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Abstract

This paper presents a wavelet-based framework for en-
hancing the coherent structures attributable to the target or-
gan in cardiac Magnetic Resonance (MR) images. Previous
approaches focus on the Rician nature of noise in magni-
tude MR images. Image noise is but only one of the con-
founding factors that obscure the anatomical structures of
the target organ. This paper models the image noise in a
magnitude MR image in terms of two noise classes which
occur over different ranges of signal intensity. An adaptive
enhancement scheme is developed to achieve simultaneous
attenuation of the effects of these factors and improvement
in image contrast.

1. Introduction

Diagnosis of cardiac disease relies upon an accurate
assessment of the morphology and function of patients’
hearts. The tasks of extracting information about the shape
and motion of the target organs rely on the coherency of
the structures that provide this information. A major issue
at the focus of research is the signal-dependent noise of a
magnitude Magnetic Resonance (MR) image, which is gen-
erally modeled by a Rician distribution [8, 11] . The bias
introduced by Rician noise significantly reduces the image
contrast essential for extracting the boundaries of the heart
and related anatomical parts. Furthermore, this noise ef-
fectively reduces the lossless compression ratio, which is
important to image transmission [26] .
This research, on the other hand, observes that (1) noise is
only one of the factors that may obscure the target struc-
tures, i.e., the anatomical structures of the target organ, and
(2) not all data are equally important for clinical diagno-
sis, especially where some of these data are such obscur-
ing factors. For instance, the thoracic cavity in the proxim-
ity of the heart appears as a low intensity region where the
lungs, blood vessels and other tissues create patterns of dy-

Figure 1. Cardiac magnitude MR image

namic structures, which we will refer to as the background
structures hereafter. These fibrous structures lack a definite
shape. Like the heart, many of them are dynamic struc-
tures in periodic motion. The interactions between these
background structures and Rician noise confound the tasks
of boundary detection and anatomical reconstruction both
spatially and dynamically.
From this perspective, this research ventures into a more
general problem, referred to hereafter as adaptive enhance-
ment, that entails the following: (1) recovering the signals
of the anatomical structures of the heart from the image
noise, (2) enhancing the image contrast attributable to these
signals and (3) suppressing the background structures. The
challenge of the problem is signal enhancement by attenuat-
ing the effects of the confounding factors while at the same
time improving image contrast.
This paper presents a wavelet-based solution to the prob-
lem of adaptive enhancement. Consider a separable wavelet
orthonormal basis generated by the scaling function φ and
wavelets ψκ, where κ indicates the orientations. An image I
can be expressed as a superimposition of a J-scale approx-
imation and a succession of details of spatial oscillations at
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different scales:

I =
∑

k

skφJ,k +
∑

η

wηψη (1)

= PvI + RwI (2)

where η ∈ {j}×{k}×{κ} is an index over j (the scale), k
(the spatial location), and κ (the orientation) [1, 13, 14, 24] .
sk =<I, φJ,k > are the approximation or scaling function
coefficients where <·, ·> denotes the inner product. Simi-
larly wη =<I, ψη > are the wavelet or detail coefficients.
For simplification of exposition, we will drop the indices
where no confusion arises. PvI , the projection of the im-
age on the J-scale approximation space VJ, captures those
coarse-scale features visible after smoothing of the signal
whereas RwI is a collection of the fine-scale details de-
tectable at successive scales of increasing resolution. The
set of wavelet coefficients in the second term provides a
complete representation of the rapidly oscillating content
localized at different scales, orientations, and spatial loca-
tions. In the cases of clinical Magnetic Resonance Imag-
ing (MRI), the set of approximation coefficients represents
the smoothly varying regions that belong to the anatomical
objects. The rapidly oscillating components related to the
boundaries of anatomical objects as well as image noise and
other artifacts contribute to the wavelet coefficients. The
energy in the wavelet representation of the signal is concen-
trated in a small number of wavelet coefficients where the
signal singularities occur within the support of the wavelet
functions. An approximation of the “noise-free” image can
be re-constructed with a selected subset of attenuated coef-
ficients. A variety of selection/shrinkage rules has been de-
veloped to produce a good approximation in the situations
where Gaussian noise arises [9, 14, 17, 23] . These solutions
become inadequate when the Gaussian assumption does not
hold. The purpose of this paper is to explore a solution to
the problem of adaptive enhancement in a situation where
noise is better described by a Rician model.

