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Abstract. Information fusion algorithms have been successful in many
vision tasks such as stereo, motion estimation, registration and robot
localization. Stereo and motion image analysis are intimately connected
and can provide complementary information to obtain robust estimates
of scene structure and motion. We present an information fusion based
approach for multi-camera and multi-body structure and motion that
combines bottom-up and top-down knowledge on scene structure and
motion. The only assumption we make is that all scene motion consists
of rigid motion. We present experimental results on synthetic and non-
synthetic data sets, demonstrating excellent performance compared to
binocular based state-of-the-art approaches for structure and motion.

1 Introduction

Multi-body and multi-camera structure and motion establishes the structure
and motion of a scene that consists of multiple moving rigid objects that are
observed from multiple views [1], [2]. Stereo vision analysis and image motion
analysis provide information with complementary uncertainties which can de-
pend on the motion of the camera platform, the scene structure and the spatio-
temporal baselines. There are four fundamental problems with the extractable
information from motion data or from stereo data [3]: (i) Image motion and
disparity, with an unknown camera translation, allow us to infer object range
only up to a scale ambiguity, since image motion and disparity depend on the
ratio of camera translation to object range. (ii) Image motion and disparity
tend towards zero near the focus of expansion (FOE). Since object range is in-
versely proportional to image motion and disparity, scene structure estimation is
ill-conditioned near the FOE. (iii) The more closely aligned the local image struc-
ture is with the epipolar directions – i.e., directions pointing towards the FOE
– the more ill-conditioned scene structure estimation becomes in those regions.
(iv) Whereas large spatio-temporal baselines give better depth estimates for dis-
tant objects, the greater disparity and occlusion makes such cameras unsuitable
for nearby objects. The severity of these problems is reversed when dealing with
small baselines. The spatio-temporal baselines might be defined with respect to
a monocular camera in motion –structure from motion–, a static stereo camera,
or some other combination of static and non-static cameras.
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A method for fusing the structure and motion estimates of different cameras
by preserving the accurate estimates and diminishing the effect of inaccurate
estimates is highly desirable. For example, whereas in one camera the optical
flow near the FOE might be poorly estimated, from another camera’s viewpoint
the optical flow of the same scene region might not be as ill-conditioned, since
the FOE will likely have changed. We present an information fusion based ap-
proach for dealing with all these problems in a unified framework. We model
the above mentioned errors as originating from ambiguities in the estimation
of stereo image correspondences and in the optical flow across all cameras. The
only assumption we make as to the scene motion is that we are dealing with
rigidly moving objects.

The rest of the paper is organized as follows. Section 2 presents some related
work. Section 3 introduces an approach for representing the motion and stereo
data from a network of cameras. Section 4 describes how to combine this data in
a single reference frame. Section 5 outlines a simple extension of the approach to
camera rigs with arbitrary intrinsic and extrinsic parameters. Section 6 presents
experimental results demonstrating the robustness of the approach. Section 7
concludes the paper.

2 Related Work

Richards [4] shows how the integration of changing disparity and object velocity
can solve many of the ambiguitites inherent in stereopsis and motion under
orthographic projection. Waxman [5] demonstrates the importance of the ratio
of the rate of change of disparity over disparity, by using this quantity to unify
stereo and motion analysis. As it is elaborated in [6], the importance of this
ratio has been demonstrated numerous other times. Hanna and Okamoto [3]
demonstrate how motion and stereo could be combined in a multi-camera system
for egomotion and scene structure estimation. Their work is further expanded
upon by Mandelbaum et al. [7]. Zhang and Kambhamettu [8] present a system
which integrates 3D scene flow and structure recovery in order to complement
the performance of each other, using a number of calibrated cameras. Singh
and Allen [9] employ the Best Linear Unbiased Estimator (BLUE) to fuse local
motion. Comaniciu [10], [11] developed a method for motion estimation under
multiple source models. Neumann et al. [12] present a method for establishing
a hierarchy of cameras based upon the stability and complexity of structure
and motion estimation. To the best of our knowledge, the work we present is
the first approach using information fusion for multi-camera and multi-body
structure and motion.

