What Roles can Attention Play in Recognition?

John K. Tsotsos, Member, IEEE

Abstract—Does attention have relevance for visual recognition and if so, under what circumstances? Is there a particular role (or roles) for attentive processes? These are not so simple to answer. Attention, if used at all in computer vision, has traditionally played one or both of the following roles: where to look next (or selection of region of interest), or top-down task influence on visual computation. In this paper, I argue that these are only two of the possible roles. Attention is also closely linked to binding and it is the triad of attention, binding and recognition that go hand in hand for non-trivial visual recognition tasks. This paper describes a set of four novel binding processes that employ a variety of attentive mechanisms to achieve recognition beyond the first feed-forward pass. The description is at a conceptual level with many pointers to papers where details may be found.

Index Terms—attention, recognition, selective tuning, human vision, visual feature binding

I. INTRODUCTION

Visual attention, recognition, and binding command a large, conflicting literature. For example, the nature of attentional influence has been debated for a long time. Among the more interesting observations are those of James’ classic 1890 phrase [1] everyone knows what attention is juxtaposed with that of Pillsbury who in 1908 wrote [2] attention is in disarray and Sutherland’s 1998 comment [3] after many thousands of experiments, we know only marginally more about attention than about the interior of a black hole. Within all of the current viewpoints, the only real constant seems to be that attention seems to be due to inherent limits in processing capacity in the brain [4]. But this does not constrain a solution. Even if we agree on a processing limit, how does it lead to the brain mechanisms that produce the observed phenomena?

We suggest that the terms attention, recognition and binding have become so loaded that they mask the true problems; each may be decomposed into smaller, easier problems. This paper suggests that considerations of time course can help carve seemingly monolithic problems into bite-sized pieces.

Many think visual attention needs an executive to allocate resources. Although the cortex exhibits substantial plasticity, dynamic allocation of neurons seems outside its capability. Suppose instead that the visual processing architecture is fixed, but can be tuned dynamically to task requirements: the only remaining resource that can be allocated is time. How can this fixed, yet tunable, structure be used over periods of time longer than one feed-forward pass?

Models with good performance of this first pass have appeared with hints about what happens next (e.g. [5,6,7]). With the goal of developing a computational theory and model of vision and attention that has both biological predictive power as well as utility for computer vision, this paper proposes that by using multiple passes of the visual processing hierarchy, both bottom-up and top-down, and using task information to tune the processing prior to each pass, we can explain the different recognition behaviors that human vision exhibits. By examining in detail the basic computational infrastructure provided by the Selective Tuning model and using its functionality, four different binding processes - convergence binding and partial, full and iterative recurrence binding - are introduced and tied to specific recognition tasks and their time course. The key is a provable method to trace neural activations through multiple representations from higher order levels of the visual processing network down to the early levels [4,8-12]. It is important to note that this tracing mechanism relies on a top-down maximum operation; as such it is inherently incompatible with the feed-forward max operations that most current models employ and is thus clearly distinguished from those. It should be emphasized that the experimental evidence against a feed-forward maximum operation is overwhelming. The majority of studies that have examined responses with two non-overlapping stimuli in the CRF have found that the firing rate evoked by the pair is typically lower than the response to the preferred of the two presented alone, inconsistent with a max rule [13-20]. Additional studies have found the response to the preferred stimulus changes when presented along with other stimuli, a pattern inconsistent with a max operation [21,22]. A theoretical argument may also be made against a feed-forward max using the equivalence conditions between relaxation labeling processes and max selection [23], and especially considering the role of lateral processes in vision [24]. Lateral interactions necessitate a closer look at time course issues. It has been observed that most V1 response increases due to lateral interactions seem to occur in the latter parts of the response profile; this hints that lateral interaction takes extra time to take effect with V1 responses continuing until about 300ms after stimulus onset [25]. A single feed-forward pass ignores all but the first few V1 spikes.

II. DEFINING VISION SUB-TASKS

Efforts to develop a computational theory of human vision must be informed by experimental observations of human (but also non-human primate) visual performance. Consequently, computational models of attention, recognition and binding...
should be closely tied to the experiments that attempt to
discover their characteristics within human vision; yet, one
currently sees the terms quite arbitrarily used, especially in the
computational vision literature. Macmillan and Creelman
provide good definitions for many aspects of recognition and
we can use these as a starting point.

