potential for allowing multilayer
disparity estimates, as different modes can support different
disparities. Note that orientation distributions are always

symmetric with respect to the origin because orientations
are taken as unsigned, i.e. ŵ ≡ −ŵ.

2.1.2 Measuring local spatiotemporal orientation
To exploit spatiotemporal orientation in binocular corre-
spondence, one must commit to a particular approach to
make local measurements of 3D, (x, y, t), orientation in
image spacetime data. Here, it proves to be advantageous
to make use of oriented energy measurements based on
steerable filters [19], as it will be shown they are amenable
to matching directly on their responses to image data. In
particular, recall that an energy measurement at a particular
orientation, ŵi, and spacetime position, x = (x, y, t)>,
can be obtained as the quadrature response of filtering
image data I(x) with Gaussian derivative filters of order
n, Gn(ŵi) and their Hilbert transforms Hn(ŵi) as

E(x; ŵi) = [Gn(ŵi) ∗ I(x)]
2

+ [Hn(ŵi) ∗ I(x)]
2
, (1)

with ∗ denoting convolution. Sample kernels for the second
derivative quadrature filter pair G2H2 oriented at a partic-
ular orientation are depicted in the last row of Fig. 1.

Significantly, most of the practical uses of energy filter-
ing of the form (1) involve a normalization step to make
responses invariant to multiplicative bias and bring response
values to the uniform scale 0 to 1. The necessary operation
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Fig. 2. The spatiotemporal orientation correspondence
constraint, (3), describes the relationship between ar-
bitrary orientations in correspondence, ŵl and ŵr,
subject to binocular viewing of a slanted surface un-
dergoing arbitrary motion in the world relative to the
cameras. Depicted are the xt-slice views and one of
several different orientation directions that might be
considered across views.

is realized via pointwise division by the sum of the N local
energy measurements at a point:

Ê(x; ŵi) = E(x; ŵi)/

 N∑
j=1

E(x; ŵj)

 . (2)

Reasonably, N is taken as the number of orientations
that span the space of orientations for the order of filtering
that is employed. In the following, second-order, n = 2,
Gaussians filters and their Hilbert transforms are used; so,
N = 10 is required [19], with their orientations chosen to
uniformly sample 3D orientation as the normals to the faces
of an icosahedron with antipodal directions identified [40].
Essentially, the subsequent matching process operates on
uniformly sampled distributions similar to the ones depicted
in the last row of Fig. 1.

2.1.3 Spatiotemporal orientation correspondence
A prerequisite to the use of spatiotemporal orientation
measurements for stereo matching is an analysis of how an
arbitrary 3D world point that suffers an arbitrary displace-
ment projects to related orientations in image spacetime,
(x, y, t), across a binocular pair. The essential result was
presented in previous work by the authors [49] and is
summarized here to provide necessary groundwork. Let unit
vectors ŵl and ŵr (superscripts l and r denote left and
right spacetimes, resp.) specify orientations about points
that are in binocular correspondence, but otherwise arbitrary
in visual spacetime as depicted in Fig. 2. These orientations
are related as

ŵr =
Hŵl

‖Hŵl‖
, where H =

[
1 + h1 h2 h3

0 1 0
0 0 1

]
, (3)

with h1 and h2 capturing the motion independent change in
local spatial orientations about corresponding points owing
purely to the difference between binocular views of a (po-
tentially) non-frontoparallel surface, while motion effects
are captured by h3. Thus, the mapping between binocularly
corresponding direction vectors, ŵl and ŵr, is governed by
the parameters h1, h2, h3, with these parameters having the
intuitive interpretation of accounting for the relative change
of surface orientation across a binocular view as well as
relative motion between the scene and sensor. A detailed

derivation is available elsewhere [49]. In the following,
the basic relationship between binocularly corresponding
image spacetime orientations, (3), will be referred to as the
spatiotemporal orientation correspondence constraint.

2.2 Binocular spatiotemporal orientation error
With both the relationship between binocularly correspond-
ing spatiotemporal orientations, (3), and a method for
measuring local orientations, (2), in hand, an explicit stereo
matching error can be developed.

The matching error is derived under the assumption
that the pattern of the orientation distribution will vary
between left and right views according to the binocular
spatiotemporal orientation constraint, (3), but that it is
otherwise appropriate to minimize the differences in the
oriented filter responses. This approach amounts to a re-
laxed assumption of brightness constancy between views,
as the filtered responses, (2), are robust to additive and
multiplicative biases, which are discounted by the bandpass
and normalized nature of the employed filters. In particular,
the developed approach minimizes the sum of squared
errors across all oriented energy measurements (2) as

N∑
i=1

ε2i (x
l,xr) =

N∑
i=1

[
Êr(xr; ŵr

i )− Êl(xl; ŵl
i)
]2
, (4)

which by (3) evaluates to

=

N∑
i=1

[
Êr
(
xr;

Hŵl
i

‖Hŵl
i‖

)
− Êl(xl; ŵl

i)

]2
. (5)

The error function, (5), is minimized by setting the
corresponding gradient with respect to h = [h1 h2 h3]

> to
zero and subsequently solving for h. Each error component
ε2i is a non-linear function of h; so, no closed form solution
exists and numerical solutions will be noise sensitive owing
to the high order in the variables of interest, h. Instead, a
solution is obtained via a first-order Taylor series expansion
around h0 = [0, 0, 0]

> to arrive at a simpler form for the
error associated with each orientation ŵi as

ε̃i(x
l,xr) = εi(x

l,xr;h0) +∇>εi(xl,xr;h0)h (6)

with εi(xl,xr;h0) the value of εi(xl,xr) at h = h0.

2.3 Spatiotemporal orientation match cost
In this section, two approaches are presented for assigning
a cost to matching points xl = (xl, yl, t)> and xr = (xl +
d, yl, t)> across a binocular view according to disparity
estimate, d, based on the error measure (6).

