Introduction

Stereo EKF Pose-based SLAM for AUVs

9-th Open German-Russian Workshop on PATTERN RECOGNITION and IMAGE UNDERSTANDING

Markus Solbach, Francisco Bonin Font, Antoni Burguera, Gabriel Oliver and Dietrich Paulus

December 2, 2014

Introduction

- 3D Transformation
- Image Registration
- Visual EKF-SLAM
- **Experimental Results**
- Conclusion

ults Conc

Problem Statement

Problem Statement

- Accessibility of the sub-aquatic world is important for research and industry
- AUV^1 promising advantages compared to ROV^2
 - Untethered, independent, self-powered, ...
- Question: How to perform the localization of AUVs
- Localization task becomes a crucial issue in AUVs
 - significant errors can lead to the mission failure

¹Autonomous Underwater Vehicle ²Remotely Operated Vehicle

SLAM

- Vehicle State = pose (Position and Orientation)
- State Vector = collection of Vehicle States
- Visual Odometry
 - Displacement of two consecutive Images
 - Estimation of the Relative Motion
 - Prone to drift
- Periodical adjustment is necessary
- SLAM (Simultaneous Localization And Mapping)
 - · Identification of already visited environment needed
 - Refines pose of landmarks of environment
- Extended Kalman Filtering (EKF)

al Results 🛛 🤇

Conclusion

Related Work

- [Schattschneider et al., 2011]
 - Underwater SLAM
 - Stereo Camera System used for ship hull inspection
 - 3D Landmarks used to detect Loop Closings
 - State = [poses , landmarks]
- [Eustice et al., 2008]
 - Underwater SLAM
 - Landmarks not saved in X
 - But: Image Registration used at every Iteration
 - State = [linear velocity, acceleration and angular rate]

Introduction

ntal Results

Conclusion

Related Work

- [This study]
 - Stereo Camera System (pure 3D data)
 - Orientations represented in the quaternion space
 - Image Registration used at every n-Iteration
 - State = [poses]

Visual EKF-SLAM

AM Experim

erimental Results

Conclusion

3D Transformation

/isual EKF-SLA

F-SLAM Ex

perimental Results

Conclusion

3D Transformation

- Classical Transformation for 6 DOF
 - composition \oplus
 - inversion \ominus

Displacement in x-Direction

- Jacobian Matrices J_\oplus and J_\ominus
 - Robot Transformation is non-linear
 - Direct Covariance computation in not possible
 - Approximation: Linearisation of transformation functions

Image Registration

Image Registration

- Verifies if two stereo images close a loop
 - Different time instants, view points, height, environmental conditions
 - ! certain overlap

result 3D camera Transformation between two images $z_k = [R, t]$

8

Pseudocode

Algorithm 1: Image Registration

input : Current Stereo Image pair S_I, S_r and Recorded Image I_c candidate to close a loop with output: 3D Transformation [R, t] begin

$stereoMatching(S_I, S_r)$

- First: $[F_I, F_r] = findFeature(S_I, S_r)$
- Second: Comparing the squared differences of F_l and F_r
 - Differences reaches a certain treshold \hookrightarrow Matched
- Usage of RANSAC

result 2 sets of matching Feature Descriptors $[F_I, F_r]$

Pseudocode

Algorithm 2: Image Registration

$$[F_l, F_r] \leftarrow \text{updateFeature} (F_l, F_r);$$

$$P_{3D} \leftarrow \text{calc3DPoints}(F_I, F_r);$$

$$[R, t] \leftarrow \text{solvePnPRansac}(F_c, P_{3D});$$

return $[R, t]$

else

return error;

