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ABSTRACT

The problem of detecting areas of motion in video sequences
and estimating parameters such as speed, direction and dy-
namics is addressed in many applications of image process-
ing such as video surveillance, object tracking, image stream
compression or autonomous navigation systems. Real world
computer vision highly depends on reliable, robust systems
for recognition of motion cues to make accurate high-level
decisions about its surroundings. In this paper, we present
a simple, yet high performance low-level filter for motion
detection and estimation in digitized video signals. The al-
gorithm is based on constant characteristics of a common, 2-
frame interlaced video signal, yet its applicability to gener-
ically acquired image sequences will be shown as well. In
general, our approach presents a computationally low-cost
solution to motion estimation application and compares very
well to existing approaches due to its robustness towards
environmental changes. A simple application of motion pa-
rameter estimation based on a pedestrian surveillance appli-
cation is illustrated.

1. INTRODUCTION

Motion detection and estimation in image sequences has
multiple applications ranging from image stream data com-
pression to artificial intelligence or automatic surveillance
problems and is considered a vital component of any of
these systems. Accordingly, a large amount of work has
been done to identify moving objects within a video se-
quence and estimate their motion parameters. In the fol-
lowing, yet a different approach for this task is presented,
for the reason of its astonishing simplicity and robust per-
formance, as shown in experimental applications.

Motion in a sequence of images is defined as a situation
where part of the scene is moving in front of a non-uniform
background. This moving part may not be connected, as in
the case of multiple moving objects, each drifting in differ-
ent directions. Furthermore, additional to a simple transla-
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tion of static image data, the objects may be rotating, de-
forming (i.e. experience local motion within themselves) or
temporarily occlude each other. On top of this, the captur-
ing device may be submitted to ego-motion, which results
in a moving background altogether.

A motion estimation algorithm identifies connected ob-
jects within the image that experience motion relative to-
wards the background, and estimate motion parameters, i.e.
direction, speed, and occlusion events. In partial solutions,
a simple detection of ”something in motion” suffices. In
many motion alarm systems for surveillance applications,
this is the case.

1.1. Background Subtraction

Motion in front of a background should generally be de-
tectable by subtracting a previously stored ”background”
image, or reference frame from the current input, and iden-
tify areas of high response as disturbances in the image. Ob-
viously, background subtraction relies on zero ego-motion
of the system, and no undesired changes to the observed
background. Lighting changes for example, have to be ac-
commodated for by an adaptive background extraction algo-
rithm, which iteratively updates the stored reference frame.
In [8], A. Makarov compares background extraction algo-
rithms. Common to his paper and [2] is that the choice
of threshold values for discrimination between noise and
real changes to the scene is crucial to eliminate false pos-
itives during motion detection. In [1], an automatic refer-
ence frame update is given to be able to detect motion even
after sudden lighting changes occur in an image sequence.

1.2. Interlaced Video Signals

A notion generally left out of consideration is that motion
(as temporal changes) is inherently encoded in the image
sequence signal acquired from commercial video cameras.
The NTSC signal scans 525 lines of image data per frame,
with a frame rate of 30fps. To eliminate flicker, two inter-
laced frames are sent alternatively with a rate of 60fps. Ac-
cordingly, alternating lines of the captured image are scanned



Fig. 1. Motion artifacts in interlaced video signals.

with a delay of 16:7ms. If we consider an object moving
horizontally before a background, then interlacing artefacts
can be observed along edges of the object, since each even
scan line has been captured exactly one frame later than its
preceding and following odd line. Figure 1 shows a mag-
nified snapshot of such an artefact. The horizontal extent
of these artefacts are directly proportional to the horizon-
tal component of the edge velocity. In terms of the image
window, the objects velocity vo is thus

vo =
l

16:7ms

in pixel per second, with l being the length of an interlacing
artefact.

2. A MOTION BANDPASS FILTER

Detecting the interlace artefacts can be achieved by apply-
ing a vertically oriented bandpass filter with the character-
istic frequency

fBP = 1
1

pixel

Since none of the original image should be preserved, the
filter thus has a low frequency component of 0, i.e. weight
of the filter kernel kBP = 0. In order to discriminate weight
of scan lines further from the center of the filter kernel, a
standard band pass filter was multiplied with an approxi-
mated Hamming window function:

kBP = kstdrd � kw

= [ �1 1 �1 1 �1 1 �1 ]

�[ 1 2 3 4 3 2 1 ]T

= [ �1 2 �3 4 �3 2 �1 ]

With the windowing function kw approximated by a tri-
angle function.

Applied to a raw video image I(x; y), the given filter
responds to columns of pixels with alternating intensities.
In particular, if the centre of the kernel is located on a white

pixel within a motion artefact, the response will be positive,
while on a black pixel, the response is negative. In areas
with a frequency other than fBP , the output IBP (x; y) is
close to 0.

Theoretically, the filter responds to any high frequency
along a vertical axis such as sharp, horizontal edges, for
example. Increasing the filter length dy will increase its
discrimination towards such ’false responses’, and ensure
only truely alternating lines produce a response. However, if
slanted lines moving with slow velocity produce an artefact
length of less than dy=2, sensitivity of the filter is reduced.
Experimentally, we found that a filter length dy = 7 was
optimal for the motion detection applications presented in
the following.

kBP

y

Fig. 2. A possible bandpass filter for kBP .