One-interval experimental design involves a single stimulus
presented on each trial. Between trials visual masks are used to
clear any previous signal traces. Discrimination is the
ability to tell two stimuli apart. The simplest example is a
Correspondence experiment in which the stimulus is drawn
from one of two stimulus classes and the observer has to say
from which class it is drawn. This is perhaps the closest to the
way much of modern computer vision currently operates. A
Detection task is where one of the two stimulus classes is null
(noise) and the subject needs to choose between noise and
noise + signal and the subject responds if he sees the signal. In
a Recognition task neither stimulus is noise. More complex
versions have more responses and stimuli. If the requirement
is to assign a different response to each stimulus, the task is
Identification. If the stimuli are to be sorted into a smaller
number of classes - say, M responses to sort N stimuli into
categories - it is a Classification task. The Categorization task
requires the subject to connect each stimulus to a prototype, or
class of similar stimuli (cars with cars, houses with houses). The
Within-Category Identification task has the requirement
that a stimulus is associated with a particular sub-category
from a class (e.g., bungalows, split-level, other house types).

In the Same-Different task a pair of stimuli is presented on
each trial and the observer must decide if its two elements are
the same or different. For the Match-to-Sample task, three
stimuli are shown in sequence and the observer must decide
which of the first two is matched by the third. Odd-man-out is
a task where the subject must locate the odd stimulus from a
set where all stimuli are somehow similar while one is not.
Additionally, responses can vary: verbal, eye movement to
target, the press of a particular button, pointing to the target,
and more. The choice of response method can change the
processing needs and overall response time.

More complex designs are also used; the point here is not to
review all possibilities. Rather, the point is to present the
definitions that we use in this paper. Further, if computational
theories wish to have relevance to human vision, they need to
consider such well-defined experimental procedures for each
task when comparing their performance to experimental
observations. It just does not seem right to take elements of
experimental observations, model them, and then subject them
to verification using different (sometimes wildly so) conditions and expect the comparison to be valid.

The need for a subject to respond leads us to define a new
task that is not explicitly mentioned in Macmillan and
Creelman, the Localization task. In this task the subject is
required to extract some level of stimulus location information
in order to produce the response requested by the experimenter. In fact, this may be considered as an implicit
sub-task for any of the standard tasks if they also require
location information to formulate a response. Its importance
will become apparent later in the paper. Throughout the paper,
you of the above tasks that also include localization will be
denoted by adding a superscript “L” to the task name.

Prior to performing any of the above tasks, subjects are
provided with knowledge of the experiment, what to expect in
terms of stimuli, what responses are required, and so on. In
other words, subjects are ‘primed’ in advance for their task
[27]. Thus, in any model of vision, the first set of
computations to be performed is priming the hierarchy of
processing areas. Task knowledge, such as fixation point,
target/cue location, task success criteria, and so on must
somehow be integrated into the overall processing; they tune
the hierarchy. It has been shown that such task guidance must
be applied 300 to 100ms before stimulus onset to be effective
[28]. This informs us that significant processing time is
required for this step alone, a sufficient amount of time to
complete a top-down traversal of the hierarchy before any
stimulus is shown. This reflects one of the usual uses of
attention referred to in the abstract.

III. ATTENTION AND BINDING

Among the most misused and misunderstood concepts in
perception are binding and attention. For the purposes of this
paper, some concreteness is required.

The rationale for attentive processes is almost universally
presented as a capacity limit with respect to processing power
in the brain. Capacity limits naturally translate to
considerations of computational complexity, because that is
the discipline that examines the cost to achieving solutions to
a problem in terms of a processing systems’ capacity [4].
Problems are cast as search through a space of possibilities. In
perceptual science, attention is often thought of as selection of
portion of the input for preferential processing. It is really
much broader and we maintain a view of attention as a set of
mechanisms that optimize the search processes inherent in
vision [29,30], a perspective that follows immediately from
the capacity discussion above. These search mechanisms take
many forms; perhaps the mixing of these many forms within
any single experimental paradigm is a reason for why attention
seems so inscrutable. Some search forms are: selection,
(choosing from many); search space reduction (eliminating
some of the possibilities when faced with a large search
space); suppressing (improving signal-to-noise by reducing or
eliminating the effect of one signal on another). There are
several specific mechanisms within each category, many of
which appear throughout this paper. Others include choice of
world or task model, choice of viewpoint, and more [29,30].