3 Fusing Multiple Cameras

Assume we have a multi-camera rig composed of N monocular cameras. A maxi-

mum of
(

N
2

)
camera pairs exist. The coordinate system of camera C0 is referred
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Fig. 1. (a) Diagram of a hypothetical nine camera rig. (b) A five camera rig mounted
on a mobile robotic platform. (c)A planar textured region we used in some of the
experiments for structure and motion estimation at a depth of 300cm. (d)The region
after a 20 degree rotation around the camera’s optical axis.

to as the basis coordinate system. By convention a vector’s superscript will de-
note the coordinate system with respect to which we are expressing the vector.
The camera rig is calibrated and therefore, for each pair of cameras Ci, Cj , we
know a rotation matrix Rij and translation vector Tij = (T x

ij , T
y
ij, T

z
ij)

T that de-
scribes the rotation and translation that aligns camera Ci’s coordinate axes with
camera Cj ’s coordinate axes. See Fig. 1(a),(b) for examples of camera rigs where
Rij = I (the identity matrix) ∀i, j. For each pixel p0 in camera C0, and for each
camera pair (Cj , Ci) such that i �= 0, j �= i, we can use a stereo correspondence
algorithm, such as [13], to obtain estimates of the pixels pj , pi in cameras Cj ,
Ci respectively, corresponding to pixel p0 in basis camera C0. Similarly, we can
obtain motion flow estimates for each pixel pj , pi in Cj , Ci.

With each such pair of image pixels pj , pi, we can associate a 6D vector
V(p0, Cj , Ci), containing the 3D coordinates XC0

1 = (XC0
1 , Y C0

1 , ZC0
1 ) of a point

P that is imaged by pj , pi in camera pair (Cj , Ci). We can also associate with
V(p0, Cj , Ci) a 3D vector uC0 corresponding to the 3D displacement vector of
P that was extracted using the camera pair (Cj , Ci). The displacement vector
might be due to camera movement, an independent motion of scene point P or a
combination of both. As we have indicated above, the superscript C0 in XC0

1 , uC0

indicates that the vectors are expressed with respect to the coordinate system
of C0. Let XC0

2 = (XC0
2 , Y C0

2 , ZC0
2 ) denote the coordinate of P with respect to

camera’s C0 coordinate system, obtained after an arbitrary camera rig or scene
motion. The context will always make it clear with respect to which camera pair
(Cj , Ci) we estimated XC0

1 , XC0
2 . We can then obtain the 3D motion estimate

uC0 for point P by uC0 = XC0
2 − XC0

1 . Then V(p0, Cj , Ci) � (XC0
1 ,uC0)T .

Given a small neighborhood Δp0 of pixels around a pixel p0 in C0 – we use 3×3
pixel neighborhoods in this paper –, the set

⋃
p∈Δp0

⋃N
j=0

⋃N
i=1,i>j V(p, Cj , Ci)

contains estimates of scene structure and motion over all camera pairs. If we
need to enforce a hard real-time constraint, we can select to process a subset of
the camera pairs. For each camera pair Cj , Ci and each pixel p0 in C0 that we
process, we assign the covariance matrix Cov(V(p0 , Cj , Ci)). In the next section
we will show how to estimate this covariance matrix and how to use it to assign a
weight of importance to each one of those vectors. We will also show how to use
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information fusion techniques to get a robust estimate of the true scene structure
and motion. Notice that in the above mentioned set, mainly due to occlusions,
V(p0, Cj , Ci) will not always contribute a vector for all p0, Cj , Ci.

