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Abstract. We present a biologically plausible computational model for
solving the visual feature binding problem. The binding problem appears
to be due to the distributed nature of visual processing in the primate
brain, and the gradual loss of spatial information along the processing
hierarchy. The model relies on the reentrant connections so ubiquitous in
the primate brain to recover spatial information, and thus allows features
represented in different parts of the brain to be integrated in a unitary
conscious percept. We demonstrate the ability of the Selective Tuning
model of visual attention [I] to recover spatial information, and based
on this we propose a general solution to the feature binding problem.
The solution is used to simulate the results of a recent neurophysiology
study on the binding of motion and color. The example demonstrates
how the method is able to handle the difficult case of transparency.

1 Introduction

Convergent evidence from many different kinds of studies suggests the visual
cortex is divided into specialized areas for color, orientation, depth, movement,
etc., organized into two main processing streams, a dorsal pathway, responsible
for encoding motion, space, and spatial relations for guiding actions, and a ven-
tral pathway, associated with object recognition and classification, conclusions
supported by functional imaging, neurophysiology, and by strikingly selective
localized lesions [2]. This high selectivity of the various cortical areas has led re-
searchers to ask the obvious questions how, despite this specialization, the visual
percept is unitary, and what are the mechanisms responsible for, in effect, putting
all this distributed information together. Following Roskies [3], “the canonical
example of binding is the one suggested by Rosenblatt [4] in which one sort of vi-
sual feature, such as an object’s shape, must be correctly associated with another
feature, such as its location, to provide a unified representation of that object.”
Such explicit association is particularly important when more than one visual
object is present, in order to avoid incorrect combinations of features belonging
to different objects, otherwise known as “illusory conjunctions” [5]. Limiting the
resources available for visual processing through increased loads and/or reduced
time leads observers to erroneously associate basic features present in the image
into objects that do not exist, e.g. a red X and a blue O are sometimes reported
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as a blue O and a red X. Studies have shown that these are real conjunction
errors, and can not be attributed to guessing or memory [6]. Several other exam-
ples of the varieties of binding problems in the literature appear in the special
issue of neuron on the binding problem - Neuron 24(1) (1999).

1.1 Overview of Approach

This paper presents a solution to the feature binding problem in the context
of the Selective Tuning (ST) model of visual attention, and demonstrate it by
comparing its behavior and temporal characteristics with recent experimental
results. After introducing ST, we will highlight the special role of spatial infor-
mation in binding, and demonstrate STs ability to recover spatial information
from abstract, high-level representations. This ability will be used to model the
binding of motion and color, in a setup similar to that used by Schoenfeld et
al. [7], a study that investigated the timing and cortical localization of feature-
integration mechanisms in object-based attention. In this study, recordings of
event-related potentials and magnetic fields were combined with functional MRI
while subjects attended to one of two superimposed transparent surfaces formed
by arrays of dots moving in opposite directions. A spatiotemporal analysis re-
vealed an increase in neural activity localized to a color-selective region of the
fusiform gyrus when the surface moving in the attended direction displayed an
irrelevant color feature. The delay of this increase is on the order of ~40-60ms,
indicating that attentional modulation of color stimuli require a serial processing
of information, first in the motion analysis pathway from V1 to MT/ V5 and
thereafter via the ventral stream to IT.

An analysis of the model flow of information will reveal a pattern of temporal
activity that is very similar to the one argued for by the experiments. Similar
timing results have been reported for the binding of task-relevant features [SI9JI0]
and for form-from-motion experiments [I1], indicating that the model results
could be extended to other feature domains.

2 Selective Tuning

Selective Tuning (ST) [I] is a computational model of visual attention charac-
terized by the integration of feedforward and feedback pathways into a network
that is able to take high level decisions, and, through a series of winner-take-all
processes, identify all the neurons that have participated in that decision. This
identification satisfies the key requirement for a kind of visual feature binding
that ST was demonstrated to solve [12], despite the loss of spatial information
inherent in a pyramidal system. The ST feedback process does not need collo-
cation if neural convergence is guaranteed, so ST is able to select all parts of a
stimulus, even if they do not share a location (e.g. stimuli with discontinuities
due to overlap, or stimuli that are separated spatially due to the nature of the
cortical feature maps). The partial solution to binding proposed in [I2] is able to
correctly bind all the activations that have contributed to a high level decision
(convergence) and even non-convergent representations if the problem can be
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Fig. 1. Diagram of the network. On the left side is the color pathway, while on the
right side is the motion pathway. The arrows show the flow of information. See the text
for details.