2 Image Noise in MR Images

Rician noise arises from the process of constructing
magnitude MR images [16, 22] , which are usually used in
the clinical setting as well as Cardiac Magnetic Resonance
(CMR) image analysis. A complex-valued spatial-domain
representation is generated from the frequency-domain data
read out from an MRI machine through an inverse Fourier
transform. The magnitude image is the square root of the
sum of squares of the complex pair. The real and imagi-
nary data after the inverse transform remain Gaussian dis-
tributed with zero means and equal variance ση

2. The non-
linear operator in the last step of image construction, how-
ever, transforms the distribution from Gaussian to Rician.

The magnitude data1 M are characterized by the probabil-
ity density function given (noise-free) signal S and variance
ση of noise in the complex images [15, 21]

fM(M |S, ση) =
M

ση
2

e

(
−M2+S2

2ση2

)
Io

(
MS

ση
2

)
1{M≥0}

(3)
where Io is the modified Bessel function of the first kind
of zeroth order, and 1A the indicator function over the
set A. The distribution depends on the S

ση
, that mea-

sures the signal-to-noise ratio (SNR), and the signal inten-
sity [11, 21] . When S = 0, Eq. (3) is reduced [6, 10] to a

Rayleigh distribution: fM |S,ση
= M

ση
2 e

− M2

2ση2 1{M>0} with

E (M) =
√

π

2
ση (4)

var(M) = (2 − π

2
)ση

2 (5)

It can be shown using a truncated expansion of I0 and some
algebraic manipulation that as the signal approaches infin-
ity, Eq. (3) tends to a Gaussian distribution with a mean
equal to S and variance ση

2.
The data of a squared magnitude image [7, 16] follow a
non-central χ2

2(
S2

ση
2 ) distribution with two degrees of free-

dom and non-centrality parameter S2

ση
2 . The mean and vari-

ance are given by:

E (M2) = S2 + 2ση
2 (6)

var(M2) = 4ση
4 + 4(Sση)2 (7)

The variance is approximately 4ση
4 over the low intensity

range and then rises rapidly with the signal intensity.

2.1 Related Approaches to Rician Noise in Clini-
cal MRI

In the general context of clinical MRI, a number of filter-
ing frameworks have been proposed for noise reduction in
the Rician situations. A wavelet-domain filtering approach
is proposed to shrink the wavelet coefficients toward zero
with a set of filter weights that approximately minimize
the mean squared error (MSE) of the coefficients [7, 16] .
These filters rely on the assumptions that (1) the noise in
the high SNR images is signal independent and (2) the
wavelet coefficients are unbiased. Obviously, these condi-
tions fail to hold for the low-intensity regions. For the low
SNR (below 10dB) MRI, the framework of noise filtering
is applied to squared magnitude images with two additional
steps: (1) provide a MSE estimator of ση

2 using the discrete
wavelet squared transform of the squared image and (2) re-
move the bias from the approximation coefficients of the

1This section uses M rather than I for image data to avoid confusion.
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image [7, 16] . This second algorithm, however, fails to out-
perform the first one [16] for any MRI with the SNR > 15
dB, a condition that is common in clinical MRI applica-
tion. The technique of removing bias from squared images
was adapted in some later algorithms, such as [27] . Over
the low intensity regions, however, this filtering framework
fails to remove the Rician noise satisfactorily. Alternative
procedures are proposed to identify the background noise
for removal [19, 26] . Other techniques are also proposed
including wavelet packets [25] , Bayesian frameworks with
joint signal detection and estimation [18, 19] and spatial
domain filtering [22] .

