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Abstract 
 

Motion detection and estimation is a first step in the 
much larger framework of attending to visual motion 
based on Selective Tuning Model of Visual Attention 
[1]. In order to be able to detect and estimate complex 
motion in a hierarchical system it is necessary to use 
robust and efficient methods which encapsulate as 
much information as possible about the motion 
together with a measure of reliability of that 
information.  One such method is the orientation 
tensor formalism which incorporates a confidence 
measure that propagates into subsequent processing 
steps. The tensor method is implemented in a neural 
network simulator which allows distributed processing 
and visualization of results. As output we obtain 
information about the moving objects from the scene.  
 
 
1. Introduction 
 

The problem of attending to motion has attracted 
much research in the past years and it is well known 
that the accurate estimation of the visual motion plays 
an essential role in an attentional system especially in 
the case of complex motion. Motion estimation is 
subject to statistical and systematic errors depending 
on the noise level and image content. Thus, to quantify 
the reliability and precision of the results, motion 
estimation always needs to be combined with 
appropriate confidence measures to quantify the 
measurement precision. 

In such a system information representation 
becomes crucial. An object may appear in many 
different orientations, sizes and projections. In order 
that this variability is handled efficiently a unique 
descriptor is necessary to represent different types of 
features.  This characteristic is called invariance of 
representation [2]. Another characteristic of 
information representation implies that transformations 

of a feature are reflected in transformations of the 
representation. This is the concept of equivariance 
which was introduced by Wilson and Knutsson [3]. 
Finally, different features must be represented by the 
same descriptor and different descriptors must indicate 
different features - the uniqueness characteristic. These 
three requirements of information representation are 
met by the tensor representation of orientation. The 
strength of the tensor representation is that it 
incorporates a measure of reliability of data, which 
makes it possible to explore the utility of confidence 
measures throughout the motion process.  

The orientation tensor can be obtained by 
performing a weighted summation of pre-calculated, 
filter specific, tensors, the weights being the quadrature 
filter output magnitudes. We used the recursive method 
developed in [4] for separation of spherically separable 
quadrature filters into simple kernels. 

In three dimensions, that in our case are 2D space 
and one time dimension, we distinguish three principal 
categories of local topologies: a) planar neighborhood. 
b) linear neighborhood. c) isotropic neighborhood. 
These can be discriminated by just looking at the 
relative size of the eigenvalues of the tensor. 
Interpreting these cases in space-time, they correspond 
to ideal situations of a) a moving or stationary line or a 
sudden change of the whole neighborhood b) a 
moving/stationary points c) no movement. The 
difference between moving and stationary is given by 
the angle that the eigenvectors make to the time 
direction; this will be explained in detail below. 

We will extract the velocity field, as an orientation 
field in the spatiotemporal domain, and visualize it 
using a color coding of the orientation and magnitude 
of speed. 

For implementation we used a general purpose 
neural network simulator (www.tarzann.org) 
developed for implementation of different 
computational models related to visual attention. 
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2. Tensor representation of orientation 
 

What is the optimal representation of orientation 
that is suitable for further processing? We begin by 
analyzing the orientation in the two-dimensional case. 
The most obvious representation for orientation is a 
scalar (for example the angle between the coordinate 
system and the principal axes of the structure). The 
disadvantage with the scalar representation is that it is 
not possible to restrict the scalar quantity to the interval 
[0,π ] and at the same time to make it continuous - 
there is a 'jump' between the two end-points of that 
interval. Using the vectors for representing the 
orientation, for example the gradient vector, does not 
solve the problem. Although this vector gives a 
continuous representation, it is defined mod(2 )π . The 
vectors x and -x do not map to the same value. 

This vector representation introduced by Granlund 
[5] does not work in the 3 dimensional case. The 
solution proposed by Knutsson [6] is to find a mapping 
that maps the original space into a suitable 
representation space and meets the three basic 
requirements: 

1. uniqueness: the vectors x and -x should map to 
the same value. 

2. uniform stretch: preservation of the angle 
metric of the original space. 

3. polar separability the magnitude of the 
mapped vector should be independent of the direction 
of the original vector. 