For the first approach, the linearized errors (6) for all
orientations are combined into a system of linear equations

Bh = b, (7)

where B is an N × 3 matrix, b is an N × 1 vector and
N = 10 is the number of orientations measured, with

Bi,m =
∂εi(x

l,xr;h0)

∂hm
, (8)
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and
bi = εi(x

l,xr;h0), (9)

so that each row of B captures the error contribution of a
particularly sampled direction ŵi. A solution for h is ob-
tained by following standard linear algebraic manipulations
[51] as h = (B>B)−1B>b with residual error

ε̃2 =

N∑
i=1

ε̃2i (x
l,xr) =

(
B
(
B>B

)−1
B>b− b

)2
. (10)

Thus, for any given disparity, d, the cost associated with
matching xl with xr is taken as the residual, (10).

The second approach to assigning match cost on the basis
of orientation measurements allows for multiple disparity
estimates to be recovered at a point or over a spatial
region. This approach relies on the fact that when multiple
spatiotemporal orientations are superimposed or juxtaposed
during image formation, their individual orientations per-
sist in the composite imagery [15]. In particular, such
combined orientation structure holds for a wide variety
of naturally occurring phenomena, including both addi-
tive and multiplicative combinations to encompass, e.g.,
(semi)transparency, reflections and structure near bound-
aries of overlapped surfaces. Correspondingly, rather than
combine all orientation measurements into a single system
of equations in support of a single minimal cost disparity
estimate, subsets of measurements can contribute to dif-
ferent estimates to enable multi-layer disparity estimation.
Significantly, this approach allows for the recovery of
multilayer estimates without the complications entailed in
coordinated recovery of alpha-mattes (c.f., [58], [65]).

To realize these intuitions on multilayer disparity es-
timation, notice that for each matched point pair xl,xr

and orientation ŵi the Taylor expansion (6) yields a linear
constraint on h

∇>εi(xl,xr;h0)h = εi(x
l,xr;h0). (11)

Geometrically, each such equation defines a plane in h-
space. Therefore, given multiple orientations aggregated
over a region, the point in h-space where the maximum
number of planes intersect (and at least three in general
position) defines the h value that has the most support for a
given disparity across the aggregation region. In the present
implementation, a Hough transform [24], [17] is used to
find the desired peak(s) in h-space. To calculate the final
match cost associated with any given peak, all points and
orientations that contributed to a given peak are declared as
inliers, denoted with inl subscripts, and used to calculate
a residual error

ε̃2inl =
1

#inl

(
C
(
C>C

)−1
C>c− c

)2
, (12)

which has the same form as the match cost, (10), with

Ci,m =
∂εi(x

l,xr;h0)

∂hm
, ci = εi(x

l,xr;h0), (13)

and i ∈ inl, i.e., analogously to B and b in (8) and (9).
Additional normalization by #inl is desired because the

number of inliers that contribute to the error, (12), generally
varies for different disparity hypotheses, while correspond-
ing error values must be directly comparable for effective
subsequent local or global disparity optimization strategies.
Once the inliers are determined and the corresponding final
error is computed for all disparities to be considered, only
those disparity hypotheses that have enough supporting
evidence, i.e. the number of contributions is above a cor-
responding threshold, λinl, are accepted.

The first method for assigning cost to disparity estimates,
(10), allows for recovery of only a single disparity estimate
at a point. In that sense, it is analogous to the earlier
approach to disparity estimation based on the spatiotempo-
ral quadric element, [49]; however, the proposed approach
makes more complete use of available orientation informa-
tion by eschewing its collapse to the quadric. The second
method, (12), allows for multilayer disparity estimates over
a window of match aggregation by more fully exploiting
the availability of multiple orientation measurements. In
contrast, the earlier method [49] was not able to exploit this
possibility because in collapsing all orientation information
into the quadric it sacrificed the degrees of freedom that
make multilayer disparity estimation possible.

2.4 Scene Flow Estimation
2.4.1 3D scene flow
To begin, consider a single (i.e. left or right) spacetime
volume. In this case, the 3D, (x, y, t), direction associated
with a 2D, (x, y), image flow, v2, must correspond to a
minimal energy across orientations, as brightness constancy
assumes uniform intensity along the direction of flow [21],
[4]. Thus, to solve for the appropriate direction, the basis
set of oriented energy measurements, (1), could be steered
to the direction that yields minimal energy response. In the
context of 3D scene flow, v3, recovery from corresponding
left and right image spacetime directions, (x, y, t), must
perform steering as a joint optimization across both views.

The key challenge is to choose the appropriate parametric
representation for the 3D orientation. Here, it is advisable
to avoid use of unit vectors ŵ, since explicit normalization
would be required. Assuming rectified views, the epipolar
constraint dictates that the y-component of the motion must
be the same in left and right views, while the x and depth
components are coupled according to (assuming the left
image is the reference view):

xr = xl + dl, yr = yl. (14)

Having the latter in mind, the spacetime unit vector ŵ is
parameterized by the angle pair (α, β), where α is the angle
between the t-axis projection of ŵ onto the yt plane and
β is the angle between ŵ and the x-axis. Unit vector ŵ =
[wx wy wt]

> now is represented in terms of (α, β) as

ŵ =

 wx
wy
wt

 =

 cos(β)
sin(α) sin(β)
cos(α) sin(β)

 = ŵ(α, β). (15)

In the current context for compactness of notation, let the
measurement of oriented energy, (1), for the left spacetime
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volume, I l, along direction ŵl at a particular location be
given as El(ŵl) and analogously for the right spacetime
volume. The particular parametrization of angles, (15),
facilitates joint optimization of El(ŵl) = El

(
ŵ(αl, βl)

)
and Er(ŵr) = Er (ŵ(αr, βr)), as the epipolar constraint
dictates that αl = αr = α. Thus, the objective is to find
the parameters (α, βl, βr) that minimize

Elr = El(ŵl) + Er(ŵr) (16)
= Gl(ŵl)2 +H l(ŵl)2 +Gr(ŵr)2 +Hr(ŵr)2.