3 Adaptive Enhancement of MRI

Rician noise in the magnitude MR images can be mod-
eled in terms of two noise classes which occur over dif-
ferent ranges of signal intensity. Noise in the high SNR
regions can be approximated by the asymptotic properties
of an infinity-intensity signal – hereafter referred to as the
approximation model – i.e., it is approximately signal inde-
pendent noise with mean zero and variance ση

2. Variants
of the standard techniques being informed by the stochastic
properties of Gaussian noise are adequate for signal recov-
ery for this class of noise. Over the low SNR regions, the
approximation model fails to provide a reliable approxima-
tion of the data. Noise remains active over these regions.
We observe that the variance of χ2 noise as well as that
of the low-intensity structures over the low SNR regions
in a squared magnitude image is relatively small. In the
wavelet domain, these features will be mostly captured in
the coarse scale approximation. This allows an adaptive en-
hancement scheme of coefficient attenuation to achieve the
combined effect of noise reduction, removal of the back-
ground structures and enhancement of image contrast in two
steps: namely the smoothing (S) step and the enhancement
(E) step.
The smoothing (S) step seeks to reduce the noise with
the asymptotic properties of Rician noise. Given the noise
statistics of a typical clinical MR image, we observe that
the image noise of a magnitude image over the high sig-
nal intensity regions, which cover most of the target organ,
can be described by the asymptotic properties reasonably
well. This approximation model justifies the application
of many existing denoising techniques for the purpose of
this step. In a nutshell, an approximation of the signal can
be generated by a set of coefficients attenuated according
to some shrinkage rule to remove the components due to
noise [9, 14, 17, 23] . Obviously, the shrinkage rule is crit-
ical. It is the set of performance requirements of the appli-
cation that dictates the choice of the wavelet shrinkage rule.
These rules are further discussed in the next section.
In spite of approximation, the noise remains Rician and its

stochastic properties cannot be ignored. Indeed, it plays a
critical role in this step. Most of the shrinkage rules rely
on the estimation of ση from the data in their threshold se-
lection. In a typical clinical MR image, Fig. 1 being an ex-
ample, there are signal-free regions of air outside the body.
Given this subset of data, Eq. (5) gives a Rician-based esti-
mator as shown in Eq. (8):

ση
2 =

2
4 − π

var(Ir), (8)

where Ir are the data from the signal-free regions. Alterna-
tively, from Eq. (6) we get the following estimator:

ση
2 = 0.5E (Is

r ), (9)

where Is
r are the data from the signal-free regions of the

squared magnitude image. Both estimators provide highly
reliable estimates of ση.
The enhancement (E) step attenuates the approximation
coefficients of the squared magnitude image constructed
from the output of the smoothing (S) step. Medical im-
ages are usually characterized by a number of piece-wise
smoothly varying regions separated by sharp discontinu-
ities. In multiresolution analysis, the coarse approxima-
tion PvI represents the smooth part of the image whereas
the discontinuities are captured by the wavelet coefficients.
Rapid shifts in intensity across the regions contribute to
image contrast which is essential for feature detection and
structure finding. Contrast enhancement can therefore be
achieved by amplifying these intensity gradients. One way
to accomplish this is to reduce the magnitude of the smooth
parts while preserving the energy in the oscillating content
captured in the detail spaces. To suppress the background
structures as well as the remaining noise in the low-signal
intensity proximity of the heart, the enhancement scheme is
necessarily adaptive to signal intensity. The adaptive fac-
tor which controls the amount of magnitude to be reduced
should be a continuous function in signal intensity in order
to avoid creating spurious gradients.
Given a noisy image I , the squared magnitude image can be
expressed compactly as the following:

Is =
∑

k

sIs

k φj,k +
∑

η

wIs

η ψη = PvIs + RwIs (10)

where sIs

and wIs

are the approximation coefficients and
the wavelet coefficients of the squared image respectively.
Consider the following operator on image I with threshold
parameter T :

ΦI =

{ √
I−T
I+T (I + T ) if T > 0

I if T = 0.
(11)

The square root term is the adaptive factor. The operator
returns the original image, ΦI = I , given threshold T = 0.
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Given a positive threshold, i.e., T > 0, the operator reduces
the signal intensity of I . The numerator of the adaptive fac-
tor is reduced to zero when I = T and to a negative value
over the regions where I < T . Due to the non-linearity of
the square root operator, the adaptive factor rises rapidly for
signal intensities that exceed the threshold and tends to 1 as
I � T .
Observe that