Such a mapping is obtained if we take the dyadic 
product of vector and normalize the resulting tensor 
with the magnitude of the vector: 

T

T ≡ xx
x

                               (1) 

From this equation it follows that T is also 
positive semidefinite and at most of rank one in the 
case of simple signals. 

To show how the construction of the tensor 
describes the local orientation we consider a vector 

( )v x  that contains the orientation vector ( )r x . Using 
the structure tensor we estimate the orientation ( )r x  
within a local neighborhood U irrespective of the sign 
of v.  From its components the symmetric tensor can 
be constructed in the following way [7] : 

( ) ( ) ( )d′ ′ ′= ∫ T

U

J x v x v x x                 (2)                                          

The projection of vector v onto the direction r is 
represented by the inner product. If both vectors are 
perpendicular to each other the inner product vanishes 
and if they are parallel or point into opposite directions 

it reaches a maximal or minimal value. The vector ( )r x  
that constitutes an estimate for the mean orientation 
within the local neighborhood U maximizes the 
following expression: 

2( ( ) ( )) d′ ′∫ T

U

v x r x x   (3) 

With the tensor notation (1) this expression can be 
written as: maximum→Tr Tr , which reaches a 
maximum if the vector ( )r x  is given by the 
eigenvector of the tensor T to the maximum 
eigenvalue. This maximization problem is equivalent 
to an eigenvalue problem which implies that the 
structure tensor becomes diagonal in a coordinate 
system that is spanned by the eigenvectors {ek}. 

The solution, which is defined by finding the 
orientation, is given by the eigenvector corresponding 
to the maximum eigenvalue. In this way the relevant 
information contained in the structure tensor is 
extracted by computing its eigenvalues and 
eigenvectors. 

The eigenvalue decomposition can be written as: 

k
k

λ=∑ T
k kT e e   (4) 

where 1 2 nλ λ λ≥ ≥ ≥  are the eigenvalues and 
{ek.} are the corresponding eigenvectors. 

In three dimensions the orientation tensor can be 
thought of as an ellipsoid with its three axes oriented 
along the tensor’s three perpendicular eigenvectors and 
with the semi-axis lengths proportional to the square 
root of the eigenvalues of the tensor. 

The analysis of the eigenvalues of the structure 
tensor in 3D introduces the different cases shown 
below[8]: 

1. The plane case:  
1 2 3λ λ λ=       

t
1 1 1 1λ=T e e             

The signal is constant on parallel planes and the 
Fourier transform of the signal is concentrated on a line 
with 1e  being the normal vector of the planes in the 
spatial domain and a direction vector of the lines in the 
Fourier domain. 

2.The line case:   
1 2 3λ λ λ=    

t t
2 1 1 1 2 2( )λ= +T e e e e      

The signal is constant on parallel lines. The 
Fourier transform of the signal is concentrated on a 
plane, with 1e  and 2e  being perpendicular to the lines 
in spatial domain and spanning the plane in the Fourier 
domain. The orientation of the lines is given by the 
eigenvector corresponding to the smallest orientation. 

3.The isotropic case: 
1 2 3λ λ λ= =  

t t t
3 1 1 1 2 2 3 3( )λ= + +T e e e e e e                                           
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The signal is isotropic or rotationally symmetric. 
There exists energy in the neighborhood but no 
dominant orientation. 

The orientation can be represented as a linear 
combination of three tensors. The first corresponds to a 
simple neighborhood, i.e. locally planar, the second to 
a rank 2 neighborhood, i.e. locally constant on lines, 
and the last term corresponds to an isotropic 
neighborhood, e.g. non-directed noise. 