A great deal of effort has gone into the discovery and
elaboration of neural mechanisms that extract meaningful
components from images in the belief that these components
form the building blocks of perception and recognition. The
problem is that corresponding mechanisms to put the pieces
together again have been elusive. Current models develop
representations of an image by proposing feature sets of
varying complexity then resort to a classifier to make sense of
these representations [5,6]. In Cognitive Science, this
“Humpty-Dumpty” like task has been called the binding
problem [31]. Binding is usually thought of as taking one sort
of visual feature, such as a shape, and associating it associated

2I thank Allison Sekuler and Patrick Bennett for this pointer.
another feature, such as location, to provide a unified representation of an object. Such explicit association is important when more than one visual object is present, in order to avoid incorrect combinations of features belonging to different objects, otherwise known as “illusory conjunctions” [32]. The binding literature is large; no attempt it made here to review it due to space limitations (see [33]).

Classical demonstrations of binding in vision seem to rely on two things: the existence of representations in the brain that have no location information, and, representations of pure location for all stimuli. However, there is no evidence for a representation of location independent of any other information. Similarly, there is no evidence for a representation of feature without a receptive field. Nevertheless, location is partially abstracted away within a hierarchical representation as part of the solution to complexity [4]. A single neuron receives converging inputs from many neurons and each provides input for many neurons. Precise location is lost in such a network of diverging feed-forward paths yet increasing convergence onto single neurons.

IV. CONNECTING RECOGNITION, ATTENTION AND BINDING

How is the right set of pathways through the visual processing network ‘selected’ and ‘bound’ together to represent an object? A novel set of four different binding processes are introduced that are claimed to suffice for solving the kinds of recognition tasks described above. These are organized along the time dimension, i.e., the processing time each requires and the latency from stimulus onset observed for each

The first stage (leftmost element of Fig. 1), shows the priming stage. The attention processes involved include: suppression of task irrelevant features, stimuli or locations, and imposing the selectivity of a location cue or of a fixation point. The selection of task model and success criteria must also be completed. Then, the stimulus can be presented (the second element of Fig. 1).

The third element of Fig. 1 represents the one-interval Discrimination Task as long as no location information is required for a response (i.e., correspondence, detection, recognition, categorization, classification). Detecting whether or not a particular object is present in an image seems to take about 150ms [34]. The object recognition models cited throughout this paper as examples of modern recognition theories fall squarely within this task. This kind of ‘yes-no’ response can be called ‘pop-out’ in visual search with the added condition that the speed of response is the same regardless of number of distracters [35]. The categorization task also seems to take the same amount of time [36,37]. Interestingly, the median time required for a single feed-forward pass through the visual system is about 150ms [38]. Thus, many conclude that a single feed-forward pass suffices for this visual task. This first feed-forward pass is shown in the figure emphasizing the feed-forward divergence of neural connections and thus stimulus elements are spatially ‘blurred’ progressively more in higher areas of the hierarchy.

To provide more detail about a stimulus, such as for a within-category identification task, additional processing time, 65ms or so, is needed [36,37]; this is represented by the fourth from the left element of Figure 1. If the highest levels of the hierarchy can provide the basic category of the stimulus, such as ‘bird’, where are the details that allow one to determine the type of bird? The sort of detail required would be size, color, shape, and so forth. These are clearly lower level visual features and thus they can only be found in earlier levels of the visual hierarchy. These can be accessed by looking at which feature neurons feed into those category neurons. One way to achieve this is to traverse the hierarchy downwards, beginning with the category neuron and moving downwards through the needed feature maps. This downward traversal is what requires the additional time observed. The extent of downward traversal is determined by the task, that is, the aspects of identification that are required. It is interesting to consider an additional impact of a partial downwards traversal. This traversal may be partial not only because of the task definition but also when full traversal is interrupted and not allowed to complete either because new stimuli enter the system before there is enough time for completion or not enough time is permitted due to other tasks. This results in the potential for localization errors and perhaps the well-known illusory conjunctions. These tasks will be termed Identification Tasks.

