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Many think that visual attention needs an executive to allocate resources. Although the
cortex exhibits substantial plasticity, dynamic allocation of neurons seems outside its
capability. Suppose instead that the visual processing architecture is fixed, but can be
‘tuned’ dynamically to task requirements: the only remaining resource that can be allocated
is time. How can this fixed, yet tunable, structure be used over periods of time longer than
one feed-forward pass? With the goal of developing a computational theory and model of
vision and attention that has both biological predictive power as well as utility for computer
vision, this paper proposes that by using multiple passes of the visual processing hierarchy,
both bottom-up and top-down, and using task information to tune the processing prior to
each pass, we can explain the different recognition behaviors that human vision exhibits. By
examining in detail the basic computational infrastructure provided by the Selective Tuning
model and using its functionality, four different binding processes – Convergence Binding
and Partial, Full and Iterative Recurrence Binding – are introduced and tied to specific
recognition tasks and their time course. The key is a provable method to trace neural
activations through multiple representations from higher order levels of the visual
processing network down to the early levels.

© 2008 Elsevier B.V. All rights reserved.
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1. Introduction1

We address the relationships among attention, recognition
and feature binding in vision, relationships that remain poorly
understood both theoretically and experimentally. The cur-
rent common wisdom underlying much research into visual
processing by the human brain (and the bulk of computational
vision whether biologically inspired or not) includes the
following assumptions: that determination of the focus of
attention precedes recognition; that the location of the region
of interest is used to route stimulus details to higher levels for
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further analysis/perception; and that it is possible to study
vision in isolation from action and task. These seem rooted in
the old pre-attentive/attentive distinction, a useful dichotomy
in its time, but much less so now. All these concepts are
common throughout most of computational vision.

The nature of attentional influence has been debated for a
long time. Among the more interesting observations is that of
James (1890) “everyone knows what attention is” juxtaposed
with that of Pillsbury (1908) “attention is in disarray” and
Sutherland's (1998) “aftermany thousands of experiments, we
know only marginally more about attention than about the
et al. (2007).
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interior of a black hole”. Even Marr, basically discounted the
importance of attention by not considering the time intervals
of perception where attentive effects appear. When describing
grouping processes and the full primal sketch, he says, “our
approach requires that the discrimination be made quickly –
to be safe, in less than 160 ms – and that a clear psychophy-
sical boundary be present” (Marr, 1982, p. 96). Not only is the
number of experimental investigations enormous, but also the
number of differentmodels, theories and perspectives is large.
Attention has been viewed as early selection (Broadbent,
1958), using attenuator theory (Treisman, 1964), as a late
selection process (Norman, 1968, Deutsch and Deutsch, 1963),
as a result of neural synchrony (Milner, 1974), using the
metaphor of a spotlight (Shulman et al., 1979), within Feature
Integration Theory (Treisman and Gelade, 1980), as an object-
based phenomenon (Duncan, 1984), using the zoom lens
metaphor (Eriksen and St. James, 1986), as a pre-motor theory
subserving eye movements (Rizzolatti et al., 1987), as Guided
Search (Wolfe et al., 1989), as Biased Competition (Desimone
and Duncan, 1995), as feature similarity gain (Treue and Mar-
tinez-Trujillo, 1999), and more.

Within all of these different viewpoints, the only real
constant seems to be that attentional phenomena seem to be
due to inherent limits in processing capacity in the brain
(Tsotsos, 1990). But even this does not constrain a solution.
Even if we all agree that there is a processing limit, what is its
nature? How does it lead to the mechanisms in the brain that
produce the phenomena observed experimentally?

We suggest that the terms attention, recognition and bind-
ing have become so loaded that they mask the true problems;
each may be decomposed into smaller problems, problems
whose solution depends strongly on their inter-relationships.

The paper will begin by presenting a set of vision tasks and
their definitions. Itmust be noted that the use ofmany terms in
vision, regardless of which discipline uses them, is not
consistent but in order to follow the arguments in this paper,
one must adhere to the definitions provided strictly. After the
definitions, Section 1 will continue by describing needed back-
ground on our particular perspective on attention and binding.
Section 2will provide adescriptionof our visual attentionmodel
and the reader is alerted to the fact that details have appeared
previously in many papers over many years, and cannot be
replicated here; literature pointers for further reading are
provided. Section 3 will present the result of our connection of
vision task definition and observed experimental time course of
those tasks, with proposed binding processes and attentional
mechanisms within our model. These connections have been
realized within a model simulation, published previously with
citations provided as appropriate. The paper ends with a
discussion of the implications of these connections and model
predictions that require new experimental work.

1.1. Defining vision sub-tasks

All efforts to develop a computational theory of human vision
must be informed by experimental observations of human
(and also non-human primate) visual performance. Conse-
quently, the terms attention, recognition and binding should
be closely tied to the experiments that attempt to discover
their characteristics within human vision; yet, one currently
Please cite this article as: Tsotsos, J.K., et al., The different sta
strategies, Brain Res. (2008), doi:10.1016/j.brainres.2008.05.038
sees the terms quite arbitrarily used, especially in the com-
putational vision literature. Macmillan and Creelman (2005)
provide good definitions for many aspects of recognition and
we can use these as a starting point. It is important to note
that in some instances these definitions may not match the
usual use of some of the terms involved; this paperwill use the
definitions strictly.

One-interval experimental design involves a single stimulus
presented on each trial. Between trials visualmasks are used to
clear any previous signal traces. Discrimination is the ability to
tell two stimuli apart. The simplest example is a Correspondence
experiment in which the stimulus is drawn from one of two
stimulus classes and the observer has to say fromwhich class it
is drawn.This is perhaps the closest to thewaymuchofmodern
computer vision currently operates; computational neu-
roscience models usually do not go much further. A Detection
task is where one of the two stimulus classes is null (noise) and
the subject needs to choose between noise and noise+signal
and the subject responds if he sees the signal. In a Recognition
task neither stimulus is noise. More complex versions have
more responses and stimuli. If the requirement is to assign a
different response to each stimulus, the task is Identification. If
the stimuli are to be sorted into a smaller number of classes –
say, M responses to sort N stimuli into categories – it is a Clas-
sification task. The Categorization task requires the subject to
connect each stimulus to a prototype, or class of similar stimuli
(cars with cars, houses with houses). The Within-Category
Identification task has the requirement that a stimulus is
associated with a particular sub-category from a class (bunga-
lows, split-level, and other such house types, for example).
Responses can be of a variety of kinds: verbal, eyemovement to
target, the press of a particular button, pointing to the target,
and more. The choice of response method can change the
processing needs and overall response time.

In N-interval designs, there are N stimulus displays. In the
Same–Different task a pair of stimuli is presented on each trial
and the observer must decide if its two elements are the same
or different. For the Match-to-Sample task, three stimuli are
shown in sequence and the observer must decide which of the
first two the third one matches. Odd-man-out is a task where
the subject must locate the odd stimulus from a set where all
stimuli are somehow similar while one is not. More complex
designs are also used and Macmillan and Creelman detail
them all; the point here is not to review all possibilities. Ra-
ther, the point is to present the definitions that we use in this
paper and to stress that computational theories – if they wish
to have relevance to human vision – need to consider the
experimental procedures for each task when comparing their
performance to experimental observations.