4 Fusing the Camera Data

We need to model the uncertainty in each of the 6D vectors V(p0, Cj , Ci) in order
to obtain each vector’s 6 × 6 covariance matrix. These covariance matrices are
used by the BLUE estimator to obtain a reliable estimate of the scene structure
and motion. For example, an image pixel that is near the focus of expansion in
one monocular camera needs to assign a high uncertainty to its motion elements
and assign a 3D structure uncertainty that depends on the scene depth relative
to the camera pair used. From a different stereo camera’s point of view, these
uncertainties will differ. By combining bottom-up and top-down information
related to the scene uncertainty we obtain the noise model used by our BLUE
estimator. For notational simplicity, we initially assume a perspective projection
camera model where all cameras have the same focal length f , the aspect ratio
is 1, the skew is 0, and the principal point is set to (0,0). The camera set up
similar to Fig. 1(a),(b) where Rij = I and T z

ij = 0 ∀i, j. The extension to
arbitrary camera setups is presented in Section 5. Every pair of cameras (Cj , Ci)
can be viewed as a stereo camera with a focal length f , such that the projection
of a point XC0

1 = (XC0
1 , Y C0

1 , ZC0
1 ) in camera Ci is given by:

xr =
(XC0

1 − T x
0i) ∗ f

ZC0
1

, yr =
(Y C0

1 − T y
0i) ∗ f

ZC0
1

(1)

and the projection of the same point in camera Cj is:

xl =
(XC0

1 − T x
0j) ∗ f

ZC0
1

, yl =
(Y C0

1 − T y
0j) ∗ f

ZC0
1

. (2)

If | − T x
0j + T x

0i| ≥ | − T y
0j + T y

0i|, we have:

XC0
1 =

(−T x
0j + T x

0i)
2

(xr + xl)
xl − xr

+
T x

0j + T x
0i

2
(3)

Y C0
1 = (−T x

0j + T x
0i)

yr

xl − xr
+ T y

0i (4)

ZC0
1 =

(−T x
0j + T x

0i)f
xl − xr

. (5)

Conversely, if | − T x
0j + T x

0i| < | − T y
0j + T y

0i|, we have:

XC0
1 = (−T y

0j + T y
0i)

xr

yl − yr
+ T x

0i (6)

Y C0
1 =

(−T y
0j + T y

0i)
2

(yr + yl)
yl − yr

+
T y

0j + T y
0i

2
(7)

ZC0
1 =

(−T y
0j + T y

0i)f
yl − yr

. (8)
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Notice that in Eqs.(3)-(5) and Eqs.(6)-(8), yl and xl respectively, are not used.
This provides a simple approximation for XC0

1 when due to small errors (xl, yl),
(xr, yr) are not corresponding pixels. The corresponding image coordinates in
the next frame are given by (x′

l, y
′
l) = (xl, yl) + (vCj

x , v
Cj
y ), (x′

r , y
′
r) = (xr , yr) +

(vCi
x , vCi

y ) where (vCj
x , v

Cj
y ), (vCi

x , vCi
y ) denote the motion flow vectors in cameras

Cj , Ci respectively. We can use (x′
l, y

′
l),(x

′
r , y

′
r), in conjunction with Eqs.(3)-(8),

to estimate XC0
2 = (XC0

2 , Y C0
2 , ZC0

2 ) and calculate V(p0, Cj , Ci).
We now show how Eqs. (3)-(8) can be used to define a covariance matrix for

V(p0, Cj , Ci). We only describe the covariance matrix derivation for | − T x
0j +

T x
0i| ≥ | − T y

0j + T y
0i|, since the case | − T x

0j + T x
0i| < | − T y

0j + T y
0i| is similar. We

model the error in the correspondences of the image points as (xr + nxr , yr +
nyr), (xl + nxl

, yl + nyl
) where nxr ,nyr ,nxl

,nyl
are zero mean Gaussian random

variables. Their standard deviation can depend on how noisy the images are
and on prior knowledge regarding the accuracy of the correspondences –e.g., the
sample variance of the correspondences within Δp0 . In this paper we assume
a variance of 1

2 pixel for each of the four random variables. We also assume
that the random variables are independent. Furthermore, we notice that in Eqs.
(3)-(8) we can view XC0

1 , Y C0
1 , ZC0

1 as functions in terms of nxr ,nyr ,nxl
,nyl

. We
obtain first order Taylor expansions of XC0

1 , Y C0
1 , ZC0

1 and we use these Taylor
expansions to obtain variance/covariance measures for vector XC0