As suggested in the first paragraph of this section, the op-
timization is accomplished by simultaneously steering the
left and right basis oriented energy responses, (1), so that
the objective, (16), is minimized. Here, the minimization is
carried out in a straightforward two step process. First, take
as an initial estimate of (α, βl, βr) the pair of orientations
that minimizes (16) across the set of orientations explicitly
calculated for (1), i.e. the ten icosahedral defined directions.
Second, apply Gauss-Newton minimization for incremental
refinement. To formulate the Gauss-Newton increment,
the current error contribution and its Jacobian must be
specified. In the present context, these are given as

r(α, βl, βr) =
[
Gl(ŵl) H l(ŵl) Gr(ŵr) Hr(ŵr)

]>
,

J(α, βl, βr) =
(
Γr>

)>
, (17)

where Γ =
[
∂
∂α

∂
∂βl

∂
∂βr

]>
.

Finally, once the solution for (α, βl, βr) is obtained, the
unit directional vectors ŵl and ŵr are computed according
to (15) from which the 3D disparity flow is computed as

v3 =


wl

x

wl
twy

wt

wr
x

wr
t
− wl

x

wl
t

 =

 sec(α) cot(βl)
tan(α)

sec(α)
(
cot(βr)− cot(βl)

)
 .

(18)
Provided binocular camera calibration, actual 3D scene flow
then can be recovered from the disparity flow analogously
to recovery of 3D distance from disparity, as desired.

2.4.2 Uncertainty of flow estimation
The local quadratic surface approximation near the mini-
mum of the objective function, Elr, (16), is a good indica-
tion of uncertainty in the context of the employed Gauss-
Newton method. Essentially, the Hessian HM of (16)
derived analytically is capable of describing the behavior of
the recovered solution. Here, the Hessian is a 3× 3 matrix
of second derivaties of Elr w.r.t. α, βl and βr.

Specifically, let λ1 ≥ λ2 ≥ λ3 be the eigenvalues of non-
negative-definite HM. The case of a well-defined (flow)
vector corresponds to the condition λ3 >> 0. Moreover,
any of the λi being close to zero indicates how undercon-
strained the flow is, e.g., instances of the aperture problem
where only the normal flow can be recovered. Thus, the
chosen measure of the recovered 3D flow confidence is

ζ = λmin, (19)

where λmin is the smallest eigenvalue of HM.

3 EXPERIMENTAL EVALUATION

3.1 Algorithmic Instantiations

Implementations of the proposed approach accept synchro-
nized and rectified binocular videos, I l, Ir, as input, re-
cover basis orientation measurement distributions, Êl(ŵl

i),
Êr(ŵr

i ) and then calculate the match cost for any given
disparity, d, using one of the methods (10) or (12). The
match cost has been embedded in both local and global
stereo matchers, denoted STE-local and STE-global, resp.,
to illustrate the broad applicability of the approach. The
local algorithm is an adaptive, coarse-to-fine block-matcher
operating over Gaussian pyramids [47]. The global algo-
rithm is a graph-cuts matcher [30]. These particular match-
ers were chosen because they have been used previously in
realizing the stequel approach to spacetime stereo [49] and
thereby allow for direct comparison. Further, given matched
orientation distributions, estimates of 3D scene flow are
obtained via the motion recovery procedure of Sec. 2.4.1.

The local matching approach makes use of the per
orientation match cost, (12), to support recovery of multiple
layer disparity estimates. In all cases spatial aggregation is
5 × 5 and inlier threshold λinl = 4. The global method
makes use of the across orientations match cost, (10),
with no spatial aggregation to avoid non-trivial optimiza-
tion involving multiple label association, which is beyond
the scope of the current paper. The global method is
thereby not capable of multilayer estimation. In preliminary
investigation, the across orientation cost, (10), also was
embedded in the local method; it was found that results
were extremely similar to those shown here for single
layer disparity estimates and are not given explicitly. For
both implementations, subpixel estimation was performed
as post-processing using a Lucas-Kanade type refinement
[1] specialized to the proposed spatiotemporal match costs,
(10) and (12), as done analogously in previous work [49].

The local algorithm, STE-local is well suited to parallel
computation and has been implemented in OpenCL [39]
to be independent of hardware vendor. For the results
presented here, this implementation was executed on an
nVidia GTX580 GPU at 16 fps for 640×480 video with 256
disparity levels, where execution speed scales linearly with
image size given in total pixels. Here, use of coarse-to-fine
processing within image pyramids allows for computational
efficiency even in the presence of large disparities, as
large search at full image resolution is not required: It is
encompassed via small search range at upper levels of the
image pyramid [47]. The global algorithm, STE-global has
been realized in C++ for execution on standard CPUs.

To demonstrate the benefits of the proposed spatiotempo-
ral matching, several alternative approaches are compared.
First, comparison is made to conventional spatial-only
matching using image intensity with normalized correlation
match cost, as realized in both local adaptive, coarse-to-
fine block [47] and global graph-cut [30] algorithms; these
methods will be denoted noST-local and noST-global, resp.
Second, comparison is made to the ancestor of the currently
proposed approach, stequel-based matching, again with
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Lab1 Disparity GT Lab1 Left frame Lab2 Disparity GT Lab2 Left frame

Lab1 noST-local disp. Lab1 noST-local error Lab2 noST-local disp. Lab2 noST-local error

Lab1 Zhang-local disp. Lab1 Zhang-local error Lab2 Zhang-local disp. Lab2 Zhang-local error

Lab1 STQ-local disp. Lab1 STQ-local error Lab2 STQ-local disp. Lab2 STQ-local error

Lab1 STE-local disp. Lab1 STE-local error Lab2 STE-local disp. Lab2 STE-local error

Lab1 noST-global disp. Lab1 noST-global error Lab2 noST-global disp. Lab2 noST-global error

Lab1 Zhang-global disp. Lab1 Zhang-global error Lab2 Zhang-global disp. Lab2 Zhang-global error

Lab1 STQ-global disp. Lab1 STQ-global error Lab2 STQ-global disp. Lab2 STQ-global error

Lab1 STE-global disp. Lab1 STE-global error Lab2 STE-global disp. Lab2 STE-global error

Fig. 3. Example input frames, groundtruth, recovered disparity and absolute difference error for Lab1 and Lab2.
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Fig. 4. Summary statistics for Lab1 and Lab2. An error is taken as greater than 1 pixel discrepancy between
recovered and groundtruth disparity. Bar plots show average error across entire sequences: White bars are
for points within 5 pixels of a surface discontinuity; black bars show overall error. Error by frame plots show
percentage of points in error overall for each frame separately.

