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Abstract. The increasing number of industrial or scientific applications of
Autonomous Underwater Vehicles (AUV) raises the challenging question
on how to derive the vehicle’s localization accurate enough for the mission
success.
This paper details an approach to accurate localization based on EKF (Ex-
tended Kalman Filtering) SLAM (Simultanously Localization and Map-
ping) with pure 3D stereo data, which consists of three major stages.
Stage one is, in terms of EKF, the so called prediction stage. During
this stage the algorithm predicts the vehicle’s localization using the visual
odometry, which is known to be noisy and to provide drift in position and
orientation (pose). The uncertainty of the odometry data is modeled with
the covariance matrix.
Stage two is the state augmentation step. In this phase, the current odometry
estimation is added at the end of the state vector of the EKF. The uncertainty
accumulated over time makes the resulting predicted state non reliable.
The last Stage (update) tries to reduce this error by finding visual Loop
Closings. Loop Closings are areas of the environment which the robot al-
ready observed in the past. Loop Closings are important because they pro-
vide the system with new and often more reliable information, what is a
second transformation of an already observed one. With the difference of
these two transformations the approach is able to update the whole state
vector to a one with less error by using Extended Kalman Filtering equa-
tions.
During the three steps of the filter, all the data concerning the robot pose
(odometry and filter estimation) are expressed as (x, y, z) for translation
and a quaternion (qw, q1, q2, q3) for orientation.
In this work, a pure stereo system is used to compute the visual odometry
in 3D and to find the visual loop closings. A Kalman update is performed
if the algorithm is able to find a Loop Closing between an image associated
to a position stored in the state vector with the current image, that is, if both
images present a certain level of overlapping.
To calculate the motion of the camera between two positions which are sus-
pected to be a loop closing, first SIFT [Lowe 2004] features or SURF [Bay
et al. 2008] features of both images are computed. Then, applying the prin-
ciple of the stereoscopy, the 3D points corresponding to the image features
matched between the current stereo pair are calculated. Afterwards, the Per-
spective N-Point (PNP) is solved between the 3D points computed from the
current stereo pair and the 2D features of the candidate image to close a
loop. The transformation between both views is computed by minimizing
the error of reprojecting all the 3d points onto the 2d features of the can-
didate image. The difference between this transformation and the transfor-
mation obtained by composing the successive positions between both views
stored in the state vector is fundamental to correct the whole state vector.
Thanks to the robust Loop Closing detection, as shown in the experiments,
the presented approach provides an improvement of the vehicle’s localiza-
tion.
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1. INTRODUCTION

1.1 Problem Statement

In the last years, technological advances made easier the accessibil-
ity of the sub-aquatic world for research, exploration and industry
exploitation. Nowadays Remotely Operated Vehicles (ROVs) are
used in a wide range of applications, such as maintenance, res-
cue operations, surveying, infrastructure inspection and sampling.
Some of ROVs limitations, such as limited operative range and the
need of support vessels, are overcome by Autonomous Underwa-
ter Vehicles (AUVs). These kinds of vehicles are used in highly
repetitive, long or hazardous missions. Moreover, since they are
untethered and self-powered, they are also significantly indepen-
dent from support ships and weather conditions. This, in compar-
ison to ROVs, can reduce considerably the missions costs, human
resources and execution time.
One of the most challenging points in research associated to un-
derwater vehicles is the one of localization. There are several pos-
sibilities to estimate the vehicle’s pose, for instance, using inertial
sensors, or by computing the odometry with acoustic sensors or
cameras. Another possibility is sensor fusion, which means com-
bining inertial sensors and odometers, in extended Kalman filtering
(EKF) or particle filters, to correct errors within the trajectory [Lee
et al. 2004], [Kinsey et al. 2006].
The most successful approach to perform a reliable localization is
called SLAM [Durrant-Whyte and Bailey 2006]. SLAM (Simulta-
neous Localization And Mapping) computes the position of the ve-
hicle simultaneously to the calculation and refinement of the posi-
tion of landmarks of the environment.
In the past, underwater SLAM was mainly developed by using
acoustic sensors. These sensors provide good underwater proper-
ties, such as large sensing ranges[Ribas et al. 2007]. The problem
with acoustic sensors is the spatial and temporal resolution, which
is lower than using cameras. This higher resolution permits cam-
eras to provide more environmental data than the data provided by
a sonar.
But using cameras also has some disadvantages, which are briefly
stated next. A video camera system, as mounted on an AUV, is
dependent on light and visibility. Poor illumination conditions or
turbid water (particles in the water) make the information obtained
by the camera corrupt. Only the application of certain filtering tech-
niques can solve this problem.
However, the higher spatial and temporal resolution of cameras,
the usage of quaternions to avoid singularities and the existence of
few solutions of pose-based ekf stereo slam [Eustice et al. 2008],
are the main reasons to justify this visual approach. Another reason
is to have the possibility to compare 3D EKF SLAM with Graph
SLAM, [Thrun 2006] or [Olson et al. 2006].
Accordingly, this paper proposes a vision based approach with a
stereo camera system to perform underwater pose based visual
EKF-SLAM. The first approximation to estimate the pose of an un-
derwater vehicle, using a camera system, is using the visual odom-
etry. However, odometric methods are prone to drift and it is neces-
sary to periodically correct this estimation. Extended Kalman Fil-
tering is a technique extendedly used to perform such a correction.
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Future states of the vehicle are predicted by modeling properly the
vehicle motion, and predictions are refined and corrected by using
detected visual loop closings as a set of environmental measure-
ments. As shown in the approach of [Burguera et al. 2014] EKF is
a good choice to perform visual SLAM.

1.2 Related Work

In natural sub-aquatic scenarios visual SLAM has to deal with diffi-
culties not present onshore. For instance low light conditions, flick-
ering, scattering, particles, and the difficult task to find reliable and
robust features in a non-man made environment.
The key to perform underwater visual EKF-SLAM is to detect re-
liable loop closings. They have to be detected robustly under dif-
ferent influences, such as changing light conditions and variation
of the viewpoint. In the context of visual SLAM, this procedure is
called Image Registration and the task is to recognize scenes the
robot already observed in the past, by finding images that have cer-
tain overlapping, and moreover to calculate the relative camera dis-
placement between both viewpoints.
Literature about stereo SLAM solutions for underwater robotic sys-
tems is scarce. The available literature deals mainly with EKF-
SLAM [Matsebe et al. 2008] by correcting the odometry with the
results of the image registration. Such systems include newly ob-
served landmarks into the state vector. The advantage of such sys-
tems is the continuous correction of the robot pose and landmarks
in the whole state vector. The disadvantage is the increasing com-
plexity as the state vector gets bigger. After a certain amount of
iterations an on-line usage is no longer possible.
In [Schattschneider et al. 2011] the system set-up was quite sim-
ilar. In this work, a stereo camera system was used for ship hull
inspection. 3D landmarks obtained by the stereo camera were used
to detect loop closings, besides the state vector contains the vehicle
poses and the landmarks, [Matsebe et al. 2008].
Another approach for underwater SLAM is presented in [Salvi et al.
2008]. The authors build the state vector by using the pose and the
velocity of the vehicle using a Doppler Velocity Log (DVL), and
the 3D pose is computed by the installed stereo image system. Fur-
thermore, the filter update is performed by using image registration
and comparing all 3D landmarks stored in the state vector with new
ones.
Providing the current vehicle pose, its linear velocity, acceleration
and the angular rate to the state vector is proposed in [Eustice
et al. 2008]. The landmarks are not saved in the state vector, what
decreases the computational resources in comparison to other ap-
proaches. But the usage of image registration at every iteration to
update the state vector still has a high computational cost and takes
the major running time.
A different point of view to solve the localization problem is to
use graph-optimization or bundle adjustment. In these approaches
each vehicle pose and sometimes the position of the landmarks
are added as a node to a graph. Subsequent nodes are linked by
edges, which usually represent the distance between consecutive
poses. Loop closings generate additional nodes and edges, apart
from those obtained by the visual odometry. After a new loop clos-
ing is added to the graph, global optimization of the whole graph
is computed by applying Levenberg-Marquardt algorithm, to im-
prove the distance between all nodes by minimizing the quadratic
error [Beall et al. 2011]. SLAM using graph-optimization is also
known as Graph-SLAM.
A benefit of Graph-SLAM is the lack of linearization errors, as
given by EKF-SLAM. But on the other hand, graphs grow hugely
with the trajectory what effects the computational resources dra-