If additional localization is required for description or a motor task, (pointing, grasping, etc.), then the top-down traversal process must be allowed to sufficiently complete and additional time is required. These are the Discrimination Tasks, or simply, Localization Tasks. How much time? A lever press response seems to need 250-450ms in monkey [42]. During this task, the temporal pattern of attention modulation shows a distinct top-down pattern over a period of 35 - 350ms post-stimulus. The ‘attention dwell time’ needed for relevant objects to become available to influence behavior seems to be about 250ms [43]. Pointing to a target in humans seems to need anywhere from 230 to 360ms [44,45]. Still, none of these experiments cleanly separate visual processing time from motor processing time; as a result, these results can only provide an encouraging guide and further experimental work is needed. Still, it seems that behavior, i.e., an action relevant to the stimulus, requires some degree of localization. The location details are available only in the early layers of the visual processing hierarchy because that is where the finer spatial resolutions of neural representation can be found. As a result, the top-down traversal initiated for the Identification Task must reach these early layers as shown in Fig. 1 (second element from the right). Examples, including difficult cases of segmentation of motion-defined form, are in [10,11,12].

The Extended Discrimination Task includes two-or-more interval designs [26], visual search, odd-man-out, resolving illusory conjunctions, determining transparency, recognizing objects in cluttered scenes, any task requiring sequences of saccades or pursuit eye movements, and more, e.g., [32,35,46,47]. The rightmost element of Fig. 1 depicts the start of a second feed-forward pass to illustrate this. It is likely that several iterations of the entire process, feed-forward and feedback, may be required to solve difficult tasks.

1 This idea appeared first in Milner’s 1974 paper [39], was used in Fukushima’s 1988 attentive NeoCognitron [40], and appears in the 1997 Reverse Hierarchy Model of Ahissar & Hochstein [41]. Within the Selective Tuning model, it was first described in 1993 [8], with accompanying details and proofs in 1995 [9]. Only NeoCognitron and Selective Tuning provide realizations; otherwise, the two differ in all details.
The following sections relate each of these recognition stages to a specific binding process. These binding processes have been described elsewhere [48].

A. Convergence Binding

Convergence Binding achieves the Discrimination Task via hierarchical neural convergence, layer by layer, in order to determine the strongest responding neural representations at the highest layers of the processing hierarchy. The attention process involved is search for maximum response. This feed-forward traversal follows the task-modulated neural pathways through the ‘tuned’ visual processing hierarchy. This is consistent with previous views on this problem [49,50]. This type of binding will suffice only when stimulus elements that fall within the larger receptive fields are not too similar or otherwise interfere with the response of the neuron to its ideal tuning properties.

Convergence binding requires that the image, a) contains no more than one copy of a given feature each at different locations; b) contains no more than one object/event each at different locations; and, c) does not contain objects/events that are composed of multiple features and share at least one feature type. Previous proposals for the binding problem [33] have not dealt with such constraints on problem definition.

For a task where there is more than one stimulus in a sequence but where the information required of each stimulus can be extracted via Discrimination alone, the feed-forward pass can be repeated. In fact, ‘waves’ of stimuli continually flow through the system, but as each one passes through the full system, inspection of the results at the top of the hierarchy suffices. We denote this kind of process with the prefix “R-“. Thus a task such as RSVP (Rapid Serial Vision Presentation) is an example of R-Discrimination.

B. Full Recurrence Binding

Full Recurrence Binding achieves the Localization Task. If Convergence Binding is followed by a complete top-down traversal, attended stimuli in each feature map of the hierarchical representation can be localized. Recurrent traversals through the visual processing hierarchy ‘trace’ the pathways of neural activity that lead to the strongest responding neurons at the top of the hierarchy. The attention processes include top-down stimulus segmentation and localization and local max selection on the top-down traversal.

Full Recurrence Binding can determine the location and spatial extent of detected object/event for images that: a) contain more than one copy of a given feature each at different locations; b) contain more than one object/event each at different locations; and, c) contain objects/events that are composed of multiple features and share at least one feature. There is one more critical component of the top-down traversal, appearing on the figures as gray regions indicating areas of neural suppression or inhibition in the area surrounding the attended stimulus. This area is defined by the projection of the receptive field of the chosen neuron at the top. Inputs corresponding to the stimulus most closely matching the tuning characteristics of the neuron form the signal while the remainder of the input within that receptive field is noise. Any lateral connections are also considered as noise for this purpose. Thus, if it can be determined what those signal elements are, the remainder of the receptive field is suppressed, enhancing the overall signal-to-noise ratio for that neuron. This was first described in [4], the method for achieving it first described in [8] and fully detailed together with proofs of convergence and other properties in [9]. There is strong supporting evidence for an attentive suppressive surround [51]. Recent support for top-down selection has also appeared in a single-cell pre-frontal cortex study [52]. They show that in visual search tasks PFC is first to acquire the target, presumably as the strongest neural response. With human MEG evidence for recurrent processing responsible for the attentive suppressive surround [53], and the top-down timing of attentional effects throughout visual cortex [42], one can infer that a recurrent max-selection process begins in PFC.