Disparity GT Baby1 Left

noST-local disp. noST-local error

6.36%

STE-local k = 0.0 disp.STE-local k = 0.0 error

6.04%

STE-local k=0.5 disp. STE-local k=0.5 error

5.40%

STE-local 1.0 disp. STE-local 1.0 error

6.53%

Disparity GT Monopoly Left

noST-local disp. noST-local error

31.51%

STE-local 0.0 disp. STE-local 0.0 error

29.11%

STE-local 0.5 disp. STE-local 0.5 error

28.08%

STE-local 1.0 disp. STE-local 1.0 error

28.58%

Disparity GT Wood1 Left

noST-local disp. noST-local error

19.62%

STE-local 0.0 disp. STE-local 0.0 error

12.56%

STE-local 0.5 disp. STE-local 0.5 error

12.35%

STE-local 1.0 disp. STE-local 1.0 error

13.62%

Fig. 5. Example input frames and recovered disparity maps for the modified Middlebury dataset [37]. For each
example, original left, disparity ground truth, disparity and error maps for noST-local and STE-local algorithms
are depicted. Error rates for occluded points with threshold of 2 disparity levels is given in upper right corner of
the corresponding error map.

both local and global instantiations [49], denoted STQ-
local and STQ-global, resp. Third, an alternative space-
time stereo approach that uses image intensity matching
with spatiotemporal oriented aggregation will be considered
[63]. As with all others instances, this approach has been
implemented within the same local [47] and global [30]
matchers, denoted Zhang-local and Zhang-global, resp.

3.2 Lab datasets

In total, ten binocular video data sets are used as input. The
first two are the Lab1 and Lab2 videos originally presented

elsewhere [49]. These sets are considered as they are natural
image sequences with disparity groundtruth and have been
used previously in comparison of spacetime stereo algo-
rithms. Challenges present in these videos include weak,
epipolar-aligned and camouflaging surface texture, complex
3D shapes (e.g., gargoyle and teddy bear) and a wide range
of motions (vertical, horizontal and depth axis translations
in Lab 1, depth axis translation and out-of-plane rotations
of non-trivial magnitudes in Lab 2).

Example input image frames, groundtruth disparity, re-
covered disparity and summary performance statistics are
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presented in Figs. 3 and 4. The results show that both local
and global versions of STE and STQ perform better than
the noST algorithms that eschew temporal information.
Attention to regions involving weak and epipolar aligned
texture (e.g., the planar regions of Lab1) show that the
inclusion of temporal information helps to resolve purely
spatial match ambiguities. Consideration of the relative
smoothness of the error time series provides evidence of
improved temporal coherence offered by STE and STQ.

In these tests, the improvement of STE relative to STQ
arises in the vicinity of depth discontinuities. While, the
error statistics in Fig. 4 suggest only marginal improve-
ment, visual inspection of the error maps in Fig. 3 show
that STE produces smallest error in particularly challenging
situations, e.g., as it does best in resolving the narrow gap
between the gargoyle wings. This is particularly the case
for STE-local, where improved resolution of structure near
3D boundaries is expected, as its ability to capture multiple
disparities allows a consensus to develop that accurately
segregates the foreground and background depths without
allowing one to contaminate the other. Interestingly, near
surface discontinuities, it can happen that two disparities
corresponding to the foreground and background within
the aggregation window exceed the voting threshold, λv;
typically, however, either the foreground or background
dominates the voting depending on the aggregation support
and only the dominant surface is recovered. Moreover, for
half-occlusion, the occluded point fails to yield consensus
voting as no meaningful match is available.

Interestingly, spatiotemporal matching based directly on
intensities, Zhang, did not show significant advantages
even over purely spatial stereo, noST, and behaves notice-
ably worse than STQ and STE. Still, for Lab1, Zhang does
help disambiguate matches in the camouflage (lower left)
and epipolar-aligned texture regions relative to noST. Its
performance on Lab2 is particularly poor, especially in the
fine-textured background regions, which can be explained
by the zooming effect associated with in-depth motion that
is not effectively captured by the simple temporal window
shifts adopted in [63]. In paricular, Zhang performs explicit
temporal aggregation across shifted windows in time to
form its binocular match support, which is only an accurate
model when motion is translation parallel to the stereo
baseline; in other cases the inapplicability of the model
appears to lead to noisy disparity estimates. In contrast,
spatiotemporal oriented energy distributions are pointwise
measurements of the first-order intensity structure and
explicit temporal aggregation is not performed during the
STE matching procedure; hence, no such problem arises.

3.3 Middlebury dataset

To place the developed approach within the larger context
of contemporary computer vision stereo vision research, it
has been evaluated on samples from the standard Middle-
bury dataset [37]. Since the current algorithms operate on
temporal streams of images, binocular frame pairs from the
dataset have been extended to binocular videos via warping

with synthetic 2D flow fields, v, generated according to

v(x, y, t) = k|t|d(x, y, 0)û, (20)

where k is a speed scale factor, |t| is the absolute value
of time, d(x, y, 0) is the groundtruth disparity and û is
the direction of motion unit vector. This warping function
is employed as it reasonably models the equations of the
visual motion field for the case of scene translation orthog-
onal to the optical axis [23], e.g., resulting in visual motion
parallel to the scene motion and inversely proportional to
depth. For the present experiments, t ∈ [−2, 2] is time
relative to the original (central) frame, û = [0 1]> is
vertical to maximize the temporal information relative to
the horizonal stereo baseline and k takes values 0.0, 0.5
and 1.0 to simulate zero, slow (within pixel) and faster
(more than a pixel) motions, resp.