All experiments require a response from a subject, a
response that in some cases requires knowledge of location
of the stimulus perceived. This leads us to define a new task
that is not explicitly mentioned in Macmillan and Creelman,
the Localization task. In this task the subject is required to
extract some level of stimulus location information in order to
produce the response dictated by the experimenter. That level
of location informationmay vary in its precision. Sometimes it
may be sufficient to know only in which quadrant of the visual
field a stimulus is found, other times a subject may need to
know location relationships among stimuli, and so on. In fact,
ges of visual recognition need different attentional binding
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Fig. 1 – Examples of some the search problems in vision illustrated on a hypothetical processing pyramid. The figure shows a
simplified hypothetical layered processing hierarchy (pyramid). A caricature of a face is the sole stimulus in the input array. The
processing hierarchy is represented by the large truncated cone shape in the figure, without each layer drawn in for clarity. The
activations, both feed-forward and feedback, due to the attended stimulus are drawn as smaller cones within the large one.
These showonly the extent of the pathways that the attended portion of the stimulusmight activate. a. Feed-forward activation
to be followed by maximum response selection within the region of projection of the input stimulus at the output layer. b. The
receptive field of the selected neuron shown overlappingwith the feed-forward projections, illustrating the extent of ambiguity
that is present. c. The ambiguous regions are highlighted with dark shading. d. The target connectivity that would resolve the
ambiguity.
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this may be considered as an implicit sub-task for any of the
standard tasks if they also require location information to
formulate a response. Its importance will become apparent
later in the paper. Throughout the paper, adding a superscript
“L” to the task name will denote a task that also includes
localization.

One final issue is worth noting here. Macmillan and Creel-
man (2005) point out that the basic psychophysical process is
comparison. All psychophysical judgments of the kind described
above are of one stimulus relative to another; experimental
designs differ in kinds of comparisons. Thus, any theory or
model of vision that does not include this basic functionality is
not addressing the real issue. It is this basic comparison process
thatwas the rootof the computational complexity foundationof
the Selective Tuning model (Tsotsos, 1989, 1990)2 – its ‘first
principles’ – and thus this forms a sound basis for a model of
vision and attention.
2 This first principles and their relation to the comparison task
are fully summarized in Tsotsos (2005).

Please cite this article as: Tsotsos, J.K., et al., The different sta
strategies, Brain Res. (2008), doi:10.1016/j.brainres.2008.05.038
1.2. Attention as search optimization

Fig. 1 shows a simplified hypothetical processing hierarchy
(pyramid) with layers, for the sake of example, being retinal
ganglioncells, LGN,V1,V2,V4,TEO, andTE.Acaricatureofa face
is the sole stimulus in the input array. The point of the figure
is to illustrate some of the aspects of attentive search. The
processing hierarchy or pyramid is represented by the large
truncated cone shape in the figure, the input layer at the bottom
and the output layer at the top, without intermediate layers
drawn in for clarity. The activations, both feed-forward and
feedback, due to the attended stimulus are drawn as smaller
cones within the large one. These show only the extent of the
pathways that the attended portion of the stimulus might
activate within each layer.

In the leftmost sub-figure (Fig. 1a) each point of that face
wouldactivate a feed-forwarddivergingnetwork of connections
andneurons. This is illustratedusingaparticular small region in
the bottom or input layer of the figure; let's say that it is this
small region that is attended. This, as well as any other portion
of the stimulus, activates particular sub-regions at each layer of
the visual processing hierarchy (the lightly shaded ovals). The
ges of visual recognition need different attentional binding
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diverging nature of activation is illustrated by the upward
increasing size of activated region. That feed-forward neural
connectivity has this diverging nature has been shown inmany
previous studies (Salin and Bullier, 1995; Angelucci et al., 2002;
Gilbert and Sigman, 2007) andhas beenused inmodels for some
time (Nowlan andSejnowski, 1995; Roelfsema, 2006, to name an
early one and a recent one). These works also show the
reciprocal nature of feed-forward and feedback connectivity,
which is required for the remainder of the figure as well as our
model.

Suppose that on inspection of the topmost activated region
the strongest responding neuron is selected within it, on the
assumption that it might be the one that best represents the
contents of the attended region in the input array (not unlike
the process assumed by all computational models of visual
attention). This is a search process: from a set of responses
find the strongest one. That neuron has a receptive field and
receives activation from a particular region in the input and
that region has awell-defined set of pathways that lead to that
neuron in the top layer as shown by themedium shaded ovals
in Fig. 1b. This receptive field is much larger than the attended
item creating a confound that must be resolved. What is that
neuron responding to? The conflict does not exist only at the
input or top layers, but throughout the hierarchy. The regions
within each layer that exhibit this conflict in this toy example
are shown by darkly shaded ovals in Fig. 1c. Somemechanism
is needed to eliminate the ambiguity created by this situation,
to connect the attended input directly to the neuron of interest
at the top, and to ensure that it only ‘sees’ and responds to the
attended item, as is shown in Fig. 1d.

This illustration is an abstraction, clearly simplified;
imagine how the problems are compounded with several
feature representations and several pathways as would be the
case for any non-trivial stimulus being analyzed by the visual
cortex.

Attention ismost often thought of as selection of portion of
the input for preferential processing, and as a result, only the
portion of the above description that selects that first small
region in the stimulus requires an attentional mechanism.We
disagree and have maintained a view of attention as a set of
mechanisms that optimize the search processes inherent in
vision (Tsotsos, 1992, 2001). Certainly, the selection of fixation
point/region in an image is a search problem, but it is hardly
the only one. The selection of the strongest response at the
output layer is another. The sequence in Fig. 1 is intended to
illustrate another search problem, namely, that of searching
for the set of pathways and neurons that best represent what
is being attended. The search space is exactly the areas of the
dark shaded ovals in Fig. 1c. One might consider that the
search may be done in a feed-forward manner, a feedback
manner, or perhaps otherwise. Search constraints can come
from bottom-up (in the early stages the feed-forward activa-
tions lead to smaller regions than the receptive field) or top-
down (in the later stages the receptive fields are smaller than
the feed-forward activated regions). On the assumption that
the decision criterion for search is maximum response within
search regions at all stages, feed-forward selection of best
responses cannot be guaranteed to converge on the selected
neuron at the top; only local maxima will be found in each
layer and there is no guarantee that using the feed-forward
Please cite this article as: Tsotsos, J.K., et al., The different sta
strategies, Brain Res. (2008), doi:10.1016/j.brainres.2008.05.038
activation pathways only as a search guide will not lead to
intermediate maxima that cause the search to veer away from
the target neuron. A feedback approach will necessarily
succeed as can be easily seen in the figure: from the global
maximum at the top, using the receptive field boundaries
within each layer as a guide, search will discover only
pathways that lead to the source of that maximum response
within the input layer. Assuming that themaximally respond-
ing neuron at the top is a good detector for the attended item,
the stimulus that led to the global maximum is guaranteed to
be found (this is formally proved in Tsotsos et al., 1995). Thus a
top-down search is required to achieve the goal shown in
Fig. 1d. This search process plays amajor role in the remainder
of the paper.