(ΦI)2 = (I)2 − T 2 for T ≥ 0. (12)

where (ΦI)2 is the squared image of ΦI . Raising the data to
a higher power amplifies image oscillations; consequently,
image features in a squared image are projected onto a sub-
space at a scale at least as high as the corresponding scale
in the decomposition of the magnitude image. The wavelet
representation of the squared magnitude image of ΦI pre-
serves the image features in the detail spaces in the sense
that those features in RwI stay in the detail spaces in the
decomposition of the squared image. To preserve and en-
hance the “micro-features” of the image from the smooth-
ing (S) step, we apply the signal adaptive operator on only
the coarse scale approximation of the image without alter-
ing the detail representation of the squared image. The en-
hanced image is therefore

Is
Φ = PvI2

Φ + RwIs (13)

The first term PvI2
Φ is the projection of the square magni-

tude image of ΦI onto the approximation space. Combining
Eq. (10), Eq. (12) and the fact [2] that

∑
φk = 2J for a J-

scale decomposition yields the approximation coefficients
as follows:

sΦIs

k =
〈

(ΦI)2, φk

〉
(14)

=
∑

k

I2φk −
∑

k

T 2φk. (15)

= sIs

k − 2JT 2 (16)

where sIs

. are the approximation coefficients of the squared
image. More conveniently, the attenuated coefficients can
be written as

s̃Is = sIs − τ (17)

where
τ = 2JT 2, (18)

Let Is
se be the enhanced squared image computed by the

inverse wavelet transform with the attenuated coefficients
{s̃Is}. The non-positive part of the image represents the
image features being suppressed.
The enhanced image depends on the threshold used in the
adaptive enhancement rule. As mentioned, the scheme

adaptively erodes the signal intensity of the coarse scale ap-
proximation over the low-intensity regions. With a thresh-
old set to a level which discriminates these structures and
the boundaries of the heart, the adaptive scheme suppresses
most of these structures in the proximity of the heart. This
critical range is a characteristic of MRI scanning. It does
not change significantly over a temporal sequence.
The remaining noise after the smoothing step contributes to
some small fluctuations in the approximation and wavelet
coefficients of the squared magnitude image. A study [26]
of the distribution of the scaling function coefficients of
squared magnitude images suggests a threshold be set to
(2J+1 + 6)ση

2 to discriminate between coefficients with
the support of the scaling functions in the signal regions
and those in the Rayleigh (low-intensity) regions. To sup-
press the spurious fluctuations in the coefficients over the
low signal regions, we set a threshold, which should be
proportional to the variance of the noise, at or above this
level. Consider a threshold set to ζση. Where ζ =

√
2,

τn = 2J+1ση
2 is equivalent to the threshold set to remove

the bias from the approximation coefficients [7, 16] . For
most practical choices of J ,setting ζ to two is adequate to
discriminate between the approximation coefficients with
a support inside the signal-free and those with a support
over the signal regions of the image. A higher ζ raises the
thresholding level to offset larger fluctuations in the coef-
ficients. Our experimental findings indicate that the back-
ground noise can be more thoroughly attenuated with a ζ
set to three. In general, the result is not sensitive to minor
variations in the range between two and five.

4 Experimental Results

We use a four-way comparison to test the performance
of the enhancement scheme with both synthetic and real
MR images. Four algorithms are implemented:

Algorithm Smoothing Step Enhancement Step
SE Group

SE-U Universal threshold Yes
SE-MSE MSE filter Yes

S Group
S-U Universal threshold No
S-MSE MSE filter No

These algorithms fall into two groups: SE-group and S-
group. The two algorithms, namely, SE-U and SE-MSE, in
the SE-groups implement both steps of adaptive enhance-
ment method. This is the main contribution of this paper.
In contrast, the S-U and the S-MSE algorithms in the S
group implement only the smoothing step but without the
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enhancement step. Comparing the performance of these
two groups of algorithms gives us a clear idea about the
contribution of the adaptive scheme in the enhancement (E)
step. Within each group, the two algorithms differ in the
technique used in the smoothing (S) step. The U algorithms
– S-U and SE-U – apply the classical soft-thresholding rule
with the universal threshold selection scheme [3, 5, 9, 13] :
For a wavelet coefficient w, the thresholding estimator w̃ is
defined as

w̃ = sgn(w)(|w| − λu)1{|w|>λu}, (19)

where sgn(·) denotes the signum function, with the univer-
sal threshold

λu = σ̃η

√
2 lnN (20)

where N denotes the data size. The MSE algorithms – S-
MSE and SE-MSE – apply the MSE-filtering rule [7, 16]
given by w̃ = α∗w with the filter weight α∗ = α1{α≥0}
where