Fig. 1: 3D Transformation. Source: ”EulerG” by DF Malan - Own
work. Licensed under Public domain via Wikimedia Commons
(21.07.2014)

matically.
This study presents a vision based approach to stereo EKF pose-
based slam for AUVs, with the vehicle orientation represented as
a quaternion. Explained in more detail in chapter 4, the EKF esti-
mates continuously the pose of the vehicle by applying three steps.
The first two steps are the prediction and the state augmentation
steps. The prediction step predicts the vehicles future pose by com-
posing the current vehicle pose with the current odometry. The state
vector, which stores all vehicle poses, is augmented by the current
prediction in the state augmentation step. In the third step all pre-
dictions are corrected in the update phase of the Kalman filter using
as observations the detected loop closings [Schattschneider et al.
2011].
The prediction of the vehicle motion is obtained from a stereo vi-
sual odometer and predictions are updated using the transforma-
tions obtained from a set of visual loop closings computed using an
approximation of the PNP problem from 3D to 2D.
The paper is structured as follows: the next Section presents the
necessary mathematical background of 3D transformations to es-
timate robot movements in 3D; Section 3 explains the image reg-
istration to detect loop closings; Section 4 explains the design and
the structure of Extended Kalman Filtering to perform SLAM; Sec-
tion 5 discusses the results obtained by a real underwater dataset
recorded in a pool located in the University of the Balearic Islands
(UIB); Section 6 concludes the paper and gives some outlines of
the forthcoming work.

2. 3D TRANSFORMATIONS

One of the key targets of this work is to model the classical trans-
formations, composition (⊕) and inversion (	), for robots with 6
DOF and derive the Jacobian matrices of each transformation.
Both operations define a transformation in translation and rotation.
The ⊕ permits to add a transformation to a current pose , and 	
permits to invert a current pose transformation. Defining both oper-
ations in pure 3D will permit us to predict the vehicle motion model
and to run the Kalman updates [Matsebe et al. 2008], [Smith et al.
1988].
This approach is close to [Burguera et al. 2014], but with a ma-
jor difference. Since [Burguera et al. 2014] uses 2.5D, what means
2D given by the dead-reckoning for x, y and z is given by an al-
timeter, in this paper the proposal will be a full 3D Transforma-
tion model, which takes all its information from the stereo camera
system. The basic 3D Transformation assumes 3 degrees of free-
dom (DOF) for translation, x, y, z and another 3 DOF for rotation
φ, θ, ψ (roll, pitch, yaw). The rotation is illustrated in Figure 1 and
it can be seen easily, that it is not commutative.
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2.1 Composition

Adding a relative displacement, for instance given by odometry
(observation), to an absolute pose can be done using the Transfor-
mation Composition. Where the relative displacement describes the
relative motion from the previous state to the current, whereas the
absolute pose state describes the absolute motion from the origin to
the current pose.
The presented approach corresponds to a full three dimensional
composition and it is different than [Burguera et al. 2014], where
the depth was calculated externally.
In more detail: Let X be the absolute pose state and Y the newly
observed, relative transformation, both defined as shown in Equa-
tion 1.

X =



xX

yX

zX

qXw
qX1
qX2
qX3


, Y =



xY

yY

zY

qYw
qY1
qY2
qY3


(1)

A pose state, for instance X , consists of seven variables. The
first three to express the position in xX , yX , zX the last four
express the orientation in 3D in form as a unit-quaternion with
q̂ = [qXw , q

X
1 , q

X
2 , q

X
3 ].

Quaternions were conceived by Sir William Rowan Hamilton in
1843 and they provide a strong algebra for rotation [Vince 2011].
Advantages of using quaternions instead of Euler angles are the
lack of gimbal lock and the ability of good interpolation [Vince
2011]. Furthermore, from the implementation point of view they
are more space efficient: a quaternion can be stored in four float val-
ues, whereas a classical rotation matrix needs at least nine. For fur-
ther reading on quaternions refer to: [Opower 2002] and [Kuipers
2002].
To cover the necessary algebra of quaternions needed to under-
stand this work, I will give a short overview of the used oper-
ations. First the multiplication of quaternions will be described.
This operation is important when angles of two quaternions are
accumulated. Although the angles are summed up, the quater-
nions have to be multiplied. Let r = [rw, r1, r2, r3]T be the
first and s = [sw, s1, s2, s3]T the second quaternion to be mul-
tiplied. Equation 2 shows Multiplication of r with s, with its result
t = [tw, t1, t2, t3]T .

t =

twt1t2
t3

 =

 rw · sw − r1 · s1 − r2 · s2 − r3 · s3rw · s1 + r1 · s0 − r2 · s2 + r3 · s2
rw · s2 + r1 · s3 + r2 · s2 − r3 · s1
rw · s3 − r1 · s2 + r2 · s2 + r3 · s0

 (2)

Secondly, the quaternions need to be normalized if they are used
to express orientations. An orientation is represented by a unit-
quaternion, which is a quaternion with a magnitude equal to one
[Vince 2011]. Equation 3 shows the calculation of the quaternion
magnitude.

|q| =
√
q2w · q21 · q22 · q23 (3)

The normalization is done by dividing each element of the quater-
nion by |q|, as given in Equation 4. The resulting quaternion is il-
lustrated as q̂.

q̂ =
q

|q|
(4)

In order to simplify the treatment of the robot orientation and
facilitate the operations with successive orientations, quaternions
were converted into rotation matrices. The advantage of using ro-
tation matrices are: faster computation, because of the absence of
trigonometric functions, which are normally used to express rota-
tion matrices [Vince 2011]. The final 3D rotation matrix derived
from a quaternion q is shown in Equation 17.
The inverse of a quaternion is calculated as shown in Equation 5.
This will be used to calculate the inverse angle during the Transfor-
mation Inversion.

q−1 = [qw,−q1,−q2,−q3] (5)

This notation illustrates that all elements of the quaternion except
the scalar qw, will be multiplied by −1.