Some recent models of vision use a feed-forward max-
imum operation with the goal of solving the same sort of
problem. Although the previous paragraph provided some
rationale as to why this approach may not find a global
maximum, more evidence can be presented as to why this is
not likely to be biologically plausible. The experimental
evidence against a feed-forward maximum operation is over-
whelming. The majority of studies that have examined
responses with two non-overlapping stimuli in the CRF have
found that the firing rate evoked by the pair is typically lower
than the response to the preferred of the two presented alone,
inconsistent with amax rule (Miller et al., 1993; Reynolds et al.,
1999; Missal et al., 1999; Recanzone et al., 1997; Reynolds and
Desimone, 1998; Chelazzi, et al., 1998; Rolls and Tovee, 1995;
Zoccolan, et al., 2005). Additional studies have found the
response to the preferred stimulus changes when presented
along with other stimuli, a pattern inconsistent with a feed-
forward max operation (Sheinberg and Logothetis, 2001; Rolls
et al., 2003). A theoretical argument may also be made against
a feed-forwardmax using the equivalence conditions between
relaxation labeling processes and max selection (Zucker et al.,
1981), and especially considering the role of lateral processes
in vision (Ben-Shahar et al., 2003). If lateral interactions are
included time course matters. It has been observed that most
V1 response increases due to lateral interactions seem to
occur in the latter parts of the response profile. This hints that
lateral interaction takes extra time to take effect with V1
responses continuing until about 300 ms after stimulus onset
(Kapadia et al., 1995), well after the first feed-forward traversal
has completed as will be described in subsequent sections.

The main point here is that attention is a set of search
strategies, including search across a set of neural responses,
search for the next fixation point, search for the set of neural
pathways that best represent a stimulus, and search for the
location and extent of a stimulus. Additional kinds of search
are described in Tsotsos (1992).

1.3. Visual feature binding

A great deal of effort has gone into the discovery and
elaboration of neural mechanisms that extract meaningful
components from the images our retinae see in the belief that
these components form the building blocks of perception and
recognition. The problem is that corresponding mechanisms
to put the pieces together again have been elusive even
though the need is well accepted and many have studied the
ges of visual recognition need different attentional binding
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problem. This “Humpty-Dumpty” like task has been called the
binding problem (Rosenblatt, 1961). Binding is usually thought
of as taking one kind of visual feature, such as a shape,
and associating it with another feature, such as location, to
provide a unified representation of an object. Such explicit
association (“binding”) is particularly important when more
than one visual object is present, in order to avoid incorrect
combinations of features belonging to different objects,
otherwise known as “illusory conjunctions” (Treisman and
Schmidt, 1982). Binding is a broad problem: visual binding,
auditory binding, binding across time, cross-modal binding,
cognitive binding of a percept to a concept, cross-modal
identification and memory reconstruction. The literature on
binding and proposed solutions is large and no attempt is
made here to review it due to space limitations (see Roskies,
1999).

Classical demonstrations of binding seem to rely on two
things: the existence of representations in the brain that have
no location information, and, representations of pure location
for all stimuli. However, there is no evidence for a representa-
tion of location independent of any other information.
Similarly, there is no evidence for a representation of feature
without a receptive field. Nevertheless, location is partially
abstracted away within a hierarchical representation as part
of the solution to complexity (Tsotsos, 1990). A single neuron
receives converging inputs from many receptors and each
receptor provides input for many neurons. Precise location is
lost in such a network of diverging feed-forward paths yet
increasingly larger convergence onto single neurons (see
Fig. 1b). How can location be recovered and connected to the
right features and objects as binding seems to require?

The simplified example of Fig. 1 doesnot suffice to illustrate
the magnitude of this problem. Suppose this pyramid is now
replicated many times but with a common root or input, each
corresponding to a particular pathway in the visual processing
network, including many that have some representations in
common. In other words, extend this to the actual network as
shown, for example, by Felleman and Van Essen (1991). Now
consider the following. Any stimuluswill necessarily activate a
feed-forward diverging cone of neurons through all pathways,
and in each case, neural convergence causes location informa-
tion to be partially lost. Furthermore there is no a priori reason
to think that coordinate systems or cortical magnifications or
resolutions are constant throughout the system, so there may
be large differences in all of these at each level. How is the right
set of pathways through this complex system identified and
‘bound’ together to represent an object?

Three classes of solutions to the binding problem have
been proposed in the literature. Proponents of the conver-
gence solution suggest that highly selective, specialized
neurons that explicitly code each percept (introduced as
cardinal cells by Barlow (1972) — also known as gnostic or
grandmother neurons) form the basis of binding. The main
problem with this solution is the combinatorial explosion in
the number of units needed to represent all the different
possible stimuli. Also, while this solution might be able to
detect conjunctions of features in a biologically plausible
network (i.e. a multi-layer hierarchy with pyramidal abstrac-
tion) it is unable to localize them in space on its own
(Rothenstein and Tsotsos, 2008), and additional mechanisms
Please cite this article as: Tsotsos, J.K., et al., The different sta
strategies, Brain Res. (2008), doi:10.1016/j.brainres.2008.05.038
are required to recover location information. Synchrony, the
correlated firing of neurons, has also been proposed as a
solution for the binding problem (Milner, 1974; von der
Malsburg, 1981; Singer, 1999). Synchrony might be necessary
for signaling binding, but is not sufficient by itself, as it is clear
that this can at most tag bound representations, but not
perform the binding process. The co-location solution pro-
posed in the Feature Integration Theory (Treisman and
Gelade, 1980) simply states that features occupying the same
spatial location belong together. Due to its purely spatial
nature, this solution cannot deal with transparency and other
forms of spatial overlap. Also, since detailed spatial informa-
tion is only available in the early areas of the visual system,
simple location-based binding is agnostic of high-level image
structure, which means that it cannot impose boundaries
(obviously, the different edges of an object occupy different
spatial locations), and arbitrary areas that belong to none, one
or more objects can be selected.

It is important, given the debate over binding and vague-
ness of its definition, to provide something more concrete for
the purposes of this paper. Here, a visual task – any of those
defined earlier – will require a binding process if the in-
put image contains more than one object in different lo-
cations (may be overlapping), the objects are composed of
multiple features, and they share at least one feature type. If
these conditions are not met, then no binding process is
required.