Selected test cases from the Middlebury dataset are
Baby1, Monopoly and Wood1, as they tend to challenge
many local binocular algorithms owing to their relatively
impoverished texture and this challenge is one that the
proposed spatiotemporal approach is argued to ameliorate
by augmenting spatial information with temporal. Results
are shown in Fig. 5 for STE-local as well as noST-
local for the sake of comparison to purely spatial disparity
estimation. It is seen that mere inclusion of temporal
support during matching improves performance relative to
reliance on purely spatial matching, as indicated in the
decreased error of STE-local compared to noST-local.
Moreover, when motion-based displacement complements
that of disparity the benefit further increases, as shown
by the case of k = 0.5. Finally, increasing the speed
beyond a certain point yields diminished returns, as shown
with even larger k = 1.0, especially near horizontal depth
boundaries (e.g., Baby1) that are orthogonal to the direction
of motion û. Here, temporal aliasing can ensue and also
boundary artifacts are introduced by the image synthesis,
which contaminate spatiotemporal filtering results. Similar
effects show near the bottom of Wood1, as the originally
imaged low texture surfaces are narrow along the direction
of vertical motion and become dominated by synthesis
artifacts that in turn corrupt the spatiotemporal filtering.

3.4 Skydiving dataset
To illustrate the performance of the developed ap-
proach in challenging real-world scenarios (albeit without
groundtruth), Fig. 6 shows a binocular sequence of a group
of skydivers during their descent. Challenges include the
complicated motion patterns of the skydivers (both down-
ward and spiral/left-right), their intricate spatial relation-
ships (e.g., juxtapositions and occlusions) and the overall
unconstrained nature of the acquisition. Here, comparison
focusses on the relative performance of the local matchers
noST-local, which does not employ temporal information,
the alternative spatiotemporal matcher Zhang-local and the
proposed STE-local. In general, it is seen that introduc-
tion of temporal information in Zhang-local and STE-
local yields better temporal coherence in the disparity es-
timates in comparison to noST-local, including reasonable
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Left frame Right frame noST-local disp. Zhang-local disp. STE-local disp.

Fig. 6. Example input frames and disparity maps for the Skydiving dataset [42]. This dataset was rectified such
that zero values correspond to close distance rather than infinity; thus, brighter values mean greater depth.

results in the poorly textured background sky. Furthermore,
it appears that STE-local results provide generally the
crispest 3D boundaries owing to the algorithm’s ability to
distinguish multilayer disparity relations.

3.5 Transparency dataset

An important distinguishing point of STE-local in com-
parison to all previous spatiotemporal stereo algorithms is
the ability to deal with multilayer disparities at a point.
The next test dataset, Transparency, illustrates the case of
semitransparency. This real image sequence was captured
by placing an acetate film in front of a background surface
with each of the two surfaces covered by a different texture
pattern such that the foreground is semitransparent while
the background is opaque. One of the surfaces was set
in horizontal motion and captured binocularly, see Fig. 7.
Consideration of a single left/right frame pair makes it very
difficult to recover the two disparity layers that are present;
however, since the two surfaces are in relative motion,
they create distinctive spacetime orientation patterns. The
superposition of these two patterns are readily apparent
in the illustrated xt-slices, where the vertical and diago-
nal orientations arise from the stationary background and
translating foreground surfaces, resp. In essence, different
orientations correspond to layers residing at different depths
and certain orientations will be consistent with one layer
or another. A plot of cost, (12), as a function of disparity
vs. spatiotemporal orientation also is shown in the figure.
It is apparent that the smallest errors, i.e. darker colors,
are concentrated about two disparity values (approximately
120 and 175), which correspond to the foreground and
background surfaces. Also shown is the distribution of
votes accumulated by STE-local for different disparities
across the entire sequence, which shows a strongly bimodal
distribution. Finally, a perspective surface plot of the dis-
parities recovered by STE-local for a particular frame pair
is displayed that shows the presence of two disjoint layers.
Note that STE-local only offers multiple disparities at a
point, but not the explicit grouping of underlying layers,
which is taken as later visual processing.

To underline the importance of spatiotemporal orien-
tation in multilayer matching, an alternative multilayer
matcher that works directly on single left/right frame pairs
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Fig. 7. Example input frames, spacetime slices and
disparity estimation results for Transparency. See text
for details.

also was applied to the Transparency data set. This matcher
makes use of robust, parametric layer estimation [5] and
was applied to the left and right frames that arise half
way through the Transparency sequence. The results are
plotted as green planes in the perspective plot of Fig. 7. It is
seen that the background surface is reasonably recovered at
disparity 120.75; however, the foreground surface is greatly
underestimated at disparity 148.19 (correct disparities are
120 and 175, resp.). Apparently, the intensity mixtures that
result from semi-transparency cannot be separated properly
by robust application of brightness constancy, as employed
by the alternative approach; whereas, the proposed ap-
proach based on explicit representation of multi-oriented
intensity structure allows for success.

3.6 Lustre dataset
While the case of transparency is complicated and intrigu-
ing, specular reflections are more common in practice.
Indeed, relatively few surfaces are purely matte, especially

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPAMI.2014.2321373

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



SUBMITTED TO THE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 11

in the man-made world. The dataset Lustre deals with the
case of “binocular lustre” where a specular reflection is
present in one of the two views and totally absent in the
other. This sequence was acquired by having a well textured
planar surface that is covered with a reflective coating rotate
about the horizontal during binocular video capture. Across
the sequence, an overhead light is strongly reflected in the
left view, but not present in the right, see Fig. 8. Here,
comparison focusses on the previous STQ-local and the
newly proposed STE-local to underline the distinctions of
the latter. The spatiotemporal stequel matcher STQ-local is
able to reasonably capture the surface outline and some of
the interior. However, the proposed STE-local algorithm
achieves improved results as it can better capitalize on those
components of the spatiotemporal orientation distributions
that have reliable matches across views and ignore those
that do not. In contrast, purely spatial matching, noST-local
performs much poorer as it has no basis to overcome the
incompatible intensity profiles that arise due to lustre.