α =
w2 − βσ̃η

2

w2
(21)

and σ̃η is the estimate of ση. In our experiments, β is set to
two as suggested by [16] .
The major differences between the U-algorithms and the
MSE-algorithms lie not only in the shrinkage rule, but also
in their estimator of ση. The MSE algorithms estimate the
noise variance ση

2 using the Rician-based estimator speci-
fied in Eq. (8) or Eq. (9) from the data in signal-free regions
while the U-algorithms employ a Gaussian-based estimator
[4, 14, 17]

σ̃η =
MAD(w)

0.6745
(22)

where MAD(w) is the median of absolute deviation of
{w}, the set of wavelet coefficients at the highest scale of
decomposition. This latter estimator assumes that the coef-
ficients are generated from a data set with Gaussian noise.
The difference in performance between the U- and the
MSE-group of algorithms demonstrates the performance
impact of completely ignoring the Rician properties of the
noise even in the case of high SNR images.
The performance of the algorithms is evaluated with respect
to (1) contrast enhancement and (2) the fidelity (goodness)
of approximation. The contrast improvement ratio (CIR)
quantifies contrast enhancement achieved by an algorithm.
The image contrast is measured in terms of the difference
between the average intensity of the foreground object and
that of the background over a selected region of interest.
Given a pair of images: the input image Iin and the output
image Iout, the contrast improvement ratio is defined as

CIR =
Cout − Cin

Cout
× 100%, where (23)

Ci =
mi,F − mi,B

min,F + min,B
i ∈ {in, out} (24)

and m.,F is the average intensity of the foreground object
and m.,B the average intensity of the background. The
goodness of approximation is measured in terms of two
metrics: the error measurement with respect to the l1-norm
[20] ∥∥Iin − Iout

∥∥
l1

=
1
N

∑
|Iin − Iout

∣∣, (25)

where N is the data size, and the SNR with respect to the
l2-norm [20]

SNR = −10 log(ξl2 ) (26)

where

ξ
l2

=
∑ |Iin − Iout|2∑ |Iin|2

(27)

In order to isolate the error of approximation from the en-
hancement improvement, the output of the SE-group is ad-
justed for the intensity shifts that contribute to the enhance-
ment measurement.
Each synthetic image used in the experiments is a magni-
tude image constructed from a pair of identical images cor-
rupted by different realizations of Gaussian noise with zero
mean and identical variance selected over a range compat-
ible to a typical clinical image where the noise variance
usually falls between three and ten. The noise-free image,
a piece-wise step function in the form of concentric rings
with different signal intensities, is designed to simulate the
essential parts of a CMR image, i.e., the region inside the
heart chamber, the heart wall, the thoracic cavity, the tho-
racic wall and the volume of air outside the human body.
The image in Fig. 2a is an example of a noisy input with
the ROI selected for measuring the contrast improvement
achieved by the algorithms. Fig. 2b-2d display the perfor-
mance of the algorithms with respect to the performance
metrics; each bar represents the range of measurement ob-
tained from fifty repeated trials. Significant differences are
observed between the S-group and the SE-group of algo-
rithms. Both SE algorithms provide significant improve-
ment in contrast over those without the enhancement step.
The negative CIR’s for the S-group indicate that the coef-
ficient attenuation techniques reduce image noise at a cost
of image contrast. Similarly, there is an obvious watershed
in terms of the absolute error between these groups of al-
gorithms with SE algorithms producing much lower abso-
lute errors. With respect to the l2-norm, the SE-MSE al-
gorithm out-performs all the other algorithms whereas the
output from the SE-U algorithm achieves the lowest SNR.
Within each group, the MSE-algorithm achieves a better
performance with respect to all performance metrics than
the U-algorithm does. Unlike SE-MSE, SE-U does not in-
corporate the stochastic properties of Rician noise. First, the
smoothing step of the algorithm uses the median of absolute
deviation (MAD) estimator of ση for threshold selection, re-
sulting in a higher discrepancy between the smoothed image
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and the true signal. These errors in approximation are fur-
ther amplified by the enhancement processes in the second
step. Similar patterns hold for the input images corrupted
by noise generated with different values of ση

2, as shown
in Fig. 3.