1.4. The role of time

Regardless of visual task, it is the same pair of eyes, the same
retinal cells, the same, LGN, V1, V2 and so forth, that process
all incoming stimuli. Each step in the processing pathway
requires processing time; no step is instantaneous or can be
assumed so. In experiments such as those defined above, the
timing for each of the input arrays is manipulated presumably
in order to investigate different phenomena. There are many
variations on these themes and this is where the ingenuity of
the best experimentalists can shine. The argument made by
this paper is to use time as an organizational dimension, that
is, the most effective way of carving up the problem is to cut
along the dimension of time. Throughout the paper, when
referring to these time slices, the term ‘stages’ of recognition
will be used. That is, a slice in time (or a contiguous set of
slices) is a particular stage and the stages are identified with
the above specific vision tasks each having its own temporal
characteristic.

1.5. Summary

The first section of this paper presented the kinds of vision
tasks that are of interest and introduced the visual feature
binding problem. Definitions are given for the tasks and a
perspective on visual attention focusing on a number of search
processes required for some of these tasks are detailed. A
number of questions were posed with this background. Based
on these elements, we propose that the process of binding
visual features to objects in each of the recognition tasks
differs and that different sorts of binding actions take different
amounts of processing time.
ges of visual recognition need different attentional binding
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2. The model

We examined in detail the computational substrate provided
by the Selective Tuning (ST) model of visual attention, to
attempt to match the processing characteristics and qualita-
tive time course of the various attentional mechanisms
provided by ST to particular recognition tasks with experi-
mental data in the literature, in order to derive the kinds of
binding functionalities that each task would require, and then
to abstract from these a set of procedures within the ST
framework that would accomplish the visual feature binding
required for each recognition task.

It is important to clarify the kind ofmodeling that this work
represents. This is not data fitting (developing sets of
equations that have good fit to existing experimental data)
and it is not a learning model (whose characteristics are
abstracted through statistical learning procedures from a large
data base). Rather, this is a ‘first principles’ modeling effort.
That is, beginning from issues related to the computational
complexity of vision (Tsotsos, 1987, 1989, 1990, 1992, 2005;
Parodi et al., 1998), moving to a definition of attention rooted
in optimization of search processes in vision, and from there
deriving a model that satisfies the complexity constraints and
has qualitative performance in accord with known experi-
mental observations. The details of the Selective Tuning
model that are relevant for this paper are now presented;
full details, have been previously presented (Tsotsos, 1990,
1993; Tsotsos et al., 1995, Tsotsos et al., 2001, 2005, 2007;
Zaharescu et al., 2005; Tsotsos et al., 2005, Tsotsos et al., 2007,
Rodriguez-Sanchez et al., 2007; Rothenstein et al., in press).
These papers also show several examples and discussions of
the performance of the model that are not repeated here.
Fig. 2 – The basic Selective Tuning process

Please cite this article as: Tsotsos, J.K., et al., The different sta
strategies, Brain Res. (2008), doi:10.1016/j.brainres.2008.05.038
2.1. Selective Tuning

Most models of vision, including ours, assume that a
hierarchical sequence of computations defines the selectivity
of a neuron. A feed-forward pass through the hierarchy would
yield the strongest responding neurons if stimuli match
existing neurons, or the strongest responding component
neurons if stimuli are novel. Consider Fig. 2. The processing
architecture is pyramidal, increasingly spatially coarser repre-
sentations from bottom to top, units within each receiving
both feed-forward and feedback connections from overlap-
ping space-limited regions. It is assumed that response of
units is a measure of goodness-of-match of stimuli within a
receptive field to a neuron's selectivity. Task-specific bias,
when available, allows the response to also reflect the relative
importance of the contents of the corresponding receptive
field in the scene. The bias is applied in a top-down manner,
inhibiting neurons that code for features or elements that are
not part of the task, not unlike the kind of dynamic synaptic
changes that von der Malsburg (1981) described. The effect is
that baseline firing rates are lowered for those task-irrelevant
neurons.

The first stage of stimulus processing is a feed-forward
pass. When a stimulus is applied to the input layer of the
pyramid, it activates all of the units within the pyramid to
which it is connected (as described in Fig. 1c). The result is a
feed-forward, diverging cone of activity within the pyramid.
Although it is well known that there are also lateral connec-
tions within the each level of representation these are not
currently included in the model. As described earlier, the time
course for the first feed-forward pass is short enough to not be
affected by lateral interactions because they take longer to
provide impact on responses. However, lateral interactions do
of selection and surround suppression.

ges of visual recognition need different attentional binding
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have an effect further along in processing time assuming
static stimuli; these are currently under development in the
model (but see Šetić and Domijan, 2007 or Ben-Shahar et al.,
2003).

The second stage is a feedback pass embodying a hier-
archical winner-take-all (WTA) process. The WTA can accept
task guidance for areas or stimulus qualities if available but
operates independently otherwise. The global winner at the
top of the pyramid activates aWTA that operates only over its
direct inputs. This localizes the largest response units within
the top level winning receptive field. All of the connections of
the visual pyramid within this receptive field that do not
contribute to the winner are inhibited. This refines unit
responses and improves signal-to-noise ratio. The top layer
is not inhibited by this mechanism. The strategy of finding the
winners within successively smaller receptive fields, layer by
layer, and then pruning away irrelevant connections is applied
recursively. The result is that the cause of the largest response
is localized in the sensory field. The paths remaining may be
considered the pass zone while the pruned paths form the
inhibitory zone of an attentional beam as shown in Fig. 2.

In reality there is no single output representation for vision
in the brain; there are many representations. ST requires a
competition among all the representations at the top layer,
biased by task. The type of competition is determined by the
relationships among the active representations. Two types are
considered here (and are detailed below). Two representations
are mutually exclusive if, on a location-by-location basis, the
two features/objects they represent cannot both be part of the
same object or event (eg., an object cannot have a velocity in
two directions or two speeds at the same location at the same
time). Two representations may co-exist if the two features
they represent can both be part of some object or event (eg., an
edge may have color, a line may be at some disparity, features
belonging to eyes and co-exist with those from noses, etc.).
This global competition not only detects the neurons that are
best tuned to the stimulus but also enables the selection of
neurons that represent parts of stimuli for novel items for
which no object tuning has yet been learned.

The following method is applied at the top of all pyramids
at first, then recursively downwards following the representa-
tions of the winning units.

2.2. ST's winner-take-all process

WTA processes have appeared in virtually all models of visual
attention since the Koch and Ullman model (1985). The one
used by ST is unique; the basis for its distinguishing
characteristic is that it implicitly creates a partitioning of the
set of unit responses into bins of width determined by a task-
specific parameter, θ. The partitioning arises because inhibi-
tion between units is not based on the value of a single unit
but rather on the difference between pairs of unit values.
Competition depends linearly on the difference between unit
strengths. Unit A inhibits unit B if the response of A, denoted
by r(A), satisfies r(A)−r(B)> θ. Otherwise, A will not inhibit B.
The inhibition on unit B is the weighted sum of all inhibitory
inputs, each of whosemagnitude is determined by r(A)−r(B). It
has been shown that this WTA is guaranteed to converge, has
well-defined properties with respect to finding largest items,
Please cite this article as: Tsotsos, J.K., et al., The different sta
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and has well-defined convergence characteristics (Tsotsos
et al., 1995).