The Transformation Composition is commonly represented
by means of the operator ⊕, as shown in Equation 6.

X+ = X ⊕ Y (6)

The composition of poseX with pose Y reflects their accumulation
taking into account position and orientation. The resulting pose is
X+.
To perform such a computation, first, theA-matrix (Equation 17) is
calculated with the quaternion of the absolute state X and is mul-
tiplied by the translation component of Y . The result is afterwards
added to the translation of X , as shown in Equation 7. So far only
the translation of the transformation composition is handled, what
is indicated by the sub-index t.

Xt
+ = X ⊕t Y =

x
X

yX

zX

1

+AX ·

x
Y

yY

zY

1

 (7)

Second, accumulation of both rotations by multiplying the quater-
nions of X and Y (q̂Y ), to express the rotation of the transforma-
tion composition. This part of the overall result is indexed by r, as
shown in Equation 8.

Xr
+ = X ⊕r Y = q̂X · q̂Y (8)

Where q̂X and q̂Y represent the normalized quaternions of X and
Y . After the multiplication it is not necessary to normalize again,
because the multiplication is not influencing the length of the re-
sulting quaternion.
The final Transformation Composition, including translation and
rotation, can be written as shown in Equation 9.

X+ = X ⊕ Y =

[
Xt

+

Xr
+

]
(9)

Although the quaternion is transformed into a rotation matrix, the
composed state has the same structure as before, with x, y, z for
position and a pure unit-quaternion q̂ to express the orientation.
Recapitulating Section 1.1, in this scenario also the state itself pro-
vides some uncertainties, which are given by the linealized struc-
ture of the EKF.
The robot transformation as used in this work, is non-linear, so it
is not possible to compute the covariance directly [Burguera 2009].
However, it is common to approximate the covariance by lineariz-
ing the non-linear transformation function X+ using the Jacobian
∇X+ and the Taylor Series of 1st order.
The Jacobian is defined in general as follows, Equation 10.

∇f =
∂f

∂x
|x̂ (10)



4 • M. Solbach

In the context of this work, the Transformation Composition can be
seen as the function f , then it would have two arguments f(x, y),
respectively the absolute current pose and the isometric displace-
ment. In this context, two Jacobian matrices are derived, one with
respect to the first and the other with respect to the second argu-
ment. The two Jacobian matrices for the Transformation Compo-
sition J1⊕ and J2⊕ are presented in Equation 16 and Equation 18.
For further details about Jacobian matrices, refer to [Hildebrandt
2007].
Short Summary: After the Transformation Composition has been
calculated and its Jacobian matrices are derived, now it is possible
to compute the corresponding Covariance C of X+.
The covariance of the composition is calculated using Equation
11, as presented for instance in [Siciliano and Oussama 2008] and
[Choset et al. 2005].

C+ = J1⊕ · CX · JT
1⊕ + J2⊕ · CY · JT

2⊕ (11)

Where CX and CY are the corresponding covariances to the pose
states X and Y .

2.2 Inversion

The Transformation Composition together with the Transformation
Inversion allows to calculate the relative motion between two ab-
solute poses of the robot. This will be used during the update stage
of the Extended Kalman Filter. The Transformation Inversion gives
the inverse of a given pose. This operation is commonly represented
by means of the operator 	.
In general, a pose transformation can be represented as a matrix,
where the upper left part is occupied by the rotation matrix A de-
scribed in Equation 17 and the last column contains the translation
in x, y, z. See Equations 12 and 13.
It is necessary to take care of the different areas of the transforma-
tion matrix A and t, as shown in 12.

(~n ~o ~a ~p

A t
0 0 0 1

)
(12)

Due to A is a rotation matrix, inverting or building the transpose
has the same result. But to invert the translation t, it is necessary
to calculate the dot product between t and each column of A. The
result of this procedures is shown in Equation 13.

(
A t

0 0 0 1

)−1
=

 −~n ◦ ~p
AT −~o ◦ ~p

−~a ◦ ~p
0 0 0 1

 (13)

Where ◦ describes the dot product operator.
The final 	 operation looks like:

	X =

−~n ◦ ~p−~o ◦ ~p
−~a ◦ ~p
q−1

 (14)

Where q−1 is the inverse quaternion of qX , what expresses basi-
cally the same orientation as AT .
To derive the Covariance of the Transformation Inversion, it is nec-
essary to compute the Jacobian matrix as also done for the Trans-
formation Composition before. This time the function f has only
one argument, this means one Jacobian matrix J	 is obtained. This

Jacobian matrix looks as shown in Equation 19. With the Jacobian
matrix the Covariance C− is computed as shown in Equation 15.

C− = J	 · CX · JT
	 (15)

3. IMAGE REGISTRATION

After the mathematical background of pose Transformation with
six degrees of freedom was described in Section 2, this Section
describes the image registration Algorithm used specifically for
the stereo SLAM approach presented in this work. The result of the
image registration procedure indicates the camera motion between
the two poses at which the two images that overlap were taken.
This result is of vital importance to update the motion predictions
based on the odometry. Without this, the obtained trajectory will
be exactly the same as the odometry, including the drift. And the
task is to eliminate the drift.

Fig. 2: Fugu-C Robot as used in this study

One iteration of the EKF receives a relative motion, given by the
odometry, and a stereo image pair, given by the stereo camera
system.
The Pseudocode shown in Algorithm 1 describes
the main steps of the image registration process.

Algorithm 1: Image Registration
input : Current Stereo Image pair Sl, Sr and Recorded

Images In
output: 3D Transformation [R, t]
begin

[Fl, Fr]← stereoMatching (Sl, Sr);1
for Ii ∈ In do2
Ft ← findFeature (Ii);3
if match (Fl, Ft) == true then4

break;5
else

continue;6

[Fl, Fr]← updateFeature (Fl, Fr);7
P3D ← calc3DPoints (Fl, Fr);8
[R, t]← solvePnPRansac (Ft, P3D)9

end

The input of the Algorithm is the current stereo image pair Sl, Sr

and all already recorded left images of the stereo sequence In.
In this Pseudocode the Algorithm only registers one image at the
same time, in the final implementation the Algorithm is able to
register user-defined number of images, if possible. An example is
shown in Figure 3.
Line 1 performs a stereo matching between Sl and Sr , the result is
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J1⊕ =