3.7 Bino-spec dataset
The dataset, Bino-spec, deals with the case of binocular
specularity, where a specular reflection is present in both
views, but is displaced in mirror fashion relative to the
underlying surface. This sequence was acquired by having a
well textured, cylindrical cup with a shiny coating rotating
about a vertical axis. Throughout the sequence, a window
in the room is strongly reflected in both views, see Fig. 9.
Pixel matcher noST-local is able to recover the cup outline,
but fails to match correctly the interior portion due to its
high reflectivity and the presence of superimposed dispar-
ities of the cup texture and specular reflection. At these
points the algorithm recovers the surface, the reflection or
some erroneous mixture. In contrast, STE-local is able to
recover two disparity layers, as appropriate. The depicted
“primary estimate” map shows the disparity at each point
that received the top number of votes above λinl, the
“secondary estimate” map shows other disparities whose
number of votes also surpassed λinl, the majority of which
are concentrated near the specularities on the cup and 3D
boundaries (see above discussion of 3D boundaries). The
top view 3D reconstruction shows the recovery of both the
cup surface as well as the specularity properly placed be-
hind the surface according to mirror reflection with respect
to the convex surface. In comparison, when STQ-local was
applied to this case the results were very similar to the
primary estimate of STE-local (and therefore not shown in
the interest of space); significantly, however, STQ-local is
fundamentally incapable of recovering secondary estimates.

3.8 Motion estimation
To quantify the performance of the described 3D motion
estimator, Sec. 2.4, an additional lab dataset originally
introduced in [49], Lab3, is employed; example frames with
groundtruth disparity and motion are shown in Fig. 10.
The scene is composed of two vertically oriented, planar,
textured rectangles that initially are frontoparallel with

respect to the camera. The left rectangle is relatively closer
to the camera and rotates about the vertical. The right
rectangle rotates about its base on an axis parallel to the
optical axis. The cameras also move parallel to the optical
axis, toward the rectangles.

Motion estimation results on the Lab3 dataset are shown
in Fig. 10. Median angular error between recovered and
groundtruth 3D motion vectors across the entire dataset
was 4.01 degrees. Qualitatively, it is seen that estimates are
reasonably accurate and smooth for the smaller magnitude
motions (along the depth axis, rotation about the vertical
of the left surface, translation parallel to the image plane
in the lower and middle portions of the right surface).
Further, performance degrades reasonably smoothly with
increased magnitude motion (e.g., notice the transition in
error from the middle to upper portions of the right surface).
Interestingly, the results presented here are quite compara-
ble to those presented for the earlier 3D flow estimator
associated with STQ-local [49], i.e. 4.03 degrees median
error; however, the current algorithm provides more direct
access to flow, as it operates directly on matched orientation
distributions rather than abstracted stequels. In both cases,
a potentially valuable direction for future research would
be development of a coarse-to-fine refinement scheme to
increase the motion capture range.

As a further comparison, 3D flow results were obtained
for Lab3 in a more standard fashion: Stereo disparity
was recovered with noST-local, 2D flow was recovered
separately for the left and right views with a robust Lucas-
Kanade optical flow estimator [1] and 3D flow subsequently
was inferred by appeal to the left/right flow relationship
(14). In the following, this approach will be referred to as
noST-LK. The resulting flow map in Fig. 10 is not nearly as
smooth as that of the proposed approach and, consequently,
yields a significantly higher median error of 12.5 degrees.
These results indicate the benefit of the more integrated
spatiotemporal processing approaches STE-local and STQ-
local as well as the more reliable spatiotemporal orientation
measurement of STE in comparison to standard first-order
derivatives underlying the flow estimates of noST-LK.

Figure 11 shows recovered 3D scene flow for the Lab 2
sequence. While this sequence does not have associated
scene flow groundtruth, it illustrates results in a more
complicated situation than Lab3. It also has more com-
plicated flow than Lab1, as it involves both translation and
rotation. The flow vector confidence measure, ζ, (19) also
is displayed. The recovered motion is qualitatively correct
and appears quite smooth considering that no explicit opti-
mization over flow vectors has been attempted. The results
capture the rotation of the platform where the cap and
the box are instantaneously headed in opposite horizontal
directions (green and purple colours), because they are on
different sides of the platform rotation axis; further, the
background is characterized with very light pink in the d-
motion map signalling the camera moving forward. It also
is seen that the confidence measure, ζ, reports reasonable
values, e.g., highest in areas with enough image texture
to yield adequate variation within spatiotemporal oriented
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Left frame t Right frame t noST-local result STQ-local result STE-local result

Fig. 8. Input frames and disparity maps for Lustre dataset.

Left frame t Right frame t noST-local result t STE-local primary STE-local secondary STE-local result

Fig. 9. Example input frames and recovered disparity for Bino-spec data set.

energy distribution, (2), to support motion estimates and
low in untextured regions, such as the black backgrounds.

Figure 11 also shows results for noST-LK. In general,
the resulting 3D flow maps from STE-local and noST-
LK exhibit similar qualitative patterns; however, STE-
local yields consistently smoother maps with fewer gross
errors (especially in the depth component). Finally, the
results for the STQ-local approach to scene flow estima-
tion on Lab2 were presented previously [49]. While not
replicated here due to space, visual comparison shows that
they are qualitatively similar to those of STE-local shown
in Fig. 11 and thereby consistent with the quantitative
comparison presented in conjunction with Fig. 10.

4 DISCUSSION
This paper has described a novel approach to spacetime
stereo and motion recovery based on spatiotemporal ori-
ented energy distributions as match primitives. Several
important contributions can be explicitly recounted. First,
since the primitives and match cost inherently involve
the temporal dimension, the resulting disparity estimates
naturally exhibit temporal coherence. Second, matches that
are ambiguous when considering only spatial pattern are
resolved through the inclusion of temporal information.
Third, a unique approach to multilayer disparity estima-
tion (essential for robust processing of (semi)transparent
and specularly reflecting surfaces) is developed based on
allowing subsets of the orientation measurements to support
different disparity estimates. Fourth, a method for direct
recovery of 3D disparity flow from matched spatiotemporal
oriented energy distributions is developed. Fifth, prototype
recovery algorithms have been designed and implemented
in real-time on commodity GPUs. In comparison to alter-
native approaches, these benefits have been documented
qualitatively and quantitatively on both publicly available
and novel data sets. Video results for all datasets are
presented in supplementary material downloadable from
http://www.cse.yorku.ca/∼sizints/TPAMI-STE-2013.mp4