The WTA process has two stages: the first is to inhibit all
responses except those in the largest θ-bin; and, the second is
to find the largest, strongest responding region represented by
a subset of those surviving the first stage. The general form is:

Gi tþ 1ð Þ ¼ Gi tð Þ �
Xn

j¼1;jpi

wijDij ð1Þ

where Gi(t) is the response of neuron i at time t, wij is the
connection strength between neurons i and j, (the default is
that all weights are equal; task information may provide
different settings), n is the number of competing neurons, and
Δij is given by:

Dij ¼ Gj tð Þ � Gi tð Þ; if 0bhbGj tð Þ � Gi tð Þ
andotherwise0: ð2Þ

Gi(0) is the feed-forward input to neuron i. The corresponding
differential equation is:

dGi

dt
¼ Ii tð Þ � aiGi �

Xn

j¼1

wijDij ð3Þ

where Ii(t) is the external input to neuron i (at t=0, Ii=Gi), αi is
the rate constant of passive decay for neuron i.

Stage 2 applies a second form of inhibition among the
winners of the stage 1 process. The larger the spatial distance
between units the greater is the inhibition. A large region will
inhibit a region of similar response strengths but of smaller
spatial extent on a unit-by-unit basis. Eq. (1) governs this stage
of competition alsowith two changes: the number of survivors
from stage 1 is m, replacing n everywhere, and Δij is replaced
by:

Aij ¼ l Gj tð Þ � Gi tð Þ
� �

1� e
�
d2ij
d2r

0
BB@

1
CCA;

if 0bhbl Gj tð Þ � Gi tð Þ
� �

1� e
�
d2ij
d2r

0
BB@

1
CCA

andotherwise 0:

ð4Þ

μ controls the amount of influence of this processing stage
(the effect increases as μ increases from a value of 1), dij is the
retinotopic distance between the two neurons i and j, and dr
controls the spatial variation of the competition.

2.3. Summary

The Selective Tuning winner-take-call process is a provable
method to trace neural connections from the strongest
responding neuron in the top layer of a hierarchy to the ele-
ments in the stimulus array that caused that strongest
response. Nevertheless, as presented, it does not provide for
the extensions required to permit more than one feature
hierarchy or pathway to contribute to that strongest responding
neuron. Although it has shown good performance, this exten-
sion is the missing element that any binding process would
require. These extensions are the modeling focus of this paper.
ges of visual recognition need different attentional binding
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3. Results

The main question this work addresses is: How is the right
set of pathways through this complex system identified and
‘bound’ together to represent an object? A novel set of four
different binding processes are introduced that are claimed
to suffice for solving the kinds of recognition tasks described
above. Fig. 3 is the main descriptive vehicle that ties re-
cognition, attention and binding together. The stages of the
figure will be featured as main sub-sections here, within
which the details of task, the kinds of attentional mechanisms
involved, and the binding process are described.

3.1. Priming

Prior to any of the above tasks, the first set of computations to
be performed is priming the hierarchy of processing areas
(Posner et al., 1978). Task knowledge, such as fixation point,
target/cue location, task success criteria, and so on must
somehow be integrated into the overall processing; they tune
the hierarchy. It has been shown that such task guidancemust
be applied 300 to 100 ms before stimulus onset to be effective
(Müller and Rabbitt, 1989). This informs us that significant
processing time is required for this step alone. It is a sufficient
amount of time to complete a top-down traversal of the full
processing hierarchy before any stimulus is shown. The first
stage, the leftmost element of Fig. 3, shows this priming stage.
Tuning in the ST model takes the form of multiplicative
inhibition against features and locations that are not part of
the target or task achieved via a full top-down pass of the
Fig. 3 – The different binding processes associated wi

Please cite this article as: Tsotsos, J.K., et al., The different sta
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visual processing hierarchy. Once complete, the stimulus can
be presented (the second element of the figure from the left).

3.2. Discrimination

The third element of Fig. 3 represents the one-interval Discri-
mination Task as long as no location information is required for
a response. This task was defined in Section 1.1 as the ability
to tell two stimuli apart, and several sub-categories were
defined: correspondence, detection, recognition, categoriza-
tion, classification. Detecting whether or not a particular
object is present in an image seems to take about 150 ms
(Thorpe et al., 1996). Marr, in his definition of full primal
sketch, required about this time to suffice for segregation, as
mentioned in the introduction and thus his entire theory falls
within this task too. This kind of ‘yes–no’ response can also be
called ‘pop-out’ in visual search with the added condition that
the speed of response is the same regardless of number of
distractors (Treisman and Gelade, 1980). The categorization
task also seems to take the same amount of time (Grill-Spector
and Kanwisher, 2005; Evans and Treisman, 2005). Interest-
ingly, the median time required for a single feed-forward pass
through the visual system is about 150ms (Bullier, 2001). Thus,
we conclude that a single feed-forward pass suffices for this
visual task and this is completely in harmony with many
authors. This first feed-forward pass is shown in the figure
emphasizing the feed-forward divergence of neural connec-
tions and thus stimulus elements are ‘blurred’ progressively
more in higher areas of the hierarchy. These tasks do not
include location or location judgments, the need to manip-
ulate, point, or other motor commands specific to the object
th different time periods during recognition tasks.

ges of visual recognition need different attentional binding
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and usually, all objects can be easily segmented, as Marr
required. That is, the background may provide clutter, but the
clutter does not add ambiguity; the definition of image class
that requires binding processes from Section1.3 is not
satisfied.

Convergence Binding achieves the Discrimination Task via
hierarchical neural convergence, layer by layer, in order to
determine the strongest responding neural representations at
the highest layers of the processing hierarchy. This feed-
forward traversal follows the task-modulated neural path-
ways through the ‘tuned’ visual processing hierarchy. This is
consistent with previous views on this problem (Treisman,
1999; Reynolds and Desimone, 1999). This type of binding will
suffice only when stimulus elements that fall within the larger
receptive fields are not too similar or otherwise interfere with
the response of the neuron to its ideal tuning properties. Such
interference may be thought of as ‘noise’ with the target
stimulus being ‘signal’. Convergence Binding provides neither
a method for reducing this noise nor a method for recovering
precise location. The accompanying attentional process is the
search is over the top level representation to find the strongest
responding neurons.

For a task where there is more than one stimulus in a
sequence butwhere the information required of each stimulus
can be extracted via a Discrimination alone, the feed-forward
pass can be repeated. In fact, ‘waves’ or ‘cascades’ of stimuli
continually flow through the system, but as each one passes
through the full system, if inspection of the results at the top
of the hierarchy suffices, then these are each Discrimination
tasks. Each of the tasks presented in this paper may be
repeated in a similar fashion; we denote this kind of process
with the prefix “R-”. Thus a task such as RSVP (Rapid Serial
Vision Presentation) is an example of R-Discrimination.