1

8

$solvePnPRansac(F_c, P_{3D})$

- Solves the Perspective N-Point Problem (PnP)
- Estimates a pose transformation
- Minimizes the Reprojection Error between
 - 3D Feature
 - corresponding 2D Feature

result 3D Transformation $z_k = [R, t]$

Experimental R

Conclusion

EKF-SLAM

•	State-Estimation of non-linear		Algorithm 2: Visual EKF-SLAM				
		i ii	$\mathbf{nput} : X, C, O, C_o, S_l, S_r, C_m I_n$				
	system	0	utput : Updated state vector X_u , covariance C_u and recorded				
	 Using normally distributed 	b	Images I_u egin				
	Gaussian noise	1	; /* Prediction stage */				
	T 0	2	$X_t \leftarrow \texttt{getLastState}(X);$				
٠	Three Stages	3	$C_t \leftarrow \texttt{getLastCovariance}(C);$				
	1 Duraliation Stars	4	$[X_t^+, C_t^+] \leftarrow \texttt{composition} \left(X_t, C_t, O, C_o\right);$				
	1. Prediction Stage	5	; /* Augmentation stage */				
	2. State Augmentation Stage	6	$X^+ \leftarrow \texttt{addState} \ (X, X_t^+);$				
	3 Undato Stago	7	$C^+ \leftarrow \texttt{addCovariance}\ (C, C_t^+);$				
	J. Opuale Stage	8	; /* Update stage */				
		9	$z \leftarrow \texttt{imageRegistration}(S_l, S_r, I_n);$				
		10	if imageRegistration == false then				
		11	return;				
			else $[I, I]$ (I, I) (V^+, I)				
		12	$[n, H] \leftarrow \texttt{CalCHKK}(A^{+}, z);$				
		15	$y \leftarrow \text{Innovation}(n, z),$				
		14	$S \leftarrow \text{Innovationcov}(C^+, H, C_m);$ $V \leftarrow C^+, H^T, C^{-1};$				
		15	$\begin{array}{c} K \leftarrow C & H^{-} & S^{-}; \\ Y \rightarrow & Y^{+} + & V \end{array}$				
		16	$\begin{array}{c} X_u \leftarrow X + K \cdot y_k; \\ C \leftarrow (1 - K - H) - C^+ \end{array}$				
		17					
		18	$I_u \leftarrow I_n \bigcup S_l;$				
		e	nd				

$composition(X_t, C_t, O, C_o)$

- Performs Composition \oplus
 - $X_+ = X_t \oplus O$
- Calculates Covariance Matrix

•
$$C_+ = J_{1\oplus} \cdot C_t \cdot J_{1\oplus}^T + J_{2\oplus} \cdot C_o \cdot J_{2\oplus}^T$$

EKF-SLAM

•	State-Estimation of non-linear		Algorithm 2: Visual EKF-SLAM				
-	state Estimation of non-inea	' iı	$\mathbf{put} : X, C, O, C_o, S_l, S_r, C_m I_n$				
	system	0	utput : Updated state vector X_u , covariance C_u and recorded				
	 Using normally distributed 	b	Images I_u egin				
	Gaussian noise	1	; /* Prediction stage */				
•	Three Stages	2 3	$X_t \leftarrow \texttt{getLastState}(X); \ C_t \leftarrow \texttt{getLastCovariance}(C);$				
		4	$[X_t^+, C_t^+] \leftarrow \texttt{composition} (X_t, C_t, O, C_o);$				
	1. Prediction Stage	5	; /* Augmentation stage */				
	2. State Augmentation Stage	6	$X^+ \leftarrow \texttt{addState}(X,X_t^+);$				
	2 Undata Stara	7	$C^+ \leftarrow \texttt{addCovariance}\ (C, C_t^+);$				
	5. Opuale Slage	8	; /* Update stage */				
		9	$z \leftarrow \texttt{imageRegistration}(S_l, S_r, I_n);$				
		10	if imageRegistration $== false$ then				
		11	return;				
		12	else $[h, H] \leftarrow cal cHkK (X^+, z)$:				
		12	$u \leftarrow \text{innovation}(h, z)$:				
		14	$S \leftarrow \texttt{innovationCov}(C^+, H, C_m);$				
		15	$K \leftarrow C^+ \cdot H^T \cdot S^{-1};$				
		16	$X_u \leftarrow X^+ + K \cdot y_k$;				
		17	$C_u \leftarrow (1 - K \cdot H) \cdot C^+$;				
		18	$I_u \leftarrow I_n \bigcup S_l;$				
		e	nd				

