Introduction	3D Transformation	Image Registration	Visual EKF-SLAM	Results	Conclusion
000000	0000 000 000		000 00 000000		

6 DOF EKF SLAM in Underwater Environments

Markus Solbach

Final Masters Project Universitat de les Illes Balears

September 24, 2014

Introduction	
000000	
0000	

Image Registration

Visual EKF-SLAN

Results

Conclusion

Introduction

Problem Statement Related Work

3D Transformation

 $\begin{array}{l} \text{Composition} \ \oplus \\ \text{Inversion} \ \oplus \\ \text{Jacobian Matrices} \end{array}$

Image Registration

Visual EKF-SLAM

Prediction Stage Augmentation Stage Update Stage

Results

Conclusion

Introduction
00000
0000

Image Registration

Visual EKF-SLAN 000 00 000000 Results

Conclusion

Problem Statement

Introduction
000000
0000

Visual EKF-SLAM 000 00 000000 Results

Conclusion

Problem Statement

- Accessibility of the sub-aquatic world is important for research and industry
- AUV^1 promising advantages compared to ROV^2
 - Untethered, independent, self-powered, ...
- Question: How to perform the localization of AUVs
- Accurate localization is important for the mission success
 - Maintenance, Rescue Operations, Sampling, Inspections, ...

¹Autonomous Underwater Vehicle ²Remotely Operated Vehicle

Introd	luctio			
000000				
0000)			

Image Registration

Visual EKF-SLAM 000 000000 Results

Conclusion

Vehicle Localization

- **pose** = Position and Orientation
- 6 Degrees of Freedom
 - 3 Translation
 - 3 Rotation

- Vehicle State X = pose (in this work)
- collection of poses = **State Vector** → **Trajectory**

Introduction
000000
0000

Visual EKF-SLAM 000 00 000000 Results

Conclusion

Vehicle Localization

- Several possibilities
- Using:
 - IMU (velocity, orientation, and gravitational forces)
 - Odometry (Acoustic Sensors or Cameras)
 - Sensor Fusion
- Prone to Drift
- Visual Odometry, because Cameras
 - + Spatial and Temporal Resolution
 - + More Environmental Data
 - Dependent on light and visibility

uction	3D Transformation	Image Registration	Visual EKF-SLAM	Results	Conclusi
•0	0000		000000		

SLAM

Visual Odometry

Introd

- Displacement of two consecutive Images
- Estimation of the Absolute Motion (Prone to drift)
- SLAM (Simultaneous Localization And Mapping)
 - Most successful approach
 - Computes pose
 - Refines pose of landmarks of environment
- Extended Kalman Filtering (EKF)

= Visual EKF SLAM

Displacement in x-Direction

3D Transformation

Image Registration

Visual EKF-SLAM 000 00 Results

Conclusion

EKF (In a Nutshell)

- Three Stages
 - 1. Prediction Stage
 - Predicting vehicle's localization (visual odometry)
 - Prone to drift
 - Uncertainty is modelled with covariance matrix
 - 2. State Augmentation Stage
 - Prediction is added to the end of X
 - Uncertainty accumulates over time
 - 3. Update Stage
 - Detection of Loop Closings
 - Provide the system with more reliable Data
 - Update X

Introduction	3D Transformatio
000000	0000
0000	000
	000

Image Registration

Visual EKF-SLAN 000 00 000000 Results

Conclusion

Related Work

Introductio
000000
0000

Image Registration

Visual EKF-SLAN 000 00 000000 Results

Conclusion

Related Work

- Literature is scarce, but deals mainly with:
 - Correcting the odometry with the result of the Image Registration
 - Adding Landmarks to X
 - + Continous Correction of pose and landmarks
 - + Whole X is corrected
 - Increasing complexity over time (X gets big)
 - On-line usage no longer possible

Introduction
000000
0000

Image Registration

Visual EKF-SLAN 000 00 000000 Results

Conclusion

Related Work

• [Schattschneider et al., 2011]