3.3. Identification

To provide more detail about a stimulus, such as for a within-
category identification task, requires additional processing
time, 65 ms or so (Grill-Spector and Kanwisher, 2005; Evans
and Treisman, 2005); this is represented by the fourth from the
left element of Fig. 3. If the highest levels of the hierarchy can
provide the basic category of the stimulus, such as ‘bird’,
where are the details that allow one to determine the type of
bird? The sort of detail required would be size, color, shape,
and so forth. These are clearly lower level visual features and
thus they can only be found in earlier levels of the visual
hierarchy. They can be accessed by looking at which feature
neurons feed into those neurons that provided the category
information. One way to achieve this is to traverse the hie-
rarchy downwards, beginning with the category neuron and
moving downwards through the needed feature maps. This
downward traversal is what requires the additional time
observed. The extent of downward traversal is determined by
the task, that is, the aspects of identification that are required.
It is interesting to consider an additional impact of a partial
downwards traversal. This traversal may be partial not only
because of the task definition but also because a full traversal
is interrupted and not allowed to complete either because new
stimuli enter the system before there is enough time for
completion or because not enough time is permitted due to
Please cite this article as: Tsotsos, J.K., et al., The different sta
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other tasks. The result is that there is the potential for errors in
localization and these may lead to the well-known illusory
conjunction phenomenon (Treisman and Schmidt, 1982). This
group of tasks will be termed Identification Tasks.

Partial Recurrence Binding can find the additional informa-
tion needed to solve the Identification Task if it is represented in
intermediate layers of the processing hierarchy. If this is not
deployed directly due to task needs but is due to interruption,
then this may result in illusory conjunctions. A variety of
different effects may be observed depending on when during
the top-down traversal the process is interrupted. There is no
specific image class for which this process applies; it can be
applied in all cases. Some aspects of coarse location informa-
tion may also be recovered with a partial downward search
(such as in which quadrant the stimulus lies). The process for
recurrence is described in Section 2.2.

3.4. Localization

If detailed or precise localization is required for description or
a motor task, (pointing, grasping, etc.), then the top-down
traversal process must be allowed to complete and thus
additional time is required. These are the DiscriminationL Tasks,
or simply, Localization Tasks. How much time? A lever press
response seems to need 250–450 ms in monkey (Mehta et al.,
2000). During this task, the temporal pattern of attentional
modulation shows a distinct top-downpattern over a period of
35–350 ms post-stimulus. The ‘attentional dwell time’ needed
for relevant objects to become available to influence behavior
seems to be about 250 ms (Duncan et al., 1994). Pointing to a
target in humans seems to need anywhere from 230 to 360 ms
(Gueye et al., 2002; Lünenburger and Hoffman, 2003). Still,
none of these experiments cleanly separate visual processing
time frommotor processing time; as a result, these results can
only provide an encouraging guide for the basic claim of our
model and further experimental work is needed.

Behavior, i.e., an action relevant to the stimulus, requires
localization. The precise location details are available only in
the earliest layers of the visual processing hierarchy because
that is where the finest spatial resolution of neural represen-
tation can be found. As a result, the top-down traversal must
complete so that it reaches these earliest layers as shown in
the figural element second from the right in Fig. 3 for location
details. Note that intermediate points in the top-down
traversal can provide intermediate levels of location details;
full traversal is needed only for the most precise location
needs.

Full Recurrence Binding achieves the Localization Task. If
Convergence Binding is followed by a complete top-down
traversal, attended stimuli in each feature map of the
hierarchical representation can be fully localized. Recurrent
traversals through the visual processing hierarchy ‘trace’ the
pathways of neural activity that lead to the strongest
responding neurons at the top of the hierarchy. The details
of the algorithm for this process appeared in Section 2.

Full Recurrence Binding can determine the location and
spatial extent of a detected object/event for images such as
those defined for Convergence Binding, where there is no
ambiguity and proper detection can occur without a special
binding process. It can also do so for those images that do
ges of visual recognition need different attentional binding
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contain ambiguity of this kind described in Section 1.3 and for
this class of images, Recurrence Binding is required for task
completion. This means explicitly that segmentation is not
immediate in theMarr sense, that there aremultiple objects in
an image that share features and thus a simple convergence
via binding faces ambiguity and fails to find a clear winner.

There is one more critical component of the top-down
traversal, appearing on the figures as gray regions indicating
areas of neural suppression or inhibition in the area surround-
ing the attended stimulus. This area is defined by the feedback
connections of the chosen neuron at the top. Inputs corre-
sponding to the stimulus most closely matching the tuning
characteristics of the neuron form the signal while the
remainder of the input within that receptive field is the
noise. Any lateral connections are also considered as noise for
this purpose. Thus, if it can be determined what those signal
elements are, the remainder of the receptive field is sup-
pressed including lateral signals, enhancing the overall signal-
to-noise ratio of processing for that neuron. The method for
achieving this was first described in (Tsotsos, 1993) and fully
detailed together with proofs of convergence and other
properties in (Tsotsos et al., 1995).

However, the top-down process is complicated by the fact
that each neuron within any layer may receive input from
more than one feature representation. How do the different
representations contribute to the selection? Different features
may have different roles. For example, there are differing
representations for many different values of object velocity
however an object can only exhibit one velocity. These
different representations can be considered as mutually
exclusive, so the top-down search process must select one,
the strongest. On the other hand, there are features that
cooperate, such as the features that make up a face (nose,
eyes, etc.). These contribute to the face neuron and the top-
down search process much select appropriate elements from
each. There may be other roles as well. The key here is that
each neuron may have a complex set of inputs, specific to its
tuning properties, and the top-down traversalmust be specific
to each. This is accomplished by allowing the choices to be
made locally, at each level, as if there were a localized saliency
representation for each neuron (Tsotsos et al., 2005). There is
no global representation of saliency required. This is further
explored in Section 3.6.

3.5. Extended Discrimination

The Extended Discrimination Task includes two-or-more interval
designs, visual search, odd-man-out, resolving illusory con-
junctions, determining transparency, any task requiring
sequences of saccades or pursuit eye movements, and more
(eg., Treisman and Gelade, 1980; Treisman and Schmidt, 1982;
Wolfe, 1998; Schoenfeld et al., 2003). The final element of the
figure, the rightmost element, depicts the start of a second
feed-forward pass to illustrate this. The idea is that it is likely
that several iterations of the entire process, feed-forward and
feedback, may be required to solve difficult tasks.

Iterative Recurrence Binding is needed for the R-DiscriminationL

Task. Iterative Recurrence Binding is defined as one of more
Convergence Binding-Full Recurrence Binding cycles. The pro-
cessing hierarchy may be tuned for the task before each
Please cite this article as: Tsotsos, J.K., et al., The different sta
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traversal as appropriate. The iteration terminates when the
task is satisfied.