1 . It can be
shown that within first order:

V ar(XC0
1 ) ≈

((−T x
0j + T x

0i)x̂l)2

(x̂l − x̂r)4
V ar(xr) +

((T x
0j − T x

0i)x̂r)2

(x̂l − x̂r)4
V ar(xl) (9)

V ar(Y C0
1 ) ≈

(−T x
0j + T x

0i)
2

(x̂l − x̂r)2
V ar(yr) +

((−T x
0j + T x

0i)ŷr)2

(x̂l − x̂r)4
V ar(xr) +

((T x
0j − T x

0i)ŷr)2

(x̂l − x̂r)4
V ar(xl) (10)

V ar(ZC0
1 ) ≈

((−T x
0j + T x

0i)f)2

(x̂l − x̂r)4
V ar(xr) +

((T x
0j − T x

0i)f)2

(x̂l − x̂r)4
V ar(xl) (11)

where x̂l, x̂r, ŷl and ŷr are estimated using a trimmed mean estimator, with
the top and bottom, 25% of the samples being rejected before calculating the
mean. The samples used to estimate x̂l, x̂r, ŷl and ŷr are the pixels in Ci, Cj

corresponding to the neighborhood Δp0 in C0. For example, to estimate x̂r we
use the stereo matching algorithm to find the pixels in Ci that correspond to the
pixels Δp0 in C0, and then apply the trimmed mean estimator to get x̂r.
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Fig. 2. The covariance matrix encoding the uncertainties
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In order to obtain a covariance matrix for V(p0, Cj , Ci), we also need to
obtain an estimate of the variance of the elements of uC0 . We know that for
a physical point PCj that is moving with velocity SCj with respect to camera
Cj and its coordinate frame, we can decompose the velocity as SCj = −TCj −
ΩCj ×PCj where TCj = (T Cj

x , T
Cj
y , T

Cj
z )T and ΩCj = (ΩCj

x , Ω
Cj
y , Ω

Cj
z )T denote

the translational and angular velocity vectors of camera Cj that would cause the
same apparent motion of the particle PCj with respect to camera Cj ’s coordinate
frame. Then, the image velocity of the projection (xl, yl) of PCj in camera Cj is
given by (

v
Cj
x

v
Cj
y

)
= BCjΩCj + dCj ACjTCj (12)

where dCj is the inverse of the scene depth with respect to camera Cj ’s coordinate
system – it is estimated using Eqs.(3)-(8) and the current camera pair – and

BCj =

(
xlyl

f −(f + x2
l

f ) yl

(f + y2
l

f ) −xlyl

f −xl

)
ACj =

(
−f 0 xl

0 −f yl

)
. (13)

Similar conditions hold for camera Ci. We use Eq.(12) to model the noise sen-
sitivity of XC0

2 , as we did for XC0
1 in Eqs.(9)-(11). This allows us to weigh the

suitability of each camera for tracking a particular object. In the case of multi-
body structure and motion and due to the reasons mentioned in the introduction,
it is quite feasible to end up with degenerate situations of objects whose motion
estimation is ill-conditioned from a particular viewpoint. If we model TCj , ΩCj

as being corrupted by Gaussian noise, we can view XC0
2 as a function of nxr ,

nyr , nxl
, nyl

, nTCj , nΩCj , nTCi , nΩCi , where nTCj , nΩCj , nTCi , nΩCi denote
zero mean Gaussian noise vectors.