Experimental

s Conclu

Update Stage

- Dependent on Image Registration
- No Image Registration \hookrightarrow No Update
- Corrects State Vector

$calcHkK(X^+, z)$

- observation function h
 - Based on z relative motions from X are calculated

•
$$h_k = \ominus X^k \oplus X^2$$

- Comparable *h_k* (State Vector) and *z_k* (Image Registration)
- Multiple Loop Closings $h = \begin{vmatrix} h_1 \\ h_2 \\ \vdots \\ h_k \end{vmatrix}$

innovation(h, z)

• In general: Difference between h and z

• y = z - h

- Translation: subtraction
- Due to quaternions special treatment necessary
 - Different quaternions similar orientation
 - Solution: Absolute values $\hookrightarrow y_q = |q_z| |q_h|$
- Rotation: subtracting the modules

Pseudocode

```
Algorithm 2: Visual EKF-SLAM
    input : X, C, O, C_o, S_l, S_r, C_m I_n
    output: Updated state vector X_n, covariance C_n and recorded
               Images I.,
    begin
                                               /* Prediction stage */
 1
         X_t \leftarrow \texttt{getLastState}(X);
 2
         C_t \leftarrow \texttt{getLastCovariance}(C);
 3
         [X_t^+, C_t^+] \leftarrow \text{composition} (X_t, C_t, O, C_o);
 4
                                            /* Augmentation stage */
 5
         X^+ \leftarrow \texttt{addState}(X, X_t^+);
 6
         C^+ \leftarrow \texttt{addCovariance}(C, C_t^+);
 7
                                                       /* Update stage */
 8
 9
         z \leftarrow imageRegistration (S_l, S_r, I_n);
10
         if imageRegistration == false then
11
              return:
         else
              [h, H] \leftarrow \mathsf{calcHkK}(X^+, z);
12
13
              y \leftarrow \texttt{innovation}(h, z);
              S \leftarrow \text{innovationCov}(C^+, H, C_m);
14
             K \leftarrow C^+ \cdot H^T \cdot S^{-1}:
15
            \begin{array}{c} X_u \leftarrow X^+ + K \cdot y_k ; \\ C_u \leftarrow (1 - K \cdot H) \cdot C^+ ; \end{array} 
16
17
         I_n \leftarrow I_n \mid \mid S_l;
18
   end
```

Conclusion

Experimental Results

- System
 - Laptop (Intel core i7 (2 \times 2.9Ghz), 8GB RAM and SSD)
 - Ubuntu 12.04, MATLAB R2013a (single CPU core used)
- Set-Up
 - Fugu-C (Bumblebee 2 1032 \times 776 pixel)
 - Watertank inside the UIB (7m \times 4m \times 1.5m)
- Ground Truth: printed digital image of a Seabed

Experimental Results

• Test

- 23.42m sweeping task
- 6 noise levels
- Error Definition:
 - Difference between
 - Ground Truth \leftrightarrow Odometry
 - Ground Truth \leftrightarrow EKF-SLAM
 - Divided by the length of the Trajectory (Ground Truth)
 - Error units are meters per travelled meter

• Quantitative Results

Noise Level Covariance	1 0	2 3e-9	3 9e-9	4 3e-8	5 5e-7	6 3e-6
Odom. error Ø	0.038	0.417	0.494	0.806	2.614	6.898
EKF error \varnothing	0.027	0.282	0.285	0.309	0.590	0.953
Improv. (%)	28.9	32.3	42.3	61.6	77.4	86.1

Figure: Comparison between visual odometry and EKF-SLAM trajectory mean error (\emptyset) with respect to the ground truth. Error is measured in meters per traveled meter.