- Underwater SLAM
- Stereo Camera System used for ship hull inspection
- 3D Landmarks used to detect Loop Closings
- State = [poses , landmarks]
- [Eustice et al., 2008]
 - Underwater SLAM
 - State = [linear velocity, acceleration and angular rate]
 - Landmarks not saved in X
 - But: Image Registration used at every Iteration

Introduction
000000
0000

Image Registration

Visual EKF-SLAN 000 00 000000 Results

Conclusion

Related Work

- [This study]
 - Underwater SLAM
 - Stereo Camera System
 - Obtains 3D Environmental Information
 - AUV is moving in 3D
 - *X* = [poses]
 - Orientation is represented as a quaternion
 - Full 6 DOF Transformation
 - Different to [Burguera et al., 2014] (depth estimated by pressure sensor)
 - Jacobian Matrices of 3D Transformation
 - Application of EKF to correct the localisation

roduction	3D
0000	00
000	00
	00

Image Registration

Visual EKF-SLAI

Results

Conclusion

3D Transformation

3D	Transformation
00	00

Image Registration

Visual EKF-SLAM

Results

Conclusion

3D Transformation

- Classical Transformation for 6 DOF
 - composition \oplus
 - inversion \ominus

- Jacobian Matrices J_\oplus and J_\ominus
 - Robot Transformation is non-linear
 - Direct Covariance computation in not possible
 - Approximation: Linearisation of transformation functions

Introduction	
000000	
0000	

Image Registration

Visual EKF-SLA

Results

Conclusion

$\textbf{Composition} \ \oplus$

Image Registration

Visual EKF-SLAM

Results

Conclusion

$\textbf{Composition}\ \oplus$

- Adds a relative Transformation h to an absolute State X^{\times}
- Result: New absolute pose $X_+ = \begin{bmatrix} X_+^t \\ X_+^r \end{bmatrix}$

3D Transformation

Image Registration

Visual EKF-SLAN

Results

Conclusion

$\textbf{Composition}\ \oplus$

- Composition: $X_+ = \begin{bmatrix} X_+^t \\ X_+^t \end{bmatrix}$
- Quaternions (Orientation)

•
$$q = \begin{bmatrix} q_w & q_1 & q_2 & q_3 \end{bmatrix}$$

- faster computation
- no trigonometric functions
- no gimbal lock
- Attention

• Accumulation of Orientation = Multiplication of Quaternions

• $X_+^r = q^T \cdot q^P$

• Quaternion to rotation Matrix A

$$A = \begin{bmatrix} -2 \cdot q_2^2 - 2 \cdot q_3^2 + 1 & 2 \cdot q_1 \cdot q_2 - 2 \cdot q_3 \cdot q_w & 2 \cdot q_1 \cdot q_3 + 2 \cdot q_2 \cdot q_w & 0\\ 2 \cdot q_1 \cdot q_2 + 2 \cdot q_3 \cdot q_w & -2 \cdot q_1^2 - 2 \cdot q_3^2 + 1 & 2 \cdot q_2 \cdot q_3 - 2 \cdot q_1 \cdot q_w & 0\\ 2 \cdot q_1 \cdot q_3 - 2 \cdot q_2 \cdot q_w & 2 \cdot q_2 \cdot q_3 + 2 \cdot q_1 \cdot q_w & -2 \cdot q_1^2 - 2 \cdot q_2^2 + 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}$$

3D Transformation

Image Registration

Visual EKF-SLAN

Results

Conclusion

Introduction 000000 0000	3D Transformation	Image	Regist
	0000		

Visual EKF-SLAM

Results

Conclusion

$\mathsf{Inversion} \, \ominus \,$

3D Transformation ○○○○ ○●○ ○○○	Image Registration	Visual EKF-SLAM 000 00 000000	Results	Conclusion
	3D Transformation ○○○○ ○●○ ○○○	3D Transformation Image Registration ○○○○ ○●○ ○○○ ○○○	3D Transformation Image Registration Visual EKF-SLAM 0000 000 000 000 000 000 000 000 000 000 000 000	3D Transformation Image Registration Visual EKF-SLAM Results 0000 000<

Inversion \ominus

- Inverts a Transformation h
- With \oplus used to get relative Transformations from absolutes