For each camera pair (Cj , Ci) and for each corresponding pixel pair pj , pi

in the two cameras, we obtain approximations for TCj , ΩCj , TCi , ΩCi – de-
noted T̂Cj , Ω̂Cj , T̂Ci , Ω̂Ci – and the variances of nTCj , nΩCj ,nTCi , nΩCi as
follows: For each local image region centered at pα, α ∈ {i, j}, or for each
image region containing pα and undergoing independent rigid motion – esti-
mated using any popular motion segmentation algorithm – we estimate T̂Cα ,
Ω̂Cα , the approximation of the camera’s translational and rotational velocity
that would lead to the motion flow observed in that particular image region
using camera pair (Cj , Ci). For each such image region, we use a least squares
pseudo-inverse based approach on a random subset of the estimated displace-
ment vectors to approximate the translational and rotational velocity. We re-
peat this approach a number of times and the mean of the results is used as
T̂Cα , Ω̂Cα and their variance provides an estimate for the variance used in
the noise model described above. If we take the partial derivatives of XC0

2 ,
Y C0

2 , ZC0
2 with respect to the above mentioned random variables and expand

around x̂l, x̂r, ŷl, ŷr, T̂Cj , Ω̂Cj , T̂Ci , Ω̂Ci we obtain the desired expressions
for V ar(XC0

2 ), V ar(Y C0
2 ) and V ar(ZC0

2 ). In the appendix we list the derived
expressions for these variances. The above mentioned variances are referred to
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as the “top-down” information. Note that in our experiments, when modeling
V ar(WC0

2 − WC0
1 ), we make the assumption of independence between WC0

1 and
WC0

2 for all W ∈ {X, Y, Z}. Notice that V ar(XC0
2 ), V ar(Y C0

2 ) and V ar(ZC0
2 ) are

calculated using the derivatives of velocities v
Cj
x , v

Cj
y and might have very differ-

ent magnitudes from V ar(XC0
1 ), V ar(Y C0

1 ), V ar(ZC0
1 ). To guarantee the numer-

ical stability of the covariance matrices, we perform two simple modifications to
the top-down variances. We first set an upper bound maxvar to each of the vari-
ances by setting V ar(WC0

1 ) ← min (V ar(WC0
1 ), maxvar), V ar(WC0

2 − WC0
1 ) ←

min (V ar(WC0
2 − WC0

1 ), maxvar). Secondly, for each W ∈ {X, Y, Z} and each
pixel in C0, we scale the variances V ar(WC0

2 ) acquired across all camera pairs by
aW � c · min(

⋃
allpairs V ar(WC0

1 ))/ min(
⋃

allpairs V ar(WC0
2 )) for some constant

c (we set c = 2 in our experiments).
For each pair (Cj , Ci), we also estimate the sample variances V ar(XC0

1 ),
V ar(Y C0

1 ), V ar(ZC0
1 ), V ar(XC0

2 −XC0
1 ), V ar(Y C0

2 −Y C0
1 ) and V ar(ZC0

2 −ZC0
1 )

by using the samples in
⋃

p∈Δp0
V(p, Cj , Ci) and using the mean of the vectors

in
⋃

p∈Δp0

⋃N
j=0

⋃N
i=1,i>j V(p, Cj , Ci) as the sample mean. We refer to these

sample variances as the “bottom-up” information. We define the final covariance
matrix corresponding to each vector V(p0, Cj , Ci) as a linear combination of
their corresponding top-down and bottom-up variances. For each point p0 in
camera C0 and by using the two cameras Cj ,Ci for depth estimation, we use
the set

⋃
p∈Δp0

V(p, Cj , Ci) in conjunction with the variances defined above, to
model the covariance matrix of V(p0, Cj , Ci) as given by Fig.2, where 0 ≤ a ≤ 1.

Assume we have n vectors Vi(1),j(1),...,Vi(n),j(n), where for each k ∈ {1, ..., n},
Vi(k),j(k) is the average of all the vectors in

⋃
p∈Δp0

V(p, Cj(k) , Ci(k)). Also with
each of the vectors Vi(k),j(k) we associate a covariance matrix Nk indicating our
confidence in this measure, as described in this section. If we ignore any potential
cross-correlation between the n vectors, the Best Linear Unbiased Estimator
(BLUE) [9] is the vector X that minimizes the sum of the Mahalanobis distances∑n

k=1 D(X,Vi(k),j(k) ,Nk). It can be shown that XT = (VT
i(1),j(1)N

−1
1 + ... +

VT
i(n),j(n)N

−1
n )(N−1

1 + ... +N−1
n )−1. In the next section we extend our approach

to camera rigs with arbitrary intrinsic and extrinsic parameters.