There are at least two types of Iterative Recurrence Binding.
The first is themore obvious one, namely,multiple attentional
fixations are required for some task. The second permits
different pathways to be invoked. Consider amotion stimulus;
motion-defined form where a square of random elements
rotates in a background of similar random elements. A
rotating square is perceived even though there is no edge
information present in the stimulus. After one cycle of Full
Recurrence Binding, the motion can be localized and the
surround suppressed. The suppression changes the inter-
mediate representation of the stimulus so that any edge
detecting neurons in the system now see edges, edges that
were not apparent because they were hidden in the noise. As a
result, the motion is recognized and with an additional pro-
cessing cycle the edges can be detected and bound with the
motion. Such examples and the model simulation results can
be found in Tsotsos et al., 2005 and Rothenstein et al. (in press).

3.6. The Selective Tuning approach to visual feature
binding

The binding strategy depends on the hierarchical WTA
method to trace back the connections in the network along
which feed-forward activations traveled. The WTA described
above deals with a single pyramid. However, almost all
neurons in visual cortex receive input from more than one
representation. How is the top-down tracing guided for more
than one representation? What we need is an extension,
motivated in Section 2.3, that provides the solution to the
localization problem and links all the component features
from different representations of an object via the pass
pathways of the attentional beam. The additional elements
that comprise this method are now presented.

Define the Featural Receptive Field (FRF) to be the set of all
the direct inputs to a neuron. This can be specified by the
union of k arbitrarily shaped, contiguous, possibly overlapping
sub-fields as

FRF ¼[
j¼1;k

fj ð5Þ

where { fj={(xj,a, yj,a), a=1, ...,bj}, j=1,...,k}, (x,y) is a location in
sub-field fj, bj is the number of units in sub-field fj. The fjs may
be from any feature map, and there may be more than one
sub-field from a feature map. F is the set of all sub-field
identifiers 1 though k. Response values at each (x,y) location
within sub-field i∈F are represented by r(i,x,y).

The FRF definition applies to each level of the visual pro-
cessing hierarchy, and to each neuron within each level.
Suppose a hierarchical sequence of such computations defines
the selectivity of a neuron. Each neuron has input from a set of
neurons from different representations and each of those
neurons also have a FRF and their own computations to com-
bine its input features.With such a hierarchy of computations,
a stimulus-driven feed-forward pass would yield the strongest
responding neurons within one representation if the stimulus
matches the selectivity of existing neurons, or the strongest
responding component neurons in different representations if
ges of visual recognition need different attentional binding
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Table 1 – The vision tasks identified in the model with
timings, attentive and binding processes summarized

Task Approximate
processing

time
requireda

Attentional
process

Binding
process

Priming −300 to −100
ms

Suppression of
task irrelevant
features, stimuli
or locations;
location cues,
fixation points,
task success
criteria

N/A

Discrimination 150 ms Search for
maximum
response

Convergence

Identfsification 215 ms Top-down feature
search

Partial
Recurrence

Localization 200–360 ms Top-down
stimulus
segmentation and
localization

Full
Recurrence

Extended
Discrimination

N250 ms Sequences of
convergence and
recurrence
binding, perhaps
with task priming
specific to each
pass

Iterative
Recurrence

a Supported by evidence cited in text.
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the stimulus does not match an existing pattern. The result is
that the classical receptive field (the region of the visual field in
which stimulation causes the neuron to fire) now has internal
structure reflecting the locations of the stimulus features.

Features may be mutually exclusive (one depth or one
velocity at each location) or features may co-exist (orientation
and color both at the same location) or perhaps other kinds of
inter-feature constraints may apply. Features may also be
weighted differently depending on their task relevance.

If features aremutually exclusive by location, call this a Type
A situation. The feature sub-fields completely overlap. The
WTA, stages 1 and 2, can be extended to Type A situations. The
competitionproceedsasdefinedabove for eachof the sub-fields
fj separately so that within each, the largest, strongest respond-
ing contiguous region is found. The winners from each sub-
region then compete for the overall largest, strongest contig-
uous region. The overall largest, strongest region is the region
whose sumof the responsesof thewinning locations is greatest.

Let the winning region in featuremap f be gf={(xi,f,yi,f)|i=1,2,
.....nf}, where nf is the number of locations (by retinotopic
location in the featuremap) that comprise the winning region.
The response value of the overall winner is

VA ¼ max
jaF

X
x;yagj

r j; x; yð Þ ð6Þ

where r(j,x,y) is the response value of unit at location x,y in
featuremap f and the extent of the winning region is the same
as that of region gf, the value of f being the one which wins the
max selection.

If features can co-exist, call this a Type B situation. The
feature sub-fields may be non-overlapping. In this case, the
largest, strongest responding region is found in each repre-
sentation separately in the same manner as for single
representations defined above. The overall winner is then
the union of these winners, with the response value being

VB ¼
X
jaf

X
x;yagj

r j; x; yð Þ ð7Þ

and the extent is given by the union of the feature maps
involved. Other forms of feature combination may exist and
these can be formulated analogously.

ST seeks the best matching scene interpretations (highest
response) as a default (defaults can be tailored to task). This is
the set of neurons chosen by theWTA competition throughout
the hierarchy. If this happens tomatch the target of the search,
then detection is complete. If not, a second candidate region is
chosen and this proceeds until a decision on detection can be
made. Localization is accomplishedby thedownward search to
identify the feed-forward connections that led to the neuron's
response following the network's retinotopic topology, using
the FRFs all the way down the hierarchy. FRFs provide for a
distributed, localized saliency computation appropriate for
complex feature types and complex feature combinations.
What is salient for each neuron is determined locally based on
its FRF; saliency is not a global, homogeneous computation.
Once localization is complete for all features, the object is
attached to its components through the attention pass beams.

Simulations of this strategy show strong agreement with a
variety of psychophysical and neurophysiologic experiments
such as static visual searches of varying difficulties, segrega-
Please cite this article as: Tsotsos, J.K., et al., The different sta
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tion of transparent dot pattern motions, surround inhibition,
and more (Rothenstein and Tsotsos, 2006; Rodriguez-Sanchez
et al., 2007; Tsotsos et al., 2005; Tsotsos , 1995). In particular the
surround inhibition prediction seems well supported by a
variety of experimental studies (Cutzu and Tsotsos, 2003; Hopf
et al., 2006; Tombu and Tsotsos, 2008). ST's top-down atten-
tional modulation hypothesis also has good support (Mehta
et al., 2000; O'Connor et al., 2002).

With respect to thebasicmechanismsdescribedabove, there
are twoadditional points toaddress. ForTypeBcompetition, i.e.,
for features that may co-exist, if the winning regions are at
different locations, how can it be decided whether or not those
stimuli belong together. The search is aided by the following
observation: proper progress of the downwards traversalmeans
response along the pass zone never decreases. The reason for
this is that if the choice is correct, suppression of the surround
(noise) will have the side-effect of increasing the neuron's
response. If there is a decrease, the search fails, and a new peak
must be chosen.