Introduction	
000000	
0000	

3D Transformation ○○○ ○○● ○○○

Image Registration

Visual EKF-SLAM

Results

Conclusion

$\mathsf{Inversion} \, \ominus \,$

• Task: Invert
$$T = \begin{bmatrix} x, y, z \\ t \end{bmatrix}$$
 $\begin{bmatrix} q_w, q_1, q_2, q_3 \\ A \end{bmatrix}$
 $\vec{n} \quad \vec{o} \quad \vec{a} \quad \vec{p} \\ \begin{pmatrix} A & t \\ 0 & 0 & 0 \end{bmatrix}$

$$\begin{pmatrix} A & t \\ 0 & 0 & 0 \end{pmatrix}^{-1} = \begin{pmatrix} & -\vec{n} \circ \vec{p} \\ A^T & -\vec{o} \circ \vec{p} \\ & & -\vec{a} \circ \vec{p} \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

•
$$q^{-1} = \begin{bmatrix} q_w & -q_1 & -q_2 & -q_3 \end{bmatrix}$$

• Result is

$$\ominus X = \begin{bmatrix} -\vec{n} \circ \vec{p} \\ -\vec{o} \circ \vec{p} \\ -\vec{a} \circ \vec{p} \\ q^{-1T} \end{bmatrix}$$

Introduction	
000000	
0000	

000

Image Registration

Visual EKF-SLAM 000 00 000000 Results

Conclusion

Jacobian Matrices $\textit{J}_{1\oplus},~\textit{J}_{2\oplus}~\text{and}~\textit{J}_{\ominus}$

- Necessary to compute the uncertainty
- Apply: Taylor Series of first order
- = **Covariance**: Uncertainty with zero mean random Gaussian noise
- Jacobian for each Transformation \oplus and \ominus
- Jacobian Matrix in general

•
$$\nabla f = \frac{\partial f}{\partial x}|_{\hat{x}}$$

Introduction	
000000	
0000	

Image Registration

Visual EKF-SLAM 000 00 000000 Results

Conclusion

Jacobian Matrices $J_{1\oplus}$, $J_{2\oplus}$ and J_{\ominus}

• $J_{1\oplus}$ and $J_{2\oplus}$

0.00

- Composition \oplus has two parameters (*T* and *P*)
- Each: Jacobian Matrix of $X_+ \hookrightarrow J_{1\oplus}$ and $J_{2\oplus}$

$$J_{16} = \begin{bmatrix} 1 & 0 & 0 & 2 \cdot q_1^X \cdot z^Y - 2 \cdot q_1^X \cdot y^Y & 2 \cdot q_1^X \cdot y^Y + 2 \cdot q_1^X \cdot z^Y & 2 \cdot q_1^X \cdot y^Y - 4 \cdot q_2^X \cdot z^Y + 2 \cdot q_1^X \cdot z^Y & 2 \cdot q_1^X \cdot z^Y - 2 \cdot q_1^X \cdot y^Y - 4 \cdot q_1^X \cdot z^Y \\ 0 & 1 & 2 \cdot q_1^X \cdot z^Y - 2 \cdot q_1^X \cdot z^Y - 2 \cdot q_1^X \cdot z^Y + 2 \cdot q_1^X \cdot z^Y & 2 \cdot q_1^X \cdot z^Y + 2 \cdot q_1^X \cdot z^Y + 2 \cdot q_1^X \cdot z^Y \\ 0 & 1 & 2 \cdot q_1^X \cdot y^Y - 2 \cdot q_2^X \cdot z^Y + 2 \cdot q_1^X \cdot y^Y - 2 \cdot q_1^X \cdot z^Y & 2 \cdot q_1^X \cdot z^Y + 2 \cdot q_1^X \cdot z^Y + 2 \cdot q_1^X \cdot z^Y \\ 0 & 0 & 0 & q_1^Y & 2 \cdot q_1^X \cdot y^Y - 2 \cdot q_2^X \cdot z^Y + 2 \cdot q_2^X \cdot y^Y + 2 \cdot q_1^X \cdot z^Y + 2 \cdot q$$