5 Arbitrary Camera Rig Setup

Let us suppose that for a camera pair (Cj , Ci) with intrinsic camera parameters
(Kj ,Ki) and for pixels pj = (xl, yl)T , pi = (xr, yr)T imaging a common scene
point P = (XC0

1 , Y C0
1 , ZC0

1 )T , the following equations hold:

(
xl

yl

)
=

⎛
⎜⎝

K1,1
j (R1,1

j,0 (XC0
1 −T x

0,j))+K1,2
j (R1,2

j,0 (Y C0
1 −T y

0,j))+K1,3
j (R1,3

j,0 (ZC0
1 −T z

0,j))

K3,3
j (R3,3

j,0 (ZC0
1 −T z

0,j))
K2,1

j (R2,1
j,0 (XC0

1 −T x
0,j))+K2,2

j (R2,2
j,0 (Y C0

1 −T y
0,j))+K2,3

j (R2,3
j,0 (ZC0

1 −T z
0,j))

K3,3
j (R3,3

j,0 (ZC0
1 −T z

0,j))

⎞
⎟⎠ (14)
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(
xr

yr

)
=

⎛
⎜⎝

K1,1
i (R1,1

i,0 (XC0
1 −T x

0,i))+K1,2
i (R1,2

i,0 (Y C0
1 −T y

0,i))+K1,3
i (R1,3

i,0 (ZC0
1 −T z

0,i))

K3,3
i (R3,3

i,0 (ZC0
1 −T z

0,i))
K2,1

i (R2,1
i,0 (XC0

1 −T x
0,i))+K2,2

i (R2,2
i,0 (Y C0

1 −T y
0,i))+K2,3

i (R2,3
i,0 (ZC0

1 −T z
0,i))

K3,3
i (R3,3

i,0 (ZC0
1 −T z

0,i))

⎞
⎟⎠ (15)

where Km,n
j /Rm,n

j,0 denote the m, nth entry of Kj/Rj0. As we did in Eqs.(3)-(8),
if | − T x

0j + T x
0i| ≥ | − T y

0j + T y
0i|, we can express XC0

1 in terms of xl, xr, yr.
Conversely, if | − T x

0j + T x
0i| < | − T y

0j + T y
0i| we can express XC0

1 in terms of yl,
yr, xr Thus, we can define a function g(pj ,pi) � XC0

1 with respect to camera
C0’s coordinate system. By using g(·) and the approach described in Section
4, we can obtain the desired variance approximations. We also need to redefine
Eqs.(12)-(13) in order to obtain variance estimates for the motion error. We will
only deal with the case of camera Cj , as the case of camera Ci is similar. As
indicated in Section 4, SCj = −TCj − ΩCj × PCj . Then:
(

v
Cj
x

v
Cj
y

)
=

d

dt

(
K1,1

j
XCj

ZCj
+ K1,2

j
YCj

ZCj
+ K1,3

j

K2,2
j

YCj

ZCj
+ K2,3

j

)
=

(
K1,1

j
d
dt

XCj

ZCj
+ K1,2

j
d
dt

YCj

ZCj

K2,2
j

d
dt

YCj

ZCj

)

(16)
assuming K2,1

j = 0, K3,3
j = 1. The derivatives are taken with respect to time

t, and by using the expression for SCj we can express Eq.(16) in terms of TCj

and ΩCj . Then the variance derivation proceeds as described in Section 4. The
derivatives can be determined analytically, or via common numerical methods
such as finite differences.