solved at the spatial resolution of the top level of the pyramid (a weak form of
collocation) - i.e. there is sufficient spatial separation between the target and the
distractors (see [I3|14] for the importance of spatial separation in attention and
recognition). It is important to note that the feedback process will select only
the units responding to the selected stimulus, and not units that just happen to
share locations with it, thus ensuring that overlapping and transparent stimuli
will be handled correctly.

The general structure of the neural network used in this paper is presented in
Fig.[D consisting of two biologically inspired processing pathways, corresponding
to the ventral and dorsal visual pathways. The pathways are pyramidal, meaning
that successive layers represent more and more abstract concepts, and location,
size and (direct) shape information is lost. The dorsal pathway recognizes affine
motions, and is described in detail in [I2]. The ventral pathway is a simple
Gaussian blurring pyramid that detects the presence of color in the input image,
while gradually losing spatial specificity. All the weights in the neural network
are preset, no learning was used. The network operates in parallel at all times,
i.e. all neurons are evaluated at every step, and the serial behavior described is
a result of the their interaction and of the structure of the network.

Note that all the segmentation results are based purely on feedback from
higher (and much more abstract) levels and not on simple color thresholding or
other image manipulation techniques.
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2.1 Recovering Spatial Information

In Feature Integration Theory (FIT) [15], location is considered a feature that
is faithfully represented in a “master map” of locations but, as Taraborelli [16]
points out: “the idea of binding itself is nothing but a spatial conjunction of
information concerning visual attributes of the same item.” Tsotsos et al. [12]
note that considering location as a feature can not be valid as location precision
(resolution) changes layer to layer in any pyramid representation, and propose
that location should be considered as the anchor that permits features to be
bound together. At the same time, Robertson [I7] lists three phenomena that
demonstrate the special role of spatial attention in binding: illusory conjunctions
under divided attention, dependence on number of distractors for conjunction
searches, and the elimination of the influence of distractors with spatial cueing.
In effect, a solution to the binding problem must address this seemingly incom-
patible requirement: binding is ultimately only a spatial conjunction, but at the
same time it must be based on high-level information, allowing for object and
feature-based selection.

While the special role of spatial information in feature binding has been high-
lighted by many researchers [TBITGIT2I17], the two experiments reviewed in this
paper indicate that this spatial information needs to be as high-resolution as pos-
sible, to accurately recover shape and to distinguish between the different layers
of transparent motion. This high-resolution spatial information is only available
in the early stages of visual processing, and both the lateral geniculate nucleus
[I8/T9] and the striate cortex [20/21] have been proposed as sites of visual feature
binding. For object- and high-level feature- based attention to allow binding to
take place, a mechanism is needed to recover the exact information in the input
image that has contributed to the high-level decision, and this mechanism is
provided by Selective Tuning.

As mentioned above, ST uses a series of winner-take-all processes to identify all
the neurons that have participated in a high level activation. At the same time,
this process inhibits all the connections that have not participated in this deci-
sion, creating an inhibitory surround that increases the signal-to-noise ratio for
the selected stimulus, generating the observed attentional modulation of neuronal
responses [22I23]. The inhibitory surround prediction of ST [23] has received sig-
nificant experimental support [24125/2612728/29/30/3TI32I33T3I34/35/36,/14] .

This selection combined with surround suppression allows ST to perform
feedback-directed image segmentation, as illustrated in Fig.

Fig. and Fig. illustrates the segmentation of a face in a face detection
system using ST (from [37], using an image from the Yale Face Database [3§]).
The system detects faces as spatial configurations of circular features at different
scales in a pyramidal neural network, and the attentional system is used to
recover the spatial extent of the detected face. See [37] for details on the system
and additional examples (including the detection and segmentation of partially
occluded faces).