The present work can be perceived as a logical con-
tinuation to previous work using spatiotemporal orien-

tation as encapsulated in the spatiotemporal quadric el-
ement (stequel) [49]. From a theoretical point of view
the present approach makes more complete use of avail-
able spatiotemporal orientation information, as it does not
collapse (potentially multimodal) orientation distributions
into a quadric approximation. Importantly, this theoretical
advantage has been shown to have practical ramifications,
especially in the resolution of disparity in the vicinity
of surface discontinuities and the explicit recovery of
multilayer estimates when appropriate (e.g., transparency
and specular reflection). Similarly, the proposed 3D flow
estimation also has potential to support recovery of multiple
flow vectors by considering multiple local minima in its
optimization function. More generally, it appears that the
proposed approach is the only research on spacetime stereo
to consider multilayer disparity estimation.
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Left frame 5 Right frame 5 Left xy-motion Left d-motion

Left frame 6 Right frame 6 Disparity 5 motion annotation

STE disparity STE left xy-motion STE left d-motion STE angular error map

noST-LK disparity noST-LK left xy-motion noST-LK left d-motion noST-LK angular error map

Fig. 10. Lab 3 dataset and motion estimation results. Top two rows: Left half shows the original intensity
images for time consecutive frames, while right half shows disparity and colour-coded flow components and the
associated annotation chart. Bottom two rows: Motion and disparity estimation results recovered at the middle
frame using STE-local and noST-LK. Angular error is plotted with black through white depicting 0 to 90 or more
degrees.

Left frame 10 STE ζ-motion conf Left frame 29 STE ζ-motion conf

STE xy-motion STE d-motion STE xy-motion STE d-motion

noST-LK xy-motion noST-LK d-motion noST-LK xy-motion noST-LK d-motion

Fig. 11. Example Motion Estimation Results for Lab2 at Different Time Frames. Top row: raw frame and
motion confidence ζ for STE-local (brighter values corresponds to increased confidence). Middle row: xy and
d components of 3D motion estimation for STE-local. Bottom row: xy and d components of 3D motion estimation
for noST-LK. 3D flow vector colour coding is consistent with that originally presented in Fig. 10.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPAMI.2014.2321373

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



SUBMITTED TO THE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 14

[12] D. Demirdjian and T. Darrell. Using multiple-hypothesis disparity
maps and image velocity for 3D motion estimation. IJCV, 47:219–
228, 2002.

[13] K. G. Derpanis, M. Sizintsev, K. Cannons, and R. P. Wildes. Efficient
action spotting and recognition based on a spacetime oriented
structure representation. TPAMI, 35(3):527–540, 2013.

[14] K. G. Derpanis and R. P. Wildes. Early spatiotemporal grouping
with a distributed oriented energy representation. In CVPR, 2009.

[15] K. G. Derpanis and R. P. Wildes. The structure of multiplicaitve
motions in natural imagery. TPAMI, 32(7):1310–1316, 2010.

[16] K. G. Derpanis and R. P. Wildes. Spacetime texture representation
and recognition based on a spatiotemporal orientation analysis.
TPAMI, 34(6):1193–1205, 2011.

[17] R. O. Duda and P. E. Hart. Use of the hough transformation to
detect lines and curves in pictures. CACM, 15:11–15, 1972.

[18] U. Franke, C. Rabe, H. Badino, and S. Gehrig. 6D-vision: Fusion
of stereo and motion for robust environment perception. In DAGM,
pages 216–223, 2005.

[19] W. T. Freeman and E. H. Adelson. The design and use of steerable
filters. TPAMI, 13(9):891–906, 1991.

[20] M. Gong. Enforcing temporal consistency in real-time stereo
estimation. In ECCV, pages 564–577, 2006.

[21] G. Granlund and H. Knutsson. Signal Processing for Computer
Vision. Kluwer, 1995.

[22] K. J. Hanna and N. E. Okamoto. Combining stereo and motion
analysis for direct estimation of scene structure. In ICCV, pages
357–365, 1993.

[23] B. K. P. Horn. Robot Vision. The MIT Press, 1986.
[24] P. V. C. Hough. Machine analysis of bubble chamber pictures. In

Proc. Int. Conf. High Energy Accel. and Instr., 1959.
[25] F. Huguet and F. Devernay. A variational method for scene flow

estimation from stereo sequences. In ICCV, pages 1–7, 2007.
[26] C. H. Hung, L. Xu, and J. Jia. Consistent binocular depth and scene

flow with chained temporal profiles. IJCV, 102(1-3):271–292, 2013.
[27] M. Isard and J. MacCormick. Dense motion and disparity estimation

via loopy belief propagation. In ACCV, pages 32–41, 2006.
[28] H. Jiang, H. Liu, P. Tan, G. Zhang, and H. Bao. 3d reconstuction of

dynamic scenes with multiple handheld cameras. In ECCV, 2012.
[29] D. G. Jones and J. Malik. A computational framework for deter-

mining stereo correspondence from a set of linear spatial filters. In
ECCV, pages 395–410, 1992.

[30] V. Kolmogorov and R. Zabih. Computing visual correspondence
with occlusions using graph cuts. In ICCV, pages 508–515, 2001.

[31] E. S. Larsen, P. Mordohai, M. Pollefeys, and H. Fuchs. Tempo-
rally consistent reconstruction from multiple video streams using
enhanced belief propagation. In ICCV, pages 1–8, 2007.

[32] S.-B. Lee and Y.-S. Ho. Temporally consistent depth map estimation
using motion estimation for 3DTV. In WAIT, pages 149–154, 2010.

[33] C. Lei, X. D. Chen, and Y. Yang. A new multiview spacetime-
consistent depth recovery framework for free viewpoint video ren-
dering. In ICCV, pages 1570–1577, 2009.

[34] C. Leung, B. Appleton, B. C. Lovell, and C. Sun. An energy
minimisation approach to stereo-temporal dense reconstruction. In
ICPR, pages 72–75, 2004.

[35] S. Malassiotis and M. G. Strintzis. Model-based joint motion and
structure estimation from stereo images. CVIU, 65(1):79–94, 1997.