Figure 1. Recognition, attention and binding tasks organized along time. This is an abstraction; the timings are not meant to be absolute. Rather, due to incomplete experimental evidence, they only provide coarse temporal relationships among tasks.
However, the top-down process is complicated by the fact that each neuron within any layer may receive input from more than one feature representation. How do the different representations contribute to the selection? Different features may have different roles. For example, there are differing representations for many different values of object velocity but an object can only exhibit one velocity. These different representations can be considered as mutually exclusive, so the top-down search process must select one, the strongest. On the other hand, there are features that cooperate, such as the features that make up a face (nose, eyes, etc.). These contribute to the face neuron and the top-down search process much select appropriate elements from each. There may be other roles as well. The key here is that each neuron may have a complex set of inputs, specific to its tuning properties, and the top-down traversal must be specific to each. This is accomplished by allowing the choices to be made locally, at each level, as if there were a localized saliency representation for each neuron [10]. There is no global representation of saliency required. Two variants on recurrence are now shown.

C. Partial Recurrence Binding

If the full recurrence binding process does not complete for any reason, this is called Partial Recurrence Binding. Partial recurrence binding can find the additional information needed to solve the Identification Task if it is represented in intermediate layers of the processing hierarchy. Also, coarse localization tasks can be solved (such as ‘in which quadrant is the stimulus?’). If this is not deployed directly due to task needs but is due to interruption, then this may result in illusory conjunctions. The attention process involved is top-down feature search guided by local max selection. A variety of different effects may be observed depending on when the top-down traversal the process is interrupted.

D. Iterative Recurrence Binding

Iterative Recurrence Binding is needed for R-Discrimination\(^1\) Tasks and other more complex scenarios (call this class Extended Discrimination). Iterative Recurrence Binding is defined as one of more Convergence Binding-Full Recurrence Binding cycles. The processing hierarchy may be tuned for the task before each traversal as appropriate. The iteration terminates when the task is satisfied. The attention mechanisms include sequences of convergence and recurrence binding, perhaps with task priming specific to each pass.

There are at least two types of iterative recurrence binding. The first is the more obvious one, namely, multiple attentional fixations are required for some task. The second permits different pathways to be invoked. Consider a motion stimulus; motion-defined form where a square of random elements rotates in a background of similar random elements. A rotating square is perceived even though there is no edge information present in the stimulus. After one cycle of full recurrence binding, the motion can be localized and the surround suppressed. The suppression changes the intermediate representation of the stimulus so that any edge neurons in the system now see edges that were not apparent because they were hidden in the noise. As a result, the motion is recognized and with an additional processing cycle the edges can be detected and bound with the motion [10,11].

V. Conclusion

A novel view of how attention, visual feature binding, and recognition are inter-related has been presented. It differs from any of those presented previously [33]. The greatest point of departure is that it provides a way to integrate binding with recognition tasks and with attention. The visual binding problem is decomposed into four kinds of processes each being tied to one of the classes of recognition behaviors defined by task and time course. We view this as a first version of this decomposition and much effort remains to complete it. In particular the Extended Discrimination Task is far too broad and requires refinement.

This view differs from conventional wisdom that considers both binding and recognition as monolithic tasks. The decomposition has the promise of dividing and conquering these problems, and the Selective Tuning strategy is proposed as the computational substrate for their solution. There are three ideas behind this solution: 1) top-down task directed priming before processing; 2) feed-forward traversal through the tuned visual processing hierarchy following the task-modulated neural pathways; 3) recurrent traversals through the visual processing hierarchy that ‘trace’ the pathways of neural activity from the strongest responding neurons at the top of the hierarchy to the input that caused the feed-forward traversal.

These three basic steps are used in combination, and repeated, as needed to solve a given visual task. In simulation with artificial and real images, the model exhibits good agreement with a wide variety of experimental observations. A more detailed version appears in [54].

REFERENCES