Experimental Results

- Quantitative Results
 - Image Registration used at every n-Iteration
 - Separation of 4 already faster than Mission-Time

Separation between frames	2	4	8
Run-Time (min)	8.4	4.3	2.3
error (m)	0.28	0.32	0.39

Figure: Comparison run time of different key-frame separations and error. Used noise level 2.

- Qualitative Results Blue: Ground Truth, Black: Odometry, Red: EKF-SLAM
 - Noise Level 2

Figure: Example result with a noise level of two. Additionally the eight loop closings are plotted (magenta lines).

- Qualitative Results Blue: Ground Truth, Black: Odometry, Red: EKF-SLAM
 - Noise Level 4

Figure: Example result with a noise level of four.

- Qualitative Results Blue: Ground Truth, Black: Odometry, Red: EKF-SLAM
 - Noise Level 6

Figure: Example result with a noise level of six.

Summary

- Pose based visual EKF-SLAM approach
- Generic Solution for vehicles with up to 6 DOF (theoretically)
- Only Stereo Camera Data
- Orientation is represented in the quaternion space
- state vector X = [poses]
- Considerably localization correction
- With Separation of 4 Execution-Time already under Mission-Time

Literature I

Eustice, R. M., Pizarro, O., and Singh, H. (2008). Visually Augmented Navigation for Autonomous Underwater Vehicles.

leee Journal Oceanic Engineering, 33:103–122.

Schattschneider, R., Maurino, G., and Wang, W. (2011). Towards stereo vision SLAM based pose estimation for ship hull inspection.

Oceans 2011, pages 1-8.

• The whole bibliography is listed in the corresponding paper

Autonomous Underwater Vehicles (AUVs)

- Remotely Operated Vehicles (ROVs)
 - Tethered
 - Support Vessels
 - Limited operative range
- Autonomous Underwater Vehicles
 - (Try to) Overcome this limitations
 - Highly repetitive, long or hazardous missions
 - Self-Powered
 - Independent (support ships and weather)
 - Reduction of
 - missions costs
 - human resources
 - execution time

Vehicle Localization

- Several possibilities
- Using:
 - IMU (velocity, orientation, and gravitational forces)
 - Odometry (Acoustic Sensors or Cameras)
 - Sensor Fusion
- Prone to Drift
- Visual Odometry, because Cameras
 - + Spatial and Temporal Resolution
 - + More Environmental Data
 - Dependent on light and visibility

Vehicle Localization

- **pose** = Position and Orientation
- 6 Degrees of Freedom
 - 3 Translation
 - 3 Rotation

- Vehicle State X = pose (in this work)
- collection of poses = State Vector \hookrightarrow Trajectory

ental Results

Conclusion

SLAM

- Visual Odometry
 - Displacement of two consecutive Images
 - Estimation of the Absolute Motion (Prone to drift)
- SLAM (Simultaneous Localization And Mapping)
 - Most successful approach
 - Computes pose
 - Refines pose of landmarks of environment
- Extended Kalman Filtering (EKF)
- = Visual EKF SLAM

Displacement in x-Direction

EKF (In a Nutshell)

- Three Stages
 - 1. Prediction Stage
 - Predicting vehicle's localization (visual odometry)
 - Prone to drift
 - Uncertainty is modelled with covariance matrix
 - 2. State Augmentation Stage
 - Prediction is added to the end of X
 - Uncertainty accumulates over time
 - 3. Update Stage
 - Detection of Loop Closings
 - Provide the system with more reliable Data
 - Update X

Introduction

Conclusion

Applications

- Maintenance
- Rescue Operations
- Surveying
- Infrastructure Inspections
- Sampling