Based on this decomposition, the tensor can be 
visualized as a sum of a spear, a disc and a sphere. The 
spear describes the principal direction of the tensor 

T
1 1 1λ e e  where the length is proportional to the largest 

eignevalue 
1λ . The disc describes the plane spanned by 

the eigenvectors corresponding to the two largest 
eigenvalues T T

2 1 1 2 2( )λ +e e e e . The sphere with a radius 
proportional to the smallest value shows how isotropic 
the tensor is T T T

3 1 1 2 2 3 3( )λ + +e e e e e e . 
The regions where motion is present are 

anisotropic regions in the spatiotemporal cube.  We 
have to filter the tensor field in order to enhance the 
anisotropy represented by the cases spear and disc and 
to discard isotropy represented by sphere case. The 
literature provides different measures of confidence for 
the anisotropy based on tensor decomposition 
mentioned above.  We have chosen to use the ones 
proposed by Baerman et al [9] due to simple geometric 
motivation behind: 

         
                                                                   (5) 

 
3.Tensor construction based on quadrature 
filters 
 

Knutsson has shown that a tensor representation of 
local orientation can be produced by combining the 
outputs from polar separable quadrature filters [9]. The 
structure tensor is constructed by probing Fourier 
domain in several directions with filters that each pick 
up energy in an angular sector in a particular direction. 
These filters are complex-valued quadrature filters for 
which the impulse response is real and non-zero only 
in one half of the Fourier space. The quadrature filters 
used for constructing the tensor are spherically 
separable in the Fourier domain. 

The tensor is constructed by using the filters’ 
response magnitude as a coefficient in a linear 
summation of basis tensors: 

k
k

k
q=∑T M    (6) 

where kM  is dual of the outer product tensor. 
k T

k kn n=N .The mathematical expression for kM  
depends of the angular distribution of the filters. 
 
3.1. Sequential filter network 
 

In order to perform general and invariant 
processing it is necessary that the filtering process 
support a continuous representation of orientation. To 
reduce the computational demand a limited number of 
filters were applied at each neighborhood and the 
partitioning of the orientation space was coarse and 
incomplete. This approach narrows the range and 
complexity of tasks on which it can be applied and 
increases the inaccuracy of the estimates.  

We use an efficient implementation of the 
quadrature filtering method that is described in [4] 
[10].  An efficient way to approximate a given filter, 
given N coefficients, is to distribute them over a 
number of smaller filters, which would then be applied 
in sequence. This is based mainly on the fact that 
computational complexity of the filtering process is 
directly proportional to the number of kernel 
coefficients but it is  independent of the spatial 
coordinates for these coefficients. 

The quadrature filter responses are computed in 
three steps. The first two components are real valued 
and are both oriented in directions orthogonal to the 
filter orienting vectors. The last component is complex 
valued and directed along the main direction of the 
ideal filter. If we used 6 conventional 3D 9x9x9 
quadrature filters the number of multiplications would 
have been almost 9000. In the case of the filter network 
that we used the number of multiplications are about 
350 [10]. 

 

 
 
Figure 1.  Filter structure to compute 3D quadrature 
filter outputs in 9 directions 
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4. Velocity estimation 
 

We can obtain the velocity field by projecting the 
eigenvector corresponding to the largest eigenvalue 
onto the image plane. As we have already shown (5) by 
examining the relations between the eigenvalues of the 
orientation tensor the velocity can be estimated in the 
plane case, corresponding to a moving line, or a line 
case, corresponding to a moving point. The isotropic 
case which corresponds to no movement is discarded. 
The following expression have been used for 
calculating the velocity [11] 

1. moving point 

  
 (7) 

2. moving line 

 
 (8) 

Where 
1ξ  and 

2ξ  are the orthogonal unit vectors 
defining the image plane and t  is a unit vector in the 
time direction. 
 
5. Implementation 
 

To implement our model for motion estimation we 
used a publicly available neural network simulator 
TarzaNN (www.tarzann.org) [12]. TarzaNN is a 
multiplatform software package written in ANSI C++ 
and using QT libraries. It allows different models of 
visual attention to be implemented in a unified 
framework and accepts input images in a wide variety 
of file formats, or directly from a camera. TarzaNN is 
composed of “feature planes” (FP) interconnected by 
filters. Feature planes are 2D arrays of neurons 
characterized by identical properties (neuron type, 
neuron parameters) and receptive fields. Filters are 2D 
definitions of receptive fields, and they describe how 
the output of a feature plane is connected to the 
neurons of another one (like the arrays of weights in 
classical neural networks). An element of a FP, say, at 
position (i,j), takes its input from other FPs, namely, 
from elements that are in a neighborhood of the 
corresponding position (i,j) in their FP. Strictly 
speaking, FPs do not need to have the same size - as 