• Covariance of Composition ⊕:

$$C_{+} = J_{1\oplus} \cdot C^{1} \cdot J_{1\oplus}^{T} + J_{2\oplus} \cdot C^{2} \cdot J_{2\oplus}^{T}$$

Introduction
000000
0000

000

Image Registration

Visual EKF-SLAM 000 00 000000 Results

Conclusion

Jacobian Matrices $J_{1\oplus}$, $J_{2\oplus}$ and J_{\ominus}

- *J*⊖
 - Composition \ominus has one parameter
 - Derivation will give us J_{\ominus}

• Covariance of Inversion ⊖:

$$C_{-} = J_{\ominus} \cdot C \cdot J_{\ominus}^{T}$$

Introduction	
000000	
0000	

Image Registration

Visual EKF-SLAN 000 00 000000 Results

Conclusion

Image Registration

Introduction	
000000	
0000	

Image Registration

Visual EKF-SLAM 000 00 Results

Conclusion

Image Registration

- Result: 3D camera Transformation z_k between two images
- Images have to be overlapped
- Detects Loop Closings: Update Stage (EKF)
- Without: Trajectory cannot be updated

3D Transformation

Image Registration

Visual EKF-SLAM 000 00 Results

Conclusion

Pseudocode

	input : Current Stereo Image pair S_l, S_r and Recorded
	Images I_n
	output : 3D Transformation $[R, t]$
	begin
1	$[F_l, F_r] \leftarrow \texttt{stereoMatching}(S_l, S_r);$
2	for $I_i \in I_n$ do
3	$F_t \leftarrow \texttt{findFeature}(I_i);$
4	if match $(F_l, F_t) == true$ then
5	break;
	else
6	<i>continue</i> ;
7	$[F_l, F_r] \leftarrow \texttt{updateFeature} \ (F_l, F_r);$
8	$P_{3D} \leftarrow \texttt{calc3DPoints}(F_l, F_r);$
9	$[R,t] \leftarrow \texttt{solvePnPRansac} (F_t, P_{3D})$
	end

3D Transformation

Image Registration

Visual EKF-SLAN 000 000000 Results

Conclusion

findFeature(*I_i*)

- Important function
- Reliable Feature are very important
- SIFT Features
 - David G. Lowe (1999)
 - Scale invariant
 - Reliable
 - High reproducibility
 - Feature: 128 dimensional descriptor

Introduction	
000000	
0000	

Image Registration

Visual EKF-SLAN

Results

Conclusion

$stereoMatching(S_l, S_r)$

- First: findFeature(I_i) with S_I, S_r
- Comparing the squared differences of each descriptor
- Differences reaches a certain treshold: Matched
- Additional: Usage of RANSAC

3D Transformation

Image Registration

Visual EKF-SLAM 000 00 Results

Conclusion

Pseudocode

ingorithm I. mage Registration	Algorithm	1:	Image	Registration
--------------------------------	-----------	----	-------	--------------

```
input : Current Stereo Image pair S_l, S_r and Recorded
              Images I_n
  output: 3D Transformation [R, t]
   begin
        [F_l, F_r] \leftarrow \texttt{stereoMatching}(S_l, S_r);
1
         for I_i \in I_n do
2
3
             F_t \leftarrow \texttt{findFeature}(I_i);
             if match (F_l, F_t) == true then
4
5
                   break;
             else
6
                   continue;
        [F_l, F_r] \leftarrow updateFeature (F_l, F_r);
7
        P_{3D} \leftarrow \texttt{calc3DPoints}(F_l, F_r);
[R, t] \leftarrow \texttt{solvePnPRansac}(F_t, P_{3D})
8
9
  end
```

3D Transformation 0000 000 Image Registration

Visual EKF-SLAN 000 00 000000 Results

Conclusion

$calc3DPoints(F_{l}, F_{r})$

- Result: 3D Points
- Missing depth-value z can be calculated
 - Feature coordinates (x, y)
 - Reprojection Matrix Q

$$Q = egin{bmatrix} 1 & 0 & 0 & -C_x \ 0 & 1 & 0 & -C_y \ 0 & 0 & 0 & f_x \ 0 & 0 & -\frac