6 Experiments

We present our camera setup and results in Figs. 1, 3, 4. We test our approach
on a number of synthetic and non-synthetic datasets. Synthetic dataset (i) con-
sists of a 30cm × 30cm planar surface on a black background (Fig. 1(c),(d))
centered at camera C0, moving in depth, along the optical axis, by 15cm per
frame. Synthetic dataset (ii) consists of the planar surface, rotated by 4 degrees
around the optical axis between each frame. Syntethic dataset (iii) consists of
a (2cm, 2cm) translation of the planar surface, parallel to the image plane, be-
tween each frame. The camera setup is similar to that of Fig. 1(a). All cameras
Ci, i > 0 are radially distributed around camera C0 at a radius of 12cm, have a
focal length of 4mm, and have corrupting Gaussian noise added to their images.
We fuse all (C0, Ci) camera pairs and demonstrate the performance of the algo-
rithm with an increasing object range from 300cm to 800cm by setting a = 0.5
in Fig.2. The stereo correspondence and optical flow algorithm used is described
in [13] and is available by the authors online1. Our results are illustrated in
Fig. 3(a)-(f). We also test our algorithm using a five camera rig, as shown in
Fig. 1(b). The corresponding results are presented in Fig. 4(a)-(h). In the syn-
thetic data set we used the entire planar surface to estimate each TCα , ΩCα

1 http://www.cs.umd.edu/users/ogale/download/code.html
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Fig. 3. (a)-(f):The results of our tests on the synthetic dataset. The x-axes represent
the depth of the object in cm, and the y-axes represent the RMS error of the stereo
reconstructed coordinates and the 3D motion vector (in cm). The RMS error for a
particular camera pair is calculated by estimating the error across all pixels in the base
camera C0 that fall within the textured region. The solid/dashed lines correspond to
the errors of our information fusion based approach using the BLUE/mean estimator,
and the boxplots represent the distribution of the errors across each of the camera pairs
used. The red crosses represent outliers. Note that in some figures the outliers are not
displayed as they fall outside the vertical range of our error axes. (a),(b) correspond
to the stereo reconstruction and 3D motion error respectively, when the planar object
was translated by 15cm in depth along the optical axis. (c),(d) correspond to the stereo
reconstruction and 3D motion error respectively, when the planar object was rotated
by 4 degrees around the optical axis between frames. (e),(f) correspond to the stereo
reconstruction and 3D motion error respectively when the translation occured parallel
to the image plane. The object was translated by 2cm along the x and y axes of the
world coordinate system. Notice how, even though gross outliers exist in most of the
figures, the effect of those outliers on the estimated scene structure and motion is
minimal in general. We also performed a number of experiments with modest errors
in the external parameters’ calibration and similar observations were made. The mean
RMS error of the stereo reconstruction using the information fusion/mean approach
for all instances of the reconstructed planar surface is 2.05 ± 1.71/3.71 ± 3.87 cm
respectively. The respective values for the motion data are 2.35 ± 1.43/2.56 ± 1.41
cm. In both cases the improvement compared to the mean approach is statistically
significant using a paired-samples t-test (p ≈ 0.01).
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Fig. 4. (a)-(h):Experimental results from an image sequence showing a robotic wheel-
chair that is equipped with a 6-d.o.f. robotic arm. The robotic arm is moving diago-
nally towards the top left image corner. (a)-(b): Adjacent frames from the respective
sequence (before correcting for radial/tangential distortions). (c): The reconstructed
scene depth using a single pair of cameras to reconstruct each scene. Image regions in
black denote pixels where the left-right consistency constraint could not be enforced.
(d): The reconstructed scene depth of frames (a),(b) using the five camera rig setup
shown in Fig. 1 in conjunction with our information fusion based algorithm. The col-
orbar depths of (c),(d) represent mm. Notice the significant decrease in occlusions.
(e)-(f): Image motion of the sequence after projecting the estimated 3D motion on
the image plane using a single camera pair in conjunction with our information fusion
based algorithm. Image motion is represented in pixel units. (g)-(h): Image motion of
the respective image sequences after using the five camera rig setup shown in Fig. 1 in
conjunction with our information fusion based algorithm. (e),(g): The image motion
component parallel to the horizontal axis and (f),(h): The image motion component
parallel to the vertical axis.

(simulating perfect motion segmentation) and in the non-synthetic data set we
used 21 × 21 pixel regions centered at the current pixel of interest.