1 0 0 2 · qX2 · zY − 2 · qX3 · yY 2 · qX2 · yY + 2 · qX3 · zY 2 · qX1 · yY − 4 · qX2 · xY + 2 · qXw · zY 2 · qX1 · zY − 2 · qXw · yY − 4 · qX3 · xY
0 1 0 2 · qX3 · xY − 2 · qX1 · zY 2 · qX2 · xY − 4 · qX1 · yY − 2 · qXw · zY 2 · qX1 · xY + 2 · qX3 · zY 2 · qXw · xY − 4 · qX3 · yY + 2 · qX2 · zY
0 0 1 2 · qX1 · yY − 2 · qX2 · xY 2 · qX3 · xY + 2 · qXw · yY − 4 · qX1 · zY 2 · qX3 · yY − 2 · qXw · xY − 4 · qX2 · zY 2 · qX1 · xY + 2 · qX2 · yY
0 0 0 qYw −qY1 −qY2 −qY3
0 0 0 qY1 qYw qY3 −qY2
0 0 0 qY2 −qY3 qYw qY1
0 0 0 qY3 qY2 −qY1 qYw


(16)

A =

 −2 · q22 − 2 · q23 + 1 2 · q1 · q2 − 2 · q3 · qw 2 · q1 · q3 + 2 · q2 · qw 0
2 · q1 · q2 + 2 · q3 · qw −2 · q21 − 2 · q23 + 1 2 · q2 · q3 − 2 · q1 · qw 0
2 · q1 · q3 − 2 · q2 · qw 2 · q2 · q3 + 2 · q1 · qw −2 · q21 − 2 · q22 + 1 0

0 0 0 1

 (17)

J2⊕ =



−2 · qX2 qX2 − 2 · qX3 qX3 + 1 2 · qX1 · qX2 − 2 · qX3 · qXw 2 · qX1 · qX3 + 2 · qX2 · qXw 0 0 0 0
2 · qX1 · qX2 + 2 · qX3 · qXw −2 · qX1 · qX1 − 2 · qX3 · qX3 + 1 2 · qX2 · qX3 − 2 · qX1 · qXw 0 0 0 0
2 · qX1 · qX3 − 2 · qX2 · qXw 2 · qX2 · qX3 + 2 · qX1 · qXw −2 · qX1 · qX1 − 2 · qX2 · qX2 + 1 0 0 0 0

0 0 0 qXw −qX1 −qX2 −qX3
0 0 0 qX1 qXw −qX3 qX2
0 0 0 qX2 qX3 qXw −qX1
0 0 0 qX3 −qX2 qX1 qXw


(18)

J	 =



2 · qX2 · qX2 + 2 · qX3 · qX3 − 1 −2 · qX1 · qX2 − 2 · qX3 · qXw 2 · qX2 · qXw − 2 · qX1 · qX3 2 · zX · qX2 − 2 · yX · qX3 −2 · yX · qX2 − 2 · zX · qX3 4 · xX · qX2 − 2 · yX · qX1 + 2 · zX · qXw 4 · xX · qX3 − 2 · yX · qXw − 2 · zX · qX1
2 · qX3 · qXw − 2 · qX1 · qX2 2 · qX1 · qX1 + 2 · qX3 · qX3 − 1 −2 · qX2 · qX3 − 2 · qX1 · qXw 2 · xX · qX3 − 2 · zX · qX1 4 · yX · qX1 − 2 · xX · qX2 − 2 · zX · qXw −2 · xX · qX1 − 2 · zX · qX3 2 · xX · qXw + 4 · yX · qX3 − 2 · zX · qX2
−2 · qX1 · qX3 − 2 · qX2 · qXw 2 · qX1 · qXw − 2 · qX2 · qX3 2 · qX1 · qX1 + 2 · qX2 · qX2 − 1 2 · yX · qX1 − 2 · xX · qX2 2 · yX · qXw − 2 · xX · qX3 + 4 · zX · qX1 4 · zX · qX2 − 2 · yX · qX3 − 2 · xX · qXw −2 · xX · qX1 − 2 · yX · qX2

0 0 0 −1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


(19)

shown in Figure 3. This function consists of three steps.
(1) First it extracts SIFT features in both images, as presented
in [Lowe 2004]. The results are two sets of SIFT features sift1
and sift2. (2) Second, the feature sets are matched. This is done
by comparing the squared differences of each 128 dimensional
features descriptor of sift1 with sift2. If the similarity reaches a
certain threshold two features are matched. From this process two
new sets are obtained, in particular siftCo1 and siftCo2. The
extension Co indicates that these two sets are corresponding to
each other now.
The result up to this point can be seen in Figure 3 (a). It is easy
to see that, although the matching process is quite accurate, still
some wrong matches remain. Such wrong matches are called
outliers. A common approach to get rid of outliers is to run a
RANSAC-Algorithm as presented in [Fischler and Bolles 1981].
Such an Algorithm filters the outliers and is performed as the last
and (3) third step of the stereo matching.
Line 2 starts the loop over all images recorded from the beginning
of the trajectory to the current pose. In. It will be stopped after In
does not contain any more images i or if the following steps are
successful.
Line 3 is similar to (1) the first step of Line 1, it basically detects
SIFT features in the given image Ii and stores this features set into
Ft.
Line 4 performs a matching between Fl and Ft. Again, this is
also used during the stereoMatching function in steps (2) and (3)
of line 1. Due to the comparison of the SIFT descriptors simi-
lar/corresponding features in both sets are able to be found. The
result is again filtered by RANSAC to discard outliers. If a certain

Fig. 3: Stereo matching without (a) and with RANSAC (b). The
outliers are discarded during the RANSAC process providing a re-
liable matching result.

amount of inliers is reached, the Algorithm will exit the loop (Line
5) and will go to Line 7, otherwise the next loop-iteration with the
next Element of In is executed (Line 6). The threshold to evaluate
a matching as successful is basically given by the used function
solvePnPRansac. It has been seen that this function provides
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reliable results with a minimum of 17 matches.
Line 7 can been seen as a small function with a big effect. It
simply updates the feature set Fr to be in line with Fl again. In the
previous loop it is highly feasible that the matching between Fl

and Ft (Line 4) will discard some features from Fl. This has the
consequence that features from Fl and Fr do not match pairwise
anymore, what is important for the ongoing steps of the image
registration Algorithm. Without this update solvePnPRansac is not
reliable. More information about solvePnPRansac will be given
within the explanation of Line 9.
Line 8 calculates 3D points from the matching features between
Fl and Fr . As given in [Siciliano and Oussama 2008] using the
principle of stereoscopy the missing depth dimension (Z) of the
feature can be calculated from the feature coordinates x, y using
the reprojection matrix Q, as shown in Equation 20.

Q =


1 0 0 −Cx

0 1 0 −Cy

0 0 0 fx
0 0 − 1

Tx

(Cx−Cx′ )
Tx

 (20)

Where Cx and Cy describe the optical center, fx is the focal length
and Tx is the relative translation of one camera to the other. Tx

is computed as the baseline times fx for the right camera and for
the left camera Tx is 0. The primed parameters are taken from the
intrinsic camera parameters of the left camera, the unprimed from
the right.