this provides a tool for the scale hierarchy - but they 
are resized on the fly to adapt to each other. Each FP 
has an optional sub-window in the graphical user 
interface of TarzaNN, so that its contents are visible to 
the user. The value of each element is converted to a 
256 values level of gray by default or color if this is 
requested explicitly in the code. The flexibility of 
simulator and the XML-based model description have 
allowed us to implement efficiently our model for 
motion estimation. 

We implemented the processing of image 
sequences by treating them as three-dimensional arrays 
of pixels. The corresponding feature plane structure for 
the image sequence consists of individual frame 
images placed one atop the other, starting with the first 
frame at the top. The image sequences corresponding 
to each FP can be displayed as a succession of 
individual frames by using auxiliary feature planes that 
store and display one frame at a time 

The network structure used for simulation consists 
of five layers of feature planes. The filtering is 
performed in 4 levels where the three first are real 
valued and the last is complex. The first layer is the 
input layer which contains the input sequence. The 
input layer is connected to the second layer of 3 feature 
planes by low-pass filters. The third layer contains 9 
feature planes. Each FP from the second layer is 
connected by 3 filters to a FP from third layer. The 
fourth layer is composed of 9 FP and contains the 
images after quadrature filters. The fifth layer is the 
output layer of a nonlinear function in which are fed 
the outputs from quadrature filters. This nonlinear 
function computes the local tensor and discriminates 
the three cases (line, plane, and sphere). 

We calculate for each point in the image sequence 
the certainty measures csphere, cdisc and cline. If csphere is 
greater than a threshold TC then we have only isotropic 
noise patterns.  Otherwise, we have to decide if we 
have a moving point (line case) or a moving line (plane 
case). This is done by comparing cline with cdisc 
multiplied by a second threshold TS, used to 
discriminate between line and plane case.  If cline is 
greater then we are in the line case, if smaller, in the 
plane case. Finally, for the corresponding case we 
compute the direction and magnitude of velocity with 
formulas (7) (8). 
 
6. Results 
 
We illustrate the motion estimation using 2 synthetic 
and a real scene sequence. All of them contains grey 
scale images, have a resolution of 128x128 pixels and 
are 11 frames long. Better results can be obtained by 
using a longer sequence, but we can better present the 

p oin t 1 1 2 2 3( ) /x x x= ⋅ + ⋅v ξ ξ

1 3 1x = ⋅e ξ

2 3 2x = ⋅e ξ

3 3x = ⋅e t

2 2
3 1 1 2 2 1 2( ) /( )lin e x x x x x= − ⋅ + ⋅ +v ξ ξ

1 1x = ⋅1e ξ

2 2x = ⋅1e ξ

3x = ⋅1e t
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visualization of the whole sequence using only 11 
frames. The first simple synthetic sequence represents 
a shrinking octagon. For this sequence we present a 
screenshot from TarzaNN (fig. 2) in which can be seen, 
in the left, the input sequence, in the right, the output 
sequence, and in the middle the images of 9 feature 
planes corresponding to the outputs of 9 quadrature 
filters. In the output sequence it can be seen how the 
movement is coded by color. The direction of velocity 
is visualized as the hue of color using the color 
diagram from fig.3. Each point in the diagram 
represents a vector with the origin in the centre of the 
circle. Its color is mapped to a velocity vector which 
has the same direction and a proportional magnitude. 
The hue of color encodes the direction and the intensity 
the magnitude. Since the movement is uniform the 
intensity is the same. The first 4 frames and the last 4 
frames from the output represent the transitory 
response. 
 