What if in a FRF there are peaks in both competitive and
cooperative representation sets? It is in general not possible using
the structure here to determine at the top level if peaks arise from
thesameobject in the input; there is toomuch locationabstraction
to permit this. If the feature sub-fields are overlapping then the
possibility that the features do arise fromasingle object increases,
but this is not definitive. It is assumed that the winning region of
the competitive set participates as a cooperation feature with the
remaining cooperative features. Thus it participates in the overall
winning regionand the systemattempts to localize it. If it is found
ges of visual recognition need different attentional binding
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that the overall response decreases the search fails and a new
feature grouping can be tried. These problems stand as model
predictions; there will be situations where responses to visual
tasks will be slower if stimuli are sufficiently complex or
ambiguous to trigger one of these problems.
4. Discussion

A novel view of how attention, visual feature binding, and
recognition are inter-related has been presented. It differs
from any of those presented previously (Roskies, 1999). The
greatest point of departure is that it provides a way to in-
tegrate binding with recognition tasks and with attention. The
visual binding problem is decomposed into four kinds of
processes each being tied to one of the classes of recognition
behaviors defined by task and time course. Table 1 provides a
summary of the kinds of vision tasks, their temporal require-
ment, the kind of attention process and binding process
involved. We view this as a first version of such a decomposi-
tion and strongly believe that it requires a significant amount
of effort to adequately complete and hope the community will
take up the challenge to assist. In particular the Extended
Discrimination Task is far too broad and requires refinement.

This view differs from conventional wisdom that considers
both binding and recognition as monolithic tasks and atten-
tion as one or two simply processes only. The decomposition
has the promise of dividing and conquering these problems,
and the Selective Tuning strategy is proposed as the computa-
tional substrate for their solution. There are three ideas
behind this solution:

• top-down task directed priming before processing;
• feed-forward traversal through the ‘tuned’ visual processing
hierarchy following the task-modulated neural pathways;

• recurrent (or feedback) traversals through the visual proces-
sing hierarchy that ‘trace’ the pathways of neural activity
from the strongest responding neurons at the top of the
hierarchy to the input that caused the strongest response.

These three basic steps are used in combination, and
repeated, as needed to solve a given visual task. In simulation
with artificial as well as real images as input, the model
exhibits good agreement with a wide variety of experimental
observations (Tsotsos et al., 1995, 2005; Rothenstein et al., in
press; Zaharescu et al., 2005; Rodriguez-Sanchez et al., 2007).

The idea of tracing back connections in a top-down fashion
was present in part, in the Neocognitron model of Fukushima
(1986) and suggested even earlier by Milner (1974). It also
appears in the Reverse Hierarchy Model of Ahissar and
Hochstein (1997). Within the Selective Tuning model, it was
first described in Tsotsos (1993), with accompanying details
and proofs in Tsotsos et al. (1995). Only Neocognitron and
Selective Tuning provide realizations; otherwise, the two
differ in all details. Fukushima's model included a maximum
detector at the top layer to select the highest responding cell
and all other cells were set to their rest state. Only afferent
paths to this cell are facilitated by action from efferent signals
from this cell. The differences between Neocognitron and ST
are many. Neural inhibition is the only action of ST, with no
Please cite this article as: Tsotsos, J.K., et al., The different sta
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facilitation. The Neocognitron competitive mechanism is
lateral inhibition at the highest and intermediate levels that
finds strongest single neurons thus assuming all scales are
represented explicitly, while ST finds regions of neurons
removing this unrealistic assumption. For ST, units losing
the competition at the top are left alone and not affected at all.
ST's inhibition is only within afferent sets to winning units.
Finally, Fukushima assumes that so-called grandmother cells
populate the top layerwhereas STmakes no such assumption.
Overall, the Neocognitron model and its enhancements
cannot scale and would suffer from representational and
search combinatorics (Tsotsos, 1990).

Thevalidationofourmodel canbenotonly computational in
the sense of performance on real images. Such amodel can also
be validated by showing that it makes counter-intuitive
predictions for biological vision that gain experimental support
over time. The following predictions appeared in Tsotsos 1990:

1) Attention imposes a spatial suppressive surround around
attended items (Cutzu and Tsotsos, 2003; Hopf et al., 2006);

2) Attention imposes a suppressive surround around at-
tended features, suppressing responses from nearby fea-
tures in that feature dimension (Tombu and Tsotsos, 2008);

3) The surround suppression is a result of recurrent proces-
sing in the cortex (Boehler et al., submitted);

4) Selection is a top-down process where attentional gui-
dance and control are integrated into the visual processing
hierarchy;

5) The latency of attentional modulations decreases from
lower to higher visual areas (Mehta et al., 2000);

6) Attentionalmodulation appears wherever there ismany-to-
one, feed-forwardneural convergence (O'Connor et al., 2002);

7) Topographic distance between attended items and dis-
tractors affects the amount of attentional modulation;

8) There is an oscillatory nature to attention because it takes
time for attention to be deployed throughout the proces-
sing network. As a result, attention appears to sample a
stimulus in well-defined intervals, resulting in gaps of
attention (VanRullen et al., 2007, Raymond et al., 1992).

For many of these, significant supporting evidence has
accrued over the intervening years (representative citations
provided).

The binding solution has some interesting characteristics
that may be considered as predictions requiring investigation
in humans or non-human primates:

1) Given a group of identical items in a display, say in a visual
search task, subsets of identical items can be chosen as a
group if they fit within receptive fields. Thus, the slope of
observed response time versus set size may be lower than
expected (not a strictly serial search).

2) There is no proof that selections made at the top of several
pyramids will converge to the same item in the stimulus
array. Errors are possible if items are very similar, if items
are spatially close, or if the strongest responses do not arise
from the same stimulus item.

3) Binding errors may be detected either at the top by
matching the selections against a target, or if there is no
target, by the end of the binding attempt when the pass
ges of visual recognition need different attentional binding
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beams do not converge. The system then tries again; the
prediction is that correct binding requires time that in-
creases with stimulus density and similarity. In terms of
mechanism, the ST model allows for multiple passes and
these multiple passes reflect additional processing time.

4) ST's mechanism suggests that detection occurs before loca-
lization and that correct binding occurs after localization.
Any interruption of any stage will result in binding errors.

Our model has a number of important characteristics: a
particular time course of events during the recognition
process covering the simplest to complex stimuli that can be
directly comparedwith qualitative experimental time courses;
an iterative use of the same visual processing hierarchy in
order to deal with the most complex stimuli; iterative tuning
of the same visual processing hierarchy specific to task
requirements; suppressive surrounds due to attention that
assist with difficult segmentations; a particular time course of
events for recognition ranging from simple to complex re-
cognition tasks; a top-down localization process for attended
stimuli based on tracing feed-forward activations guided by
localized saliency computations. Each of these may be con-
sidered a prediction for human or non-human primate vision.
It would be very interesting to explore each.
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