(x1, y1) from Fl and (x2, y2) from Fr are the coordinates of two
matching features, one on the left image and the other on the right
image, with the disparity d = x1 − x2. With this information the
3D coordinates can be calculated as follows (Equation 21):XYZ

W

 = Q · 1

xyd
1

 (21)

This procedure is applied for each pair of matching features in Fr

and Fl, so n 3D points are obtained, if n features were stored in Fr

and Fl, respectively. It is important that Fr and Fl have the same
order and number of elements. The result is stored in P3D .
Line 9 solves the Perspective N-Point problem (PNP) with addi-
tional use of RANSAC to make the function resistant to outliers.
The function estimates with specification of the PNP problem a
pose transformation that minimizes the reprojection error of a given
set of 3D features onto a set of corresponding 2D features. Beside
the 3D and 2D features, the intrinsic camera matrix K is necessary
(Equation 22). K can be obtained during a calibration process as
given in [Opower 2002].

K =

fx s Cx

0 fy Cy

0 0 1

 (22)

Where fx, fy are the focal length again, s the skew-parameter and
Cx and Cy describe the optical center. The result of Line 9 is a
pose transformation that minimizes the error of reprojecting the 3D
points obtained from the current stereo pair and calculated in line 8
onto the 2D features of the image I candidate to close a loop with
the current view calculated in line 3. The PNP-problem is widely
discussed and can be found in literature formulated in multiple so-
lutions. This technique is applied in a wide range of applications
such as object recognition, structure from motion (sfm) and others
[Bujnak et al. 2011] [Mei 2012]. The result is a 3D transforma-
tion [R, t] that transforms Sl, by using rotation and translation, into

the loop closing image Ii, if both images have a certain overlap.
Elsewhere, if the overlap is not big enough the image registration
process fails.
The solvePnPRansac function in the evaluation implementation
was taken from the computer vision library OpenCV.
A sample of the final result of the whole image registration process
can be seen in Figure 4. The image on the left shows the left frame
of a stereo pair Sl and the image in the middle shows the loop clos-
ing candidate Ii recorded during one experiment in a pool of the
University of the Balearic Islands. On the right, the result of apply-
ing the transformation given by the image registration on Sr can be
seen. The purple color indicates the error, which are areas in which
both images do not perfectly fit.

Fig. 4: Left: Sl; middle: loop closing image Ii. On the right: the
transformation of the image registration applied to Sl. The purple
color indicates the error of the transformation.

4. VISUAL EKF-SLAM

This work performs Simultanous Localization and Mapping
(SLAM) based on Extended Kalman Filtering (EKF). EKF be-
longs to the family of Bayesian filters which estimate the state of a
non-linear system with normally distributed gaussian noise [Welch
and Bishop 1995]. In principle, the EKF estimates continuously
the pose of the vehicle by applying three steps. The prediction
and the state augmentation steps where the current vector state is
augmented with the current odometry measurement and the vehicle
future pose is predicted by composing the current vehicle pose
with the current odometry. Afterwards, predictions are corrected
in the update phase of the Kalman filter using as observations the
detected loop closings [Schattschneider et al. 2011].
The Pseudocode shown in Algorithm 2 describes the
main steps of the pose based visual EKF-SLAM process.
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Algorithm 2: Visual EKF-SLAM
input : X , C, O, Co, Sl, Sr , Cm In
output: Updated state vector Xu, covariance Cu and recorded

Images Iu
begin

; /* Prediction stage */1
Xt ← getLastState (X) ;2
Ct ← getLastCovariance (C) ;3

[X+
t , C

+
t ]← composition (Xt, Ct, O, Co) ;4

; /* Augmentation stage */5

X+ ← addState (X , X+
t );6

C+ ← addCovariance (C, C+
t );7

; /* Update stage */8
z← imageRegistration (Sl, Sr , In);9
if imageRegistration == false then10

return;11
else

[h,H]← calcHkK (X+, z) ;12
y← innovation (h, z) ;13
S ← innovationCov (C+, H , Cm) ;14
K ← C+ ·HT · S−1 ;15
Xu ←X+ +K · yk ;16
Cu ← (1−K ·H) · C+ ;17

Iu ← In
⋃
Sl;18

end

The Algorithm has as input the current state vectorX .X is formed
by the vehicle pose state (x, y, z, qw, q1, q2, q3) estimated at each
iteration. It is initially set to [0, 0, 0, 1, 0, 0, 0], what represents the
robot pose at position (0, 0, 0) with an orientation of 0 degrees at
every axis. The second parameter C is the global covariance of the
EKF, which is initially also set to a 7 × 7 zero-matrix. The next
argument is for predicting the robot motion and is the odometry
O, which is the displacement of the robot between two given
successive points. Associated to O a covariance Co is received,
the uncertainty of the odometry. Sl and Sr are already known to
be a stereo image pair, which will be used for the update stage, as
well as the set of recorded images Iu. To express the uncertainty
of a measurement, in this case the image registration, another
covariance Cm is introduced.
The output of the Algorithm is, if one or several loop closings
are found, an updated (corrected) state vector Xu, as well as an
updated covariance matrix Cu and the set of images In is now
extended by Sl and is named Iu. Xu is used in the next iteration as
the input X .
Every time the Algorithm is executed, the size of X and C grows.
How this is done will be briefly explained now. X is the so
called state vector, which is storing robot pose states as shown
in Equation 1. After n− executions X looks like as shown in
Equation 23.

X =

[
x1 y1 z1 q1w q11 q12 q13︸ ︷︷ ︸

vehicle pose at 1st iteration

· · · xn yn zn qnw qn1 qn2 qn3︸ ︷︷ ︸
vehicle pose at nth iteration

]T
(23)

It is easy to see that as new states are just added at the end of the
vector, and after n-executions the length of the vector is n · 7.
C is build quite similarly. At every iteration, the new obtained co-
varianceC+

t of the predicted motion is added on the diagonal ofC,
this will cause after n-iteration a covariance dimension of 7·n×7·n,

as can be seen in Equation 24.

C =





σ1
11 0 0 0 0 0 0
0 σ1

22 0 0 0 0 0
0 0 σ1

33 0 0 0 0
0 0 0 σ1

44 0 0 0
0 0 0 0 σ1

55 0 0
0 0 0 0 0 σ1

66 0
0 0 0 0 0 0 σ1

77


A B

C
. . . D

E F



σn
11 0 0 0 0 0 0
0 σn

22 0 0 0 0 0
0 0 σn

33 0 0 0 0
0 0 0 σn

44 0 0 0
0 0 0 0 σn

55 0 0
0 0 0 0 0 σn

66 0
0 0 0 0 0 0 σn

77





(24)

Where the matrix in the upper left corner (σ1
11, σ1

22, ...) is the co-
variance matrix of the first iteration and the matrix in the bottom
right corner (σn

11, σn
22, ...) is C+

t .
Besides this A,B,C,D,E,F are computed in another way. An
element of the last row of C, which has also the size 7 × 7, is the
result of the multiplication of the current Jacobian J1⊕ by its an-
tecessor. Analogically for the last column, whereas the antecessor
is multiplied by the transposed J1⊕. This means in a mathematical
notation, E is derived as shown in Equation 25.

E = J1⊕ ·C (25)

An element of the last column, for instance B is calculated as
shown in 26.