(a) Selected ROI (b) Contrast Improvement

(c) Absolute Error (d) SNR

Figure 2. Performance of the algorithms on
synthetic images. (ση = 10)

The performance of these algorithms is also evaluated
on a variety of real medical images – cardiac, brain and
vascular – with different wavelet bases. Similar results are
found in all cases. Fig. 4 shows the performance statistics in
contrast improvement achieved in a selected test case in (a)
with the input image and the ROI selected for measurement
in (b). The performance between the two groups of algo-
rithms is qualitatively different. As in the case of synthetic
images, only algorithms in the SE-group achieve significant
enhancement. Fig. 5 shows the performance of the algo-
rithms in reducing the confounding effect of image noise
and low-intensity structures. Depicted in the column on
the left are the input and output images (contrast adjusted)
and the column on the right the maps of zero crossings su-
perimposed on the input image. The purpose of these al-
ternative representations of image data is to discern those
image structures that are visible to an image analysis tool
such as an edge detector. Three low-intensity regions there-
fore should draw attention: these are (1) the thoracic cav-

Figure 3. Performance of the algorithms on
synthetic images with noise with different ση

with respect to (a) contrast improvement, (b)
absolute Error and (c) SNR.
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Figure 4. A selected CMR image: contrast im-
provement.

ity with the low-intensity structures behind the heart and
(2) the signal-free areas above the cavity wall and (3) the
low-intensity boundaries of the heart and its chambers. As
shown in the second and the third row, S-algorithms us-
ing only the smoothing step are inadequate for handling the
lower intensity regions. Shown in the bottom two rows is
the output of the SE-algorithms which, by virtue of its en-
hancement step, (1) remove most of the image noise, in-
cluding that in the low-intensity regions both in the back-
ground and inside the body, (2) preserve the edge informa-
tion related to the boundaries of the heart and its anatomical
parts (as shown in the map of zero-crossings) and (3) at-
tenuate most of the background structures in the thoracic
cavity. The remaining edges found in the cavity belong to
the major arteries and veins.

5 Discussion and Conclusion

The method described in this paper is developed in the
context of CMR image analysis. Indeed, it has a wider
scope of application to other classes of medical images such
as brain and Magnetic Resonance Angiography (MRA). In
other sets of experiments, the performance of the SE-group
is also found to be superior to spatial domain approaches
such as anisotropic diffusion filtering; for details, see [12] .
The four-way comparison used in our performance evalu-
ation sheds light upon the contribution of different com-
ponents of the method to the solution of the problem of
adaptive enhancement. The adaptive enhancement scheme
suppresses most of the noise and the background struc-
tures. Features related to the anatomical structures of the
heart are preserved, and image contrast is significantly im-
proved. This capability to preserve and enhance important
image structures is demonstrated by the output of the SE-
algorithm with both synthetic and MR images. The stochas-
tic properties of the image noise – Rician noise in magni-
tude MR images and those of the corresponding χ2 noise in

(a) Noisy input image

(b) S-U algorithm

(c) S-MSE algorithm

(d) SE-U algorithm

(e) SE-MSE algorithm

Figure 5. A selected cardiac MR image.
Input/output images on the left and maps of
zero crossings on the right.
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squared magnitude images – play a critical role in both steps
of the method. The U-algorithms, with both their shrink-
age rule and the estimator of ση based on a strong assump-
tion of Gaussian noise, are outperformed by their counter-
parts which incorporate the Rician properties of noise, es-
pecially in the case where the signal intensity is low. This
paper integrates image enhancement by way of noise re-
moval into a broader framework of adaptive enhancement.
Although our experiments employ two very simple shrink-
age techniques in the smoothing step, this framework can be
adapted to the unique context of application, allowing dif-
ferent approaches to signal recovery. The method is linear
in the image data. Since a typical cardiac MR image se-
quence consists of hundreds of images, this low complexity
of the method allows fast processing of the sequence. With
a complexity being compatible to that of Gaussian-based
techniques, this method provides a more complete solution
to the problem of adaptive enhancement of cardiac MRI and
similar medical applications.
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