Related Work

- Literature is scarce, but deals mainly with:
 - Correcting the odometry with the result of the Image Registration
 - Adding Landmarks to X
 - + Continous Correction of pose and landmarks
 - + Whole X is corrected
 - Increasing complexity over time (X gets big)
 - On-line usage no longer possible

Results Co

Conclusion

$\textbf{Composition}\ \oplus$

• Composition:
$$X_+ = \begin{vmatrix} X_+^{\iota} \\ X_+^{\prime} \end{vmatrix}$$

• Quaternions (Orientation)

•
$$q = egin{bmatrix} q_w & q_1 & q_2 & q_3 \end{bmatrix}$$

- faster computation
- no trigonometric functions
- no gimbal lock

•
$$X^r_+ = q^T \cdot q^P$$

$$A = \begin{bmatrix} -2 \cdot q_2^2 - 2 \cdot q_3^2 + 1 & 2 \cdot q_1 \cdot q_2 - 2 \cdot q_3 \cdot q_w & 2 \cdot q_1 \cdot q_3 + 2 \cdot q_2 \cdot q_w & 0\\ 2 \cdot q_1 \cdot q_2 + 2 \cdot q_3 \cdot q_w & -2 \cdot q_1^2 - 2 \cdot q_3^2 + 1 & 2 \cdot q_2 \cdot q_3 - 2 \cdot q_1 \cdot q_w & 0\\ 2 \cdot q_1 \cdot q_3 - 2 \cdot q_2 \cdot q_w & 2 \cdot q_2 \cdot q_3 + 2 \cdot q_1 \cdot q_w & -2 \cdot q_1^2 - 2 \cdot q_2^2 + 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Introduction

iental Results

Conclusion

• Result is

sults Conclusion

$\mathsf{Inversion} \, \ominus \,$

• Task: Invert
$$T = \begin{bmatrix} x, y, z \\ t \end{bmatrix}$$
 $\begin{bmatrix} q_w, q_1, q_2, q_3 \\ A \end{bmatrix}$
 $\vec{n} \quad \vec{o} \quad \vec{a} \quad \vec{p} \\ \begin{pmatrix} A & t \\ 0 & 0 & 0 \end{bmatrix}$

$$\begin{pmatrix} A & t \\ 0 & 0 & 0 \end{pmatrix}^{-1} = \begin{pmatrix} -\vec{n} \circ \vec{p} \\ A^{T} & -\vec{o} \circ \vec{p} \\ 0 & 0 & 0 \end{pmatrix}$$
$$\ominus X = \begin{bmatrix} -\vec{n} \circ \vec{p} \\ -\vec{o} \circ \vec{p} \\ -\vec{a} \circ \vec{p} \\ q^{-1T} \end{bmatrix}$$

46 / 64

Jacobian Matrices $J_{1\oplus}$, $J_{2\oplus}$ and J_{\ominus}

• $J_{1\oplus}$ and $J_{2\oplus}$

- Composition \oplus has two parameters (*T* and *P*)
- Each: Jacobian Matrix of $X_+ \hookrightarrow J_{1\oplus}$ and $J_{2\oplus}$

• Covariance of Composition ⊕:

$$C_{+} = J_{1\oplus} \cdot C^{1} \cdot J_{1\oplus}^{T} + J_{2\oplus} \cdot C^{2} \cdot J_{2\oplus}^{T}$$

Jacobian Matrices $J_{1\oplus}$, $J_{2\oplus}$ and J_{\ominus}

- *J*⊖
 - Composition \ominus has one parameter
 - Derivation will give us J_{\ominus}

• Covariance of Inversion ⊖:

$$C_{-} = J_{\ominus} \cdot C \cdot J_{\ominus}^{T}$$

calc3DPoints(F₁, F_r)