B = A · JT
1⊕ (26)

Where A and C are covariances from the previous iteration calcu-
lated with the same scheme as as shown in Equation 25 and 26.
This procedure can be found in numerous EKF-literature as in
[Welch and Bishop 1995], [Thrun et al. 2005], [Schattschneider
et al. 2011]. It is quite important to introduce the last row/column
computations, otherwise EKF would only update certain states,
which belong to loop closings, and not the whole vector.

4.1 Prediction stage

The first stage of an EKF is the Prediction stage. In this stage the fil-
ter predicts the state by a given motion estimate of the odometry O
and the associated covariance Co. This process uses the Transfor-
mation Composition explained in chapter 2. The whole stage goes
from Line 2 to Line 4.
Line 2 extracts the last absolute pose of the state vector, since the
state vector is always storing absolute poses in this EKF implemen-
tation, and stores it in Xt. The last element can be obtained by just
taking the last 7 elements of X .
Line 3 is similar to Line 2, instead of extracting the last state, it
extracts the last covariance from C and stores it in Ct. The last
element is taken from the bottom right 7 × 7 matrix, which is for
instance in Equation 24 the illustrated element with σn

11, σn
22.

Line 4 performs the composition ⊕ between the last pose of the
vector state and the last odometry sample as explained in chapter
2. Provided to this function are the absolute state Xt, the relative
motion O and to each the associated covariances. In Section 2 Xt

was introduced as X and O as Y in Equation 1. The result of the
composition is a new absolute state X+

t , and a new corresponding
covariance C+

t .

4.2 Augmentation stage

The second stage in this EKF implementation is called the Augmen-
tation stage. Every time a new image of the stereo camera system is
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available, the state is augmented by the current X+
t . As illustrated

by Equation 23 and 24X andC will grow, this is done in this stage,
by augmenting them with the results of the Prediction stage. The
augmentation stage includes Line 6 and 7.
Line 6 augments the state vector X by putting the predicted pose
state X+

t at the end. The result is a new vector X+, with 7 new
elements.
Line 7 augments C with C+

t at the bottom right. The resulting C+

has now the size of 7 · (n+ 1)× 7 · (n+ 1).

4.3 Update stage

The last main stage of the EKF is the Update stage. In the context
of this work the update depends on the success of the image regis-
tration. If the Algorithm does not find any loop closing, the process
will be interrupted and the system will wait for the next iteration.
This stage is the main part of EKF. If the image registration is suc-
cessful, the Kalman Equations are executed andX+ gets corrected.
The loop closing process is already described in Section 3. The fol-
lowing Figure 5 shows the interpretation of the result z, which is a
relative motion between the current state and the loop closing can-
didate.

X0 X1 X2 · · · Xk−3

Xk−2Xk−1Xk

z2k

Fig. 5: Illustration of a loop closing (dashed arrow) and the current
state vector (black arrows).

X0, X1, ... are elements of the state vector which represent the
successive absolute poses of the vehicle along its trajectory, that is
why this approach is posed based EKF-SLAM. After k iterations
the image registration was able to detect a loop closing by register-
ing the current image with the stored image of state X2. The result
is a relative motion from Xk to X2 and is called z2k. With z2k it
is possible to run the remaining Kalman Equations and update the
robot-localization, what is described now in more detail. The up-
date stage ranges from Line 9 to Line 18.
Line 9 performs the image registration with all recorded images In
and the current stereo image pair Sl and Sr . If the registration was
successful, what means that, at least, one loop closing was found,
Line 10 will be evaluated to be false. Otherwise the Algorithm will
go to Line 11 and return without updating the state vector.
Line 12 calculates based on z the corresponding relative motions of
the state vector. Remember z was computed without any influences
of the state, it is a pure product of the image registration process.
For each image registered with the current one giving a transfor-
mation called measurement (zk), it is possible to associate an ob-
servation calculated with the corresponding elements of the state
vector. For the example of Figure 5, the calculation of the Kalman
observation function h is shown in the following Equation 27.

h = 	Xk ⊕X2 (27)

In the sense of EKF, h is known as the observation function and
it grows with the number of detected loop closings. If the image
registration has found four loop closings, h will have the length of

28, which can be seen in Equation 28 as a set of loop closings. h
denotes how the loop closings are expected to be according to the
state vector and z denotes how they actual are. The EKF corrects
the state vector by trying to change the state vector according to the
actual loop closings.

h =


h1

h2

...
hn

 (28)

Where n in this example would be 4. Besides the observation func-
tion, the observation matrixH is also calculated. This matrix has as
many rows as loop closings have been found (times 7) and columns
as many states are stored inX+ (times 7).H stores basically the re-
sult of the following Jacobian matrix. What are actually the partial
derivatives of the observation function h with respect to the state
vector X+, which is defined as follows in Equation 29.

H =
∂h

∂X+

∣∣∣∣
X̂+

(29)

All elements of H , which are not referring to the states used to
calculate the relative motions, as given in 27, will be zero. For in-
stance, if one loop closing between Xk and X2 is found, it means
that H will have the size of 7 · 1× 7 · k and the partial derivatives
will be only non-zero at the positions which correspond to the state
2 and k. The resulting H is shown in Equation 30.

H =
[
0 ∂h1

∂X2 0 . . . 0 ∂h1

∂Xk

]
(30)

If more loop closings have been found, for instance with state X3,
H would consists of one more row and the structure will be as
shown in Equation 31.

H =

[
0 ∂h1

∂X2 0 . . . 0 ∂h1

∂Xk

0 0 ∂h2

∂X3 . . . 0 ∂h2

∂Xk

]
(31)

Line 13 calculates the innovation y of the EKF. It describes the dis-
crepancy between the observation function h and the measurement
function z, thus so how good or bad the observation is in compar-
ison to the measurement. In case the estimation of h is bad, the
innovation gets big, is the estimation good, y gets small. Thus the
update will be big or small and can be seen proportional to the size
of y. Taking all this into account the discrepancy is often described
by a pure subtraction of y = z − h. The innovation of the posi-
tion holds these criteria by using a pure subtraction. For example,
if the stored translation from z and h are quite different, the re-
sulting innovation of the position is big. But since quaternions are
used to describe the orientation of a state, a pure subtraction is not
providing a correct innovation of the orientation. Different looking
quaternions can express a similar orientation. One example is given
in Equation 32.

qz = [0.9964,−0.0109, 0.0145, 0.0830]

qh = [−0.9964,−0.0183, 0.0011,−0.0833]1 (32)

This example shows the orientation for qz with pitch = 1.55◦, roll
= −1.38◦ and yaw = 9.5046◦. For qh with pitch = 0.04◦, roll
= 2.09◦ and yaw = 9.5543◦. A pure subtraction would provide a
big innovation, as can been seen in 33.

yq = qz − qh = [1.99274, 0.007344, 0.013427, 0.166257] (33)
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A big innovation in this case is not right, because the angles are
quite similar. One way is to interpret the quaternions as Euler an-
gles, perform the subtraction with them and go back to a quater-
nion. But this leads to the next problem. As shown in this example
the resulting rotations in euler angles are small, but expressed as
a quaternion yq , the magnitudes are big. This is due to the defini-
tion of quaternions. Does it express big angles, for example 180◦,
they are mapped to a value around 0. Small angles around 0◦ are
mapped to a value near to 1. So exactly the opposite how the EKF-
innovation is defined.
In this study, the innovation of the orientation is performed by tak-
ing the absolute values of the quaternion before subtracting, as pre-
sented in Equation 34.