To decide whether moving edges are present in an image
or not, the complete filter takes the absolute value of the
output and generates a threshold image thereof:

M(x; y) =

�
1 if jIBP (x; y)j > threshold
0 else

(1)

In an experimental application, we were able to use the
filter for a simple intrusion detection system with this method.
An intrusion into the field of view was detected if

X
x;y

M(x; y) > k;

with k being a sensitivity parameter, depending on dimen-
sions of the acquired image and expected size of a moving
object. A larger object will generally produce longer edges
and thus increase positives in M .

Since this algorithm does not store any reference data, it
does not react with false positives towards gradual changes
in the image. In other words, very slow and global changes
do not trigger the bandpass filter at all. As a result, lighting
changes do not result in any false intrusion alarms.

2.1. Thresholding

Selecting the threshold to attain M(x; y) proved to be quite
robust. In fact for both the indoor and outdoor images shown,



the same threshold t was used. However, a simple thresh-
old adjustment scheme was used to automatically increase
the threshold on a static image input until the M(x; y) = 0

for all x; y. The thus computed threshold was afterwards
treated as a system dependent variable and needed no fur-
ther updating. With kBP as given in figure 2, and an input
value range of [0::255] for I , IBP can assume values within
[�8 �255::8 �255]. The histograms in figure 3 show a record-
ing of jIBP j over this period, with the computed threshold
marked. Note that for the still reference image, no values
above t exist (i.e. M(x; y) = 08x; y). Again, the histogram
does not change significantly for extreme changes in light-
ing conditions (indoor/outdoor).

(a) no motion

(b) waving motion

Fig. 3. Value histogram of jIBP . (b) was captured with a
waving motion as in figure 4.

3. MOTION PARAMETER ESTIMATION

In order to provide information for higher level computer vi-
sion systems, it is necessary to estimate motion parameters
such as location, velocity and direction of moving objects
from the filter output. Below, an outline of this is achieved
and some consideration on issues are given:

3.1. Direction of motion

In order to utilise the polarisation property of the filter, the
output signal IBP was further processed to display this in-
formation: a three colour image N(x; y) was defined as:

N(x; y) = M(x; y) � sign(IBP (x; y))(�1)y ;

with y being the scan line number. Figure 4 shows N(x; y)

encoded in three different colours, black for M(x; y) = 0.
N(x; y) denotes a gradient function of image values: a

transition from lower intensity to a higher one results in a
positive value. Thus, the direction of motion can be com-
puted from information derived from a single frame.

3.2. Motion velocity

Motion velocity vo;h along the horizontal trajectory can be
estimated from a single image snapshot by measuring the
artefact length l, as mentioned earlier. However, a vertical
motion will also yield filter response at slanted and horizon-
tal edges of the object. Thus, any object motion yields an
edge response of the filter, but the exact component of verti-
cal motion can not be estimated with this algorithm unless a
more sophisticated approach is taken, such as operating on a
vertically interlaced input image. However, real time perfor-
mance of the simple horizontal motion estimation suggests
that the given approach will assist a higher level decision
system to in image processing, identified frames and areas
of interest, with a preliminary motion velocity estimation
algorithm.

Also, given the high temporal resolution of the motion
filter approach (an inter-frame approach may - with appro-
priate hardware - at best analyse motion in intervals of 33.3ms),
fast motion is easy to detect and estimate due to the scan line
interval of 16.7ms. Thus, for example in a traffic surveil-
lance application, speeding drivers are captured even if they
appear only in a single frame of the image sequence. In con-
trary, very slow motion produces a dimmed output of the
filter. This drawback can accommodated by periodically in-
terlacing previously stored key frames with the current im-
age. In other words, to virtually triple the speed of passing
objects, a composite frame J(x; y; n) consists of interlaced
frames I(n), and I(n� 1), with n being the number of the
current frame:

J(x; y; n) =

�
I(x; y; n) if y even
I(x; y; n� 1) else

Applying the bandpass to J amplifies the sensitivity towards
slow motion.

4. EXPERIMENTAL RESULTS

As an experimental application, bypassing pedestrians were
recorded with the motion filter. Our primary concern was to
validate the robustness of our approach by comparing pro-
cessing of indoor and outdoor motion scenes. As shown in
figure 5, the walking person could be identified as an outline
response by the filter. By clustering filter output responses,
the average response location for a moving object can be
computed (shown as hashmarks in figure 5). An even larger
response length was recorded for a running motion. Note
that high frequency components of the rather noisy back-
ground do not lead to false positives in the threshold image
M(x; y).

For this experiment, a Pentium III processor was used
in combination with a Canon video conference camera and
a commercial frame grabber.



(a) raw image (b) jIBP j

Fig. 4. Raw image data and filtered output of a hand in
waving motion. Note the low contrast of the acquired image

5. CONCLUSIONS

In this paper, we showed that a simple approach to mo-
tion detection can be derived from the interlaced property of
NTSC video signals. The motion filter proposed was tested
in several experimental applications and proved to be robust
towards environmental changes such as noise and lighting
conditions. From the acquired data, it is possible to esti-
mate motion parameters in a high temporal resolution not
possible to inter-frame motion detection approaches. Fur-
ther work will involve a more sophisticated motion track-
ing system, combining the motion filter with a model-based
tracking algorithm to track known objects in real time.
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(b) Filtered image (c) Running motion
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