 
 

Figure 2. Screenshot from TarzaNN representing 
motion estimation from shrinking octagon 
 

 
 

Figure 3. Color coding diagram 
 

The second, more complex, synthetic sequence is 
the Yosemite sequence (fig.4). The motion is divergent 
excepting the clouds in the upper right which translate 
to right with a speed of 2 pixels/frame. In the lower left 
corner the velocity is about 5 pixels/frame. In middle-
right part of the image the velocities are very low and 
the contrast very poor, causing the intensity of colors, 
which represents the magnitude of velocity, to fade to 
black. We present the correct flow field in the right 
image provided in [13] and the color coded velocity 
following the color coding diagram from fig. 3. 

  

 
 

 Figure 4. Left: Color coded velocity field of the 
Yosemite sequence. Right: correct flow field 
  

For the real scene experiment we used the 
Hamburg taxi sequence (fig.5). In this scene there are 
three noticeable moving objects: a taxi turning around 
the corner, a car moving to the right and a van moving 
to the left. The figure (2) shows the central frame of 
the sequence (frame 6) and the corresponding input 
frame. 
 

 
 
Figure 5. Left: Central frame of the Hamburg taxi 
sequence. Right: Color coded motion estimation  
 

The filters used have size 5x7x7 or 5x9x9 (or 
permutations) and have the origin in the middle of their 
support. This means that the value of the filtered signal 
at a point may depend on pixel values of the input that 
are up to 4 pixel away of that point. In particular, the 
frames may show a bigger "smearing" of the objects in 
the direction of their movement. As a consequence, the 
faster the object moves the greater is the color spot 
representing the object. 

To test the performance of our implementation  for 
optical flow estimation we use a simple sinusoidal 
plaid pattern which consists of two superposed 
sinusoidal plane-waves both moving with speeds of 1 
pixel/frame at 0 and 90 degrees orientation for a 
perceived velocity of (1,1) pixels/frame. The average 
angular error (AAE) obtained is 6.67ס at a standard 
deviation (Std) of 4.75ס . Although the AAE is quite 
good it is outperformed by many methods for optical 
flow estimation for this simple synthetic pattern [13], 
[14].  Nevertheless, for the more complex Yosemite 
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sequence (fig 4.) the performance is among the best 
ones (AAE: 10.12,  Std:  12.23).   

Unfortunately, for the taxi real scene sequence we 
do not have the ground truth motion field. Though 
there are many real scene test sequences available, 
determining the ground truth motion field for real 
scene test sequences is not possible. Due to space 
restriction we only presented an overall comparison 
with other algorithms. For a detailed comparison the 
reader is referred to the papers [13], [14]. 

For computing the optical flow we used 
thesholding when the minimum confidence level was 
less than a certain value. However, the confidence 
measure is embedded in the tensor field, from which 
we extracted the velocity flow field and thus the whole 
information is further passed to superior levels and not 
discarded by thresholding. As a consequence, we 
expect that for complex motion fields (involving 
occlusions, transparencies, illumination, variations, and 
multiple motions) the accuracy of velocity flow field 
extracted from tensor field to be better than other 
methods. 

In comparison to the method presented in [16] for 
motion estimation our implementation, based on tensor 
formalism, reveals its superiority by including a 
confidence measure that permits the system to isolate 
reliable input data and to discriminate 2-d velocity 
from normal velocity. Moreover, beside the lack of 
confidence measure in the former method the direction 
selectivity is restricted to 12 directions. 
 
7. Conclusions and future work 
 

We presented the first stage, of a two-stage 
process of attending to complex motion patterns, in 
which we extracted the velocity field as orientation 
field in spatiotemporal domain and obtained a 
description of local structure in terms of the orientation 
tensor. In the second stage we will use the topology of 
the flow field to detect complex motion patterns as in 
[16]. Given the spatiotemporal tensor field which 
incorporates the patterns of motion and associated 
confidence, we can, at the top level, locate and identify 
different classes of motion to which to attend. 

Since we are interested in obtaining the topology 
of the flow field our implementation is not optimized 
for obtaining the minimum average angular error for 
the velocity field as the measure of performance of 
motion estimation. The final goal of the project i.e. 
detection of complex motion patterns based on the 
topology of the flow field is not necessarily achieved 
by individual optimization of the intermediate results. 
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