yq = |qz| − |qh| (34)

The given example from before would provide the result as shown
in Equation 35.

yq = [0.0000,−0.0073, 0.0134,−0.0003] (35)

It is easy to see, that the values of the innovation of the orientation
are small. This means, that the update is small, what is correct,
because the observation is similar to the measurement.
The innovation of the position is done by a pure subtraction, as
already mentioned, and is expressed as given in Equation 36.

yp =

xXyX
zX

−
xYyY
zY

 (36)

If everything is put together, the final innovation of the update
stage, as used in this work, is formulated as follows (Equation 37):

y =

[
yp
yq

]
(37)

Line 14 computes the innovation covariance S. This matrix is com-
puted straightforward as already presented in other EKF-Literatur,
such like [Matsebe et al. 2008] [Thrun et al. 2005] [Siciliano and
Oussama 2008] and [Welch and Bishop 1995]. The Equation is
given in 38.

S = H · C ·HT +R (38)

The big covariance matrix C and the observation matrix H have
been detailed in previous sections. Now, it is necessary to introduce
the measurement covariance R, which is used to compute S. This
matrix is build with respect to the number of loop closings, which
can be obtained by the number of rows of H divided by 7, and the
uncertainty of the image registration Cm. For each loop closing R
keeps one entry of Cm on its diagonal. The structure of the matrix,
if three loop closings were found, can be seen in Equation 39.

S =

Cm 0 0
0 Cm 0
0 0 Cm

 (39)

Line 15 calculates the Kalman Gain, what represents the strength
of the update or how much the state vector will be changed. One
slight change, due to computation improvement, has been done by
dealing with the inverse of S. In many implementations K is cal-
culated with the inverse of S. What is, especially after some iter-
ations, a huge computational effort and can lead to less accuracy.
Instead of multiplying by the inverse, in this implementation, K is
computed by a matrix right division (Equation 40).

K = (C+ ·HT )/S (40)

Line 16 finally updates the state vector by taking all information
together. In this implementation this is done like in common EKF-
Algorithms and the Equation is given in 41.

Xu = X+ +K · y (41)

Line 17 updates the covariance matrix C. The Equation is given in
42.

Cu = (1−K ·H) · C+ (42)

Where 1 represents an identity matrix of the size of the product
K ·H .
Line 18 stores the new image Sl to Iu to use this image during
upcoming iterations as a loop closing candidate. This process is
performed every time a new state is added to the state vector, this is
due to the fact, that to each state the corresponding image is needed.
Another important note is, that the state vector X is not storing the
images contrarily other implementations.

5. RESULTS

After the visual EKF-SLAM approach has been explained, in this
chapter the results will be presented.
The system used for the software evaluation is a laptop with an
Intel core i7 (2 × 2.9Ghz), 8GB RAM and a Solid State Drive,
running MATLAB R2013a on Ubuntu 12.04 with a single CPU
core. The robots mission was recorded using ROS (Robot Opera-
tion System), a widely used software framework for robot software
development. Thanks to the rosbag technology provided by ROS,
the mission can be reproduced offline viewing the images recorded
online. With this, it is possible to run the localization task offline
on a laptop using the data collected online.
The experiments were conducted with a robot called Fugu-C, as il-
lustrated in Figure 2. Fugu-C is developed by the University of the
Balearic Islands and is a low-cost mini-AUV. The robot provides
two stereo rigs, one down looking, the other one looking forward, a
MEMS-based Inertial Measurement Unit and a pressure sensor. For
these experiments the down looking camera system was used only.
The Camera used to perform the image registration is a Point Grey
Bumblebee 2 with a resolution of 1032 × 776 pixel and a baseline
of 12 cm. The video sequences were recorded in a water tank lo-
cated in the UIB. The tank is 7 meters long, 4 meters wide and 1.5
meters deep. The bottom is covered with a repeating image pattern
of a real seabed. To obtain the ground truth, each image recorded
online was registered to the whole printed image, which is known.
The odometry to feed this SLAM approach was obtained with LIB-
VISO2 (Library for Visual Odometry 2) [Geiger et al. 2011]. This
is a fast, reliable and cross-platform library to compute the motion
of a moving mono/stereo camera and was already used in several
other publications of this working group.
The mission of this experiment is a sweeping task. During the mis-
sion, the robot is gathering images from the down looking stereo
image system and the other sensors are not used. From successive
stereo pairs of the rig, LIBVISO2 calculates the odometry, which is
used later to run the algorithm off-line to enhance the localization.
In order to assess the performance of the SLAM approach
with different levels of error and drift in the visual odome-
try, the results of the LIBVISO2 were corrupted with different
levels of noise. In total six noise levels were tested 20 times
to obtain significant statistical results. The noise used is addi-
tive zero mean Gaussian and the noise covariance ranges from
[Σx,Σy,Σz,Σqw,Σq1,Σq2,Σq3] = [0, 0, 0, 0, 0, 0, 0] (noise level



10 • M. Solbach

Noise Level 1 2 3 4 5 6
Covariance 0 3e-9 9e-9 3e-8 5e-7 3e-6

Odom. error ∅ 0.038 0.417 0.494 0.806 2.614 6.898
EKF error ∅ 0.027 0.282 0.285 0.309 0.590 0.953
Improv. (%) 28.9 32.3 42.3 61.6 77.4 86.1

Table I. : Comparison between visual odometry and EKF-SLAM
trajectory mean error (∅) with respect to the ground truth. Error is
measured in meters per traveled meter.

1) to [Σx,Σy,Σz,Σqw,Σq1,Σq2,Σq3] = [3e − 6, 3e − 6, 3e −
6, 3e − 6, 3e − 6, 3e − 6, 3e − 6] (noise level 6). The error func-
tion used is as follows. In order to have a quantitative measure of
the quality of the SLAM estimates, we defined the trajectory error
as the difference between the ground truth and the corresponding
estimate given by the odometry and by the EKF, divided by the
length of the trajectory. Calculated like this, the obtained error units
are meters per traveled meter. The advantage of this technique is a
comparable result of the different experiments and future missions.