- Result: 3D Points
- Missing depth-value z can be calculated
 - Reprojection Matrix Q

$$Q = \begin{bmatrix} 1 & 0 & 0 & -C_x \\ 0 & 1 & 0 & -C_y \\ 0 & 0 & 0 & f_x \\ 0 & 0 & -\frac{1}{T_x} & \frac{(C_x - C_{x'})}{T_x} \end{bmatrix}$$

- C_x and C_y optical center
- f_x focal length
- $T_x = \text{baseline } \cdot f_x$
- Primed from left Camera, unprimed from right Camera

result 3D Points P3D

$Composition \ \oplus \ \\$

• Adds a relative Transformation h to an absolute State X^{\times} result new absolute pose X_{+}

ental Results

Conclusion

- Inverts a Transformation h
- With \oplus used to get relative Transformations from absolutes

Jacobian Matrices $J_{1\oplus}\text{, }J_{2\oplus}\text{ and }J_{\ominus}$

- Necessary to compute the uncertainty
- Apply: Taylor Series of first order
- = **Covariance**: Uncertainty with zero mean random Gaussian noise
- Jacobian for each Transformation \oplus and \ominus

Introduction

Results Conclusion

Exemplary result

- With respect to the Pseudocode
 - S_l is transformed into I_c (if overlap big enough)
 - Transformation is done in 3D

Figure: Left: S_I ; middle: loop closing image I_c . On the right: the transformation of the image registration applied to S_I . The purple color indicates the error of the transformation.

ntroduction 3D Transformation Image Registration Visua

operimental Results

Conclusion

getLastState(X)

• Takes the last 7 Elements of X

$$X = \begin{bmatrix} \underbrace{x^1 \ y^1 \ z^1 \ q^1_w \ q^1_1 \ q^1_2 \ q^1_3}_{\text{vehicle pose at 1^{st iteration}}} & \cdots & \underbrace{x^n \ y^n \ z^n \ q^n_w \ q^n_1 \ q^n_2 \ q^n_3}_{\text{vehicle pose at n^{th iteration}}} \end{bmatrix}^T$$

addCovariance(C, C_t^+)

• Not only adding (true for diagonal)

- Except for diagonal
- e.q. B and E are calculated

$$\mathbf{B} = \mathbf{A} \cdot J_{1\oplus}^T$$

• $\mathbf{E} = J_{1\oplus} \cdot \mathbf{C}$

getLastCovariance(C)

• Takes the last 7×7 Matrix of C

Introduction

Its Conclusion

$calcHkK(S_{l}, S_{r}, I_{n})$

- observation matrix H
 - Stores Jacobian Matrices
 - Partially derivatives of h with respect to X^+
 - Elements of *H* not referring to used states are 0

innovation(h, z)

- $q_z = [0.996, -0.010, 0.014, 0.083]$ (1.55°, -1.38° , 9.50°)
- $q_h = [-0.996, -0.018, 0.001, -0.083]$ (0.04°, 2.09°, 9.55°)
- $y_q = q_z q_h = [1.992, 0.007, 0.013, 0.166]$
- Solution: Absolute values
- $y_q = |q_z| |q_h|$
- $y_q = [0.0000, -0.0073, 0.0134, -0.0003]$

innovation(h, z)

- $y_q = q_z q_h = [1.99274, 0.007344, 0.013427, 0.166257]$
- Pure subtraction: Big innovation (not right!)
- Solution: Absolute values
- $y_q = |q_z| |q_h|$
- $y_q = [0.0000, -0.0073, 0.0134, -0.0003]$

innovationCov(C^+ , $H C_m$)

- $S = H \cdot C \cdot H^T + R$
- Measurement Matrix R
- Size of R depends on number of detected Loop Closings

$$R = \begin{bmatrix} C_m & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & C_m & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & C_m \end{bmatrix}$$
(1)

- Quantitative Results
 - Noise level increases \leftrightarrow Improvement by EKF-SLAM increases

Figure: Comparison between state mean errors using raw odometry and EKF pose estimates. The standard deviation is set to 0.1σ .