From Fig. 3, we observe that the multi-camera approach provides a significant
decrease of the RMS error in both structure and motion estimation compared to
the errors achieved using the stereo camera pairs. In almost all cases the qual-
ity of the results surpasses that obtained by any one of the camera pairs. As
indicated in the caption of Fig. 3 the BLUE estimator provides better results
than the results obtained by the mean vector across all cameras and their neigh-
borhoods. For both the structure and motion data the improvement is judged
statistically significant. In Fig. 3(a),(b) where the plane is moving along the
z-axis and we are dealing with ill-conditioned motion estimation near the focus
of expansion, we observe significant improvements. In Fig. 3(c)-(d) we present
results after a pure rotation of the plane around the optical axis. It is interesting
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to notice however, that for depths 700cm, 800cm the optical flow estimation
algorithm we used performs poorly on about half of our camera pairs, thus,
resulting in a big RMS error, as the boxplots show. Our algorithm is capable
of ignoring the erroneous data and gives us a relatively robust estimate of the
3D motion. This indicates that if we are using a multi-camera rig with cameras
that break down quite often and provide gross outliers, our algorithm remains
reliable. We observe that the mean estimator is severely affected by outliers at
various depths, while the information fusion based algorithm is more robust in
the presence of outliers.

In Fig. 4(a)-(h) we compare the performance of our algorithm using a two
camera rig versus a five camera rig (Fig. 1(b)). The five camera rig consists of
two Point Grey Research Bumblebee stereo cameras and a Point Grey Research
Flea camera. The coordinate system of the Flea camera is used as our basis
coordinate system and represents camera C0. The two camera rig is represented
using the Flea camera and one of the four Bumblebee monocular cameras. The
robotic wheelchair presented in Fig. 3 is equipped with a 6-d.o.f. robotic arm
providing a number of independent rigid motions to test our algorithm. We used
the algorithm described in [13] to determine the correspondences. We notice a
dramatic increase in the number of pixels satisfying the left-right consistency
constraint as the number of cameras in our rig increases.

7 Conclusion

We presented an algorithm for multi-camera and multi-body structure and mo-
tion. The algorithm combines top-down and bottom-up knowledge on scene
structure and motion to model the respective uncertainties. An information
fusion based algorithm uses these uncertainties to obtain competitive results
demonstrating that our algorithm performs robustly in situations where a num-
ber of camera pairs provide severely degraded results. Such situations arise in
practice due to hardware failures and poor environmental conditions. We are
currently investigating the use of other information fusion algorithms for solving
this problem [10]. Some potential application areas in future research are dy-
namic scene interpretation, vision based simultaneous localization and mapping
(SLAM) and dynamic rendering.
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Appendix

In this section we derive expressions for V ar(XC0
2 ), V ar(Y C0

2 ), V ar(ZC0
2 )

for the case | − T x
0j + T x

0i| ≥ | − T y
0j + T y

0i|. From Eqs.(9)-(11) we can
derive the corresponding expressions for V ar(XC0

2 ), V ar(Y C0
2 ), V ar(ZC0

2 ):

V ar(XC0
2 ) ≈ ((−T x

0j+T x
0i)x̂

′
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2
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r)4 V ar(x′
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l). We have previously noted that

(x′
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′
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y ), (x′

l, y
′
l) = (xl, yl)+(vCj
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Cj
y ). If we let a ∈ {x, y},

b ∈ {r, l} and k = i/j if b = r/l we obtain the following approximations
for V ar(x′

r), V ar(x′
l), V ar(y′
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∂T
Ck
a

)2V ar(T Ck
a ) + ( ∂a′

b

∂T
Ck
z

)2V ar(T Ck
z ). By using Eqs. (12)-(13) we can derive

the expressions for the partial derivatives. By expanding these expressions for
the partial derivatives around x̂l, x̂r, ŷl, ŷr, T̂Ci , Ω̂Ci , T̂Cj , Ω̂Cj , as appropriate,
we can obtain the desired expressions.
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