Transparent stimuli pose a difficult problem for any segmentation system. Fig.
contains a stimulus composed of two overlapping grids of colored points. The
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Fig. 2. Examples of Selective Tuning image segmentation. In the segmentation images,
green depicts the selected region/pixels, red the inhibitory surround. (a) Face image. (b)
Segmentation of the face in the input layer using the attentional beam. (c) Red/green
color transparency grid. (d) Segmentation of the red stimulus.

attentional system detects the presence of the two colors, selects one, and through
feedback isolates out the points of the corresponding color, while inhibiting the

other color Fig. [2(d)]

Other examples are presented in [I2I39], including real video sequences.

?

3 Proposed Feature Binding Solution

This section motivates and introduces an original approach to the feature bind-
ing problem. The solution proposed is based on the general collocation principle
of FIT, but using Selective Tuning to integrate high-level representations in the
spatial selection process, and performing the spatial selection without requiring
a “master map” of locations. The proposal, illustrated in Fig. [lis to allow one
feedforward pass through the network (arrow A in the figure). Similar to the
primate visual system, this first pass occurs in parallel in all visual areas. Task
information is used to select one high-level representation (in this case, the most
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salient motion representation), and proceed backwards through the system in
Selective Tuning manner (arrow B), selecting compatible representations that
have contributed to the winning units, and inhibiting all the activations that are
incompatible. As this feedback proceeds, lower level representations that par-
ticipated in the salient activation are selected, and distractors inhibited, all the
way to the first layer of processing. This allows further feedforward processing
to be selectively directed towards the selected object and/or color (arrow C), in
effect eliminating the influence of spatially near competing stimuli and allowing
the ventral pathway to detect the shapes defined by the motion signal. When
processing ends, the remaining active high-level representations all describe the
selected stimulus in a sparse, distributed fashion ideal for maximizing the ca-
pacity of associative memories [40]. At the same time all the components of the
attended stimulus will be selected throughout the visual system for recognition,
and the location information can be used for the planning of actions towards the
selected stimulus.

4 Binding Motion and Color

Our system, described above and represented in Fig. [Tl will process the image in
parallel, along the independent processing pathways, detecting the presence of
the different colors and motion patterns. The attentional process will select one
top-level representation for further analysis, and the ST process will localize the
corresponding pixels in the input image through feedback. ST will also inhibit
pixels in the surround of the attended item, thus enhancing the relative saliency
of the attended stimulus and improving the signal-to-noise ratio in the system.
A second feedforward pass through the pyramids will refine the representation
of the selected object, and at the same time select all the (distributed) represen-
tations that belong to it, thus achieving binding. The process can be repeated
until the desired target is found, implementing a visual search mechanism.

As mentioned in the Introduction, an extreme example of transparency is
the completely overlapping motion and color class of stimuli used by [7], and
illustrated in Fig.

The attentional process will select one top-level motion representation for
further analysis (the rightward motion, in this case), and the ST process will
localize the corresponding pixels in the input image, and inhibit all nearby pixels,
thus enhancing the saliency of the attended stimulus. Fig. shows the selected
and inhibited input areas in green and red, respectively, and overlaps the
selected and inhibited areas onto a frame of the input sequence.

Based on the ST selection and inhibition model, the red color representation
is strongly inhibited, while the green representation is unchanged (its input has
not changed, but if the input image was noisy, or if the system implemented
lateral inhibition between representations, theses effects would be diminished,
making the representation more salient).
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(c)

Fig. 3. Selective Tuning segmentation of a transparent motion stimulus. In the seg-
mentation images, green depicts the selected region/pixels, red the inhibitory surround.
(a) One frame in the transparent motion stimulus. The red dots translate to the right,
the green dots to the left. The color of the dots is irrelevant, segmentation is based
on the motion of the dots. (b) Selection of the green dots in the input layer using the
attentional beam. (c¢) Segmentation results overlapped on top of the input frame. The
green dots are selected, while the red dots are inhibited.

Thus, the ratio between the red and green representations is increased in the
attended condition, duplicating the results presented by [7].

Note that the selection is not perfect, errors occur due to the absence of
motion signals in the case of points that have just entered the frame or to the
presence of illusory motion when points emerge after being occluded by other
points. Analysis of the selection performance reveals that, on average, the system
correctly selects 85% of the desired points, while allowing for 16% false positives.