5.1 Quantitative Results

Table I shows that the presented EKF-SLAM approach improves
the robot pose estimates compared with the odometry estimates,
since the mean of the trajectory errors with respect to the ground
truth are clearly smaller. In the first example, where actually no
noise is used, the improvement is 28.1%. Although the odometry
is quite good, with an mean error of 0.038m, EKF-SLAM was able
to improve it to 0.027m. When the noise level added to the odom-
etry increases, the correction given by the EKF-SLAM is more ev-
idently reflected in the percentage of improvement. The odometry
gets more corrupted and provides a mean error of 0.806m with a
noise level of 4. In this scenario it is significant that the error of
EKF-SLAM is increasing only slightly, for example from level two
to four just about 0.027m. This observation can also be seen in
the next higher noise levels. Even in the highest level, where the
odometry provides an error of 6.898m and can be considered use-
less for localization, the EKF-SLAM approach is able to update the
trajectory successfully. This is off course reflected in the amount of
improvement, which is 86%.
It can be seen in Figure 6 that the odometry trajectory mean error
raises very fast by applying a noise level from three and higher, but
the trajectory mean error by EKF-SLAM increases only slowly.
The computational effort of this algorithm implemented in MAT-
LAB is quite big without any further improvement. If the image
registration is performed at the half of the frame rate, the runtime is
in average 8.4min, in comparison to 4.3min, what the total mis-
sion time of the 23.42m long sweeping task is. But if the key-
frame separation is increased the algorithm runs much faster, as
can be seen in Table II. This is a possible technique to improve the
run-time, because the update Equations are executed at lower fre-
quency. Especially the calculation of Cu (Pseudocode 2 Line 17)
takes a long time because with each iteration Cu grows.
But increasing the key-frame separation has an evident disadvan-
tage: the update Kalman Equations are executed with a lower fre-
quency, which means that the localization system will rely on the
odometry during longer periods of time. For example, if the update
Equations are run every eight frames, the correction of the motion
estimated by the odometry will be run at a frequency equal to the
frame rate divided by eight.
This is influencing the error as well. Due to having less loop clos-
ings the error goes up. But even with a separation of four images,

Fig. 6: Comparison between state mean errors using raw odometry
and EKF pose estimates. y−axis shows the error per travelled meter
in meters. x−axis represents the different noise levels. The standard
deviation is set to 0.1σ to provide a clear representation.

Separation between frames 2 4 8

Run-Time (min) 8.4 4.3 2.3
error (m) 0.28 0.32 0.39

Table II. : Comparison run time of different key-frame separations
and error. Used noise level 2.

the system obtains good results and terminates within only 4.3min.
This results show, that it is already possible to run the code on-line
in real-time. If the separation level is set to eight, the run time can
be decreased to 2.3min. In this case the error is increasing an-
other 0.07m to 0.39m. Table II shows how by increasing the frame
separation at which the update step is executed, the running time
decreases, but also the mean trajectory error increases.

5.2 Qualitative Results

Besides the quantitative results, the qualitative results are also im-
portant. These results now show what the trajectory looks like, in
contrast to the number of error per meter.
As can be seen in Figure 7, the EKF-SLAM approach is able to
correct even huge errors given by the odometry. The ground truth
is plot in blue, the odometry in black and the EKF estimates in red.
All units in all of trajectories are expressed in meters.
Even if the noise level is very high and the odometry is far away
from the ground truth, EKF-SLAM corrects the trajectory satis-
factorily. The visual error as seen in the plots is increasing only
slightly. This leads to the conclusion that the given approach is ro-
bust against corrupted odometry with even a huge drift (noise level
six).
In Figure 8 a trajectory with a noise level of two is shown, with its
eight loop closings in magenta, which are used by EKF-SLAM to
update the localization. All experiments were using the same loop
closings, to make the results more comparable. Normally an EKF-
SLAM approach would use more loop closings (30 and more), but
even with only a few, the algorithm presented in this paper is able
to perform good results.
As already mentioned during the quantitative evaluation, it is pos-
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Fig. 7: Example results of the experiments. Starting from noise
level one and goes up to noise level six. The blue trajectory is the
ground truth, red is EKF and black is the pure visual odometry,
identically in all following Figures and units are expressed in me-
ters.

sible to decrease the execution time significantly by decreasing the
frequency at which the update stage is executed. By doing so, the
error of EKF-SLAM goes slightly up, but still the obtained local-
ization is much better than the pure odometry. In Figure 9 the result
of using an image separation of four is shown. It is easy to see that,
the result is almost as good as in Figure 8, although three loop clos-
ings were used instead of seven. The improvement of the execution
time is in average 48.8%.
The execution time can be improved even more by increasing the
frame separation to eight, as illustrated in Figure 10. With an im-
provement in average of 72.6% (2.3m).

6. CONCLUSION

This paper presents a pose based visual EKF-SLAM approach to
perform underwater localization. This work is mainly focused on
performing a pure stereo localization approach using variables

Fig. 8: Example result with a noise level of two. Additionally the
eight loop closings are plotted (magenta lines).

Fig. 9: Example results of the experiments. Using noise level two
and a image separation of two.

Fig. 10: Example results of the experiments. Using noise level three
and a image separation of eight.

with 6 DOF (x, y, z, roll, pitch, yaw) during the whole filtering
process, where the orientation is represented by quaternions.
Besides, the image registration is a crucial factor, providing the
Algorithm with the necessary robust measurements to perform
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the update stage. As seen in the results, the registration works
precise and reliable. Thanks to that, as seen in chapter 5, the
given approach improves satisfactorily the 3D underwater visual
odometry in a controlled underwater scenario. Furthermore, the
system is robust against highly corrupted odometry (improvement
of 86.1%). This improvement gets smaller the better the odometry
is, but still an odometry with no additional noise and a drift of just
0.038m was improved by 28.9% to an error of 0.027m.
The Algorithm can be further enhanced by adapting the measure-
ment and observation covariance matrices. This means to provide
the Algorithm with more correct uncertainties of the measurement
and the prediction. Only with this the Algorithm is able to work on
its optimum. For example, if the covariance of the measurement is
too big, the Algorithm will rely less on the measurement and more
on the prediction, even if the measurement is more reliable than
the prediction. These two matrices are the main parameters to tune
the Algorithm, which are highly dependent on the stereo camera
system used. In the future, the matrices will be improved to obtain
the best results of this system.
Further on, more tests should be done, especially to test the
system in the sea. The tests made in the pool, with a poster
as a relief, showed good results, off course a pool is not the
actual use case, but the environment gets quite close to the
real one. The ROS implementation will be done as a next
step and will be published on the working-group repository
to provide it to the whole scientific world. The current MAT-
LAB implementation with some test data is already published:
https://github.com/srv/6dof_stereo_ekf_slam.

Under the following links some videos of the results of the
sweeping experiments can be seen:

(1) http://youtu.be/zR4TKjrbG3M

(2) http://youtu.be/xV3_DtVneL8

(3) http://youtu.be/CmEuQ0dTUhU

The first link (1) shows an experiment with a key frame separation
of 2. This led to an execution time of 8.4m and an improvement
of 86.1%. This improvement was due to seven found loop clos-
ings in an odometry corrupted by noise level four. The second link
(2) shows the same experiment but with a less corrupted odometry
(noise level three). Due to doubling the key frame separation to 4,
the execution time was 4.3m. The improvement was 79.5% with
three loop closings detected. The third link (3) leads to the sweep-
ing task with a key frame separation of eight, what was decreasing
the execution time to 2.3m. The improvement with two loop clos-
ings was 72.8%.
To conclude, from the author’s point of view, the next steps have to
be (1) improvement of the covariance matrices and (2) tests in an
un-controlled underwater scenario.
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