[36] R. Mandelbaum, G. Salgian, and H. Sawhney. Correlation-based
estimation of ego-motion and structure from motion and stereo. In
ICCV, pages 544–550, 1999.

[37] Middlebury College Stereo Vision Page.
http://www.middlebury.edu/stereo/, 2013.

[38] J. Neumann and Y. Aloimonos. Spatio-temporal stereo using multi-
resolution subdivision surfaces. IJCV, 47(1-3):181–193, 2002.

[39] OpenCL by Khronos Group. www.khronos.org/opencl.
[40] P. Pearce and S. Pearce. Polyhedra primer. Van Nostrand, 1979.
[41] J.-P. Pons, R. Keriven, O. D. Faugeras, and G. Hermosillo. Vari-

ational stereovision and 3D scene flow estimation with statistical
similarity measures. In ICCV, pages 597–602, 2003.

[42] C. Richardt, D. Orr, I. Davies, A. Criminisi, and N. A. Dodgson.
Real-time spatiotemporal stereo matching using the dual-cross-
bilateral grid. In ECCV, 2010.

[43] H. Scharr and R. Kusters. A linear model for simultaneous estimation
of 3D motion and depth. In WVM, pages 220–225, 2002.

[44] H. Scharr and T. Schuchert. Simultaneous motion, depth and slope
estimation with a camera-grid. In WVM, pages 81–88, 2006.

[45] D. Scharstein and R. Szeliski. Taxonomy and evaluation of dense
two-frame stereo correspondence algorithms. IJCV, 47:7–42, 2002.

[46] M. Shizawa. Direct estimation of multiple disparities for transparent
multiple surfaces in binocular stereo. In ICCV, pages 447–454, 1993.

[47] M. Sizintsev and R. P. Wildes. Coarse-to-fine stereo vision with

accurate 3D boundaries. IVC, 28(3):352–366, 2010.
[48] M. Sizintsev and R. P. Wildes. Spatiotemoral oriented energies for

spacetime stereo. In ICCV, 2011.
[49] M. Sizintsev and R. P. Wildes. Spatiotemoral stereo and motion via

stequel matching. TPAMI, 34(6):1206–1219, 2012.
[50] G. Stein and A. Shashua. Direct estimation of motion and scene

structure from a moving stereo rig. In CVPR, pages 211–218, 1998.
[51] G. Strang. Linear Algebra and its Applications. HBJ, 1988.
[52] C. Strecha and L. van Gool. Motion-stereo integration for depth

estimation. In ECCV, pages 170–185, 2002.
[53] G. Sudhir, S. Baneerjee, K. K. Biswas, and R. Bahl. Cooperative

integration of stereopsis and optic flow computation. JOSA-A,
12(12):2564–2572, 1995.

[54] Y. Tsin, S. B. Kang, and R. Szeliski. Stereo matching with linear
superposition of layers. TPAMI, 28(2):290–301, 2006.

[55] L. Valgaerts, A. Bruhn, H. Zimmer, J. Weickert, C. Stoll, and
C. Theobalt. Joint estimation of motion, structure and geometry
from stereo sequences. In ECCV, 2010.

[56] A. Wedel, C. Rabe, T. Vaudrey, T. Brox, U. Franke, and D. Cremers.
Efficient dense scene flow from sparse or dense stereo data. In
ECCV, volume 1, pages 739–751, 2008.

[57] O. Williams, M. Isard, and J. MacCormick. Estimating disparity and
occlusions in stereo video. In CVPR, pages 250–257, 2005.

[58] W. Xiong and J. Jia. Stereo matching on objects with factional
boundary. In CVPR, 2007.

[59] M. Yang, X. Cao, and Q. Dai. Multiview video depth estimation
with spatial-temporal consistency. In BMVC, 2010.

[60] W. Yang, G. Zhang, H. Bao, J. Kim, and H. Lee. Consistent depth
maps recovery from a trinocular video sequence. In CVPR, 2012.

[61] A. Zaharescu and R. P. Wildes. Anomalous behaviour detection
using spatiotemporal oriented energies, subset inclusion histogram
comparison and event-driven processing. In ECCV, 2010.

[62] G. Zhang, J. Jia, T. Wong, and H. Bao. Consistent depth map
recovery from a video sequence. TPAMI, 31(6):974–988, 2009.

[63] L. Zhang, B. Curless, and S. M. Seitz. Spacetime stereo: Shape
recovery for dynamic scenes. In CVPR, pages 367–374, 2003.

[64] Y. Zhang and C. Kambhamettu. On 3D scene flow and structure
estimation. In CVPR, volume 2, pages 778–785, 2001.

[65] J. Zhu, M. Liao, R. Yang, and Z. Pan. Joint depth and alpha matter
optimization via fusion of stereo and time-of-flight sensor. In CVPR,
pages 453–460, 2009.

Mikhail Sizintsev (Member, IEEE) received
the BSc (Honours), MSc and PhD degrees
in computer science from York University,
Toronto, Canada in 2004, 2006 and 2012,
respectively. He spent the summer 2009
at Sarnoff Corporation in Princeton, New
Jersey as an intern developing GPU-based
stereo systems for augmented reality appli-
cations. Currently, he is a computer scientist
at SRI International in Princeton, New Jersey.
His major areas of research include stereo,

motion, augmented reality and multi-sensory navigation.

Richard Wildes (Member, IEEE) received
the PhD degree from the Massachusetts In-
stitute of Technology in 1989. Subsequently,
he joined Sarnoff Corporation in Princeton,
New Jersey, as a Member of the Techni-
cal Staff in the Vision Technologies Lab. In
2001, he joined the Department of Computer
Science and Engineering at York University,
Toronto, where he is an Associate Professor
and a member of the Centre for Vision Re-
search. Honours include receiving a Sarnoff

Corporation Technical Achievement Award, the IEEE D.G. Fink Prize
Paper Award for his Proceedings of the IEEE publication “Iris recog-
nition: An emerging biometric technology” and twice giving invited
presentations to the US National Academy of Sciences. His main
areas of research interest are computational vision, as well as allied
aspects of image processing, robotics and artificial intelligence.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPAMI.2014.2321373

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.