4.1 Temporal Analysis

Fig.illustrates the sequence of steps that accomplishes the task. After the stim-
ulus appears, its information is processed along the two pathways — Fig. The
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Fig. 4. Temporal flow of information. The arrows show the flow of information. See
text for discussion. a) Stimulus is processed in parallel along both pathways. Attention,
under task guidance, selects one direction of motion. b) Selective Tuning feedback
localizes the corresponding moving dots in the input. ¢) A second feedforward pass
along both pathways reevaluates the attended stimulus.

task is to attend to the leftward motion, so the corresponding high-level represen-
tation is selected, and the ST feedback process is applied to localize it in the in-
put — Fig. The attentional modulation in the dorsal pathway proceeds from
higher level areas to lower level ones [41]. After the leftward motion is localized in
the input and the rightward motion is inhibited, information again flows up the
network, resulting in a reevaluation of the representations — Fig. This reeval-
uation consists of refined representations for leftward motion and its color, green,
and of inhibited representations for rightward motion and its color, red. This tem-
poral pattern of activation corresponds in attentional modulation of the ventral
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color representations following the dorsal attentional selection by a time inter-
val proportional to the number of visual areas that the signals have to traverse.
The experimentally observed time interval of ~40-60ms corresponds to informa-
tion passing through 3-5 visual areas [42] - MT-V1-V4 or MST-MT-V1-V2-V4,
respectively.

5 Discussion

While the importance of space in binding is captured in the Feature Integration
Theory, high level representations, object- and feature-based attention mecha-
nisms are not easily integrated into FIT. In this paper we have presented an
original solution to the feature binding problem in visual perception, by recover-
ing spatial information from high level representations through Selective Tuning
style feedback. Another important contribution of this research is a process of
recovering spatial information that does not require a “master map” of loca-
tions or any other separate representation of space. We have demonstrated this
solution by modeling experimental results. While these preliminary results are
encouraging, the representations used are very simplistic, and significant work
needs to be done to prove the generality of the solution.

A series of studies regarding the time course and processing sequence of mo-
tion and form/color [SJOUTOJ7ITI] conclude that dorsal activation (area V5/MT)
precedes ventral activation (areas LO and IT) by approximately 50ms (the actual
delay depending on the task, stimuli, measuring methodology, etc).

These and other results are inconsistent with models that propose binding
through convergence in higher-level areas [43], mainly due to the progressive
loss of spatial specificity of neural responses.

Another explanation for the results could rely on direct connections between
the processing streams at some intermediate level. This proposal seems highly
unlikely, for at least the following reasons: The progressive loss of spatial in-
formation does not allow information to be passed around with the necessary
resolution, such an interaction would require dense interconnections between the
dorsal and ventral pathways, at a density that is not observed in practice, and
the observed delay is not consistent with direct connections.

It is argued that the various cortical representations of a stimulus are bound
together due to the quasi-synchronous firing of all the neurons that represent
it [A4M4546] (but also see [47] for a critical evaluation of this hypothesis). The
experiments presented here can not discount synchrony as an indicator of suc-
cessful binding, but the observed delays clearly demonstrate that some process
is needed to perform the binding before it can be signaled in such a manner.

The fact that precise spatial information needs to be recovered based on high-
level perceptual decisions to accomplish the tasks presented here argues strongly
for a feedback model similar to the one proposed in this paper. Also, the timing
of the observed effects is consistent with information passing through 3-5 visual
areas [42]. Our model is also supported by evidence that attentional modulation
appears sooner in higher level areas than in lower level ones [41].
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It has been shown that the extraction of visual information can occur very
rapidly, and based on very brief exposures to stimuli [48/49], but the amount of
information extracted is very limited. In particular, localization of stimuli is poor,
and detailed recognition beyond the categoric level is severely impaired [50]. The
proposed mechanism is consistent with this fast detection/slow localization and
recognition dichotomy.

The idea that attention binds together distributed cortical activations at mul-
tiple levels of the visual hierarchy involved in processing attended stimuli has
recently received significant experimental support [5I], and reentrant connec-
tions between extrastriate areas and V1 are gaining support as the substrate for
attention and conscious perception (see [52] for a review).

6 Methods

All simulations were implemented in the TarzaNN neural network simulator
[53]. The simulator, instructions and all additional files needed to reproduce the
results presented here are available online at http://www.TarzaNN.org. The sim-
ulations were performed on a Macintosh PowerMac G5. Note that the simulator
will also work on other platforms, including Windows, Linux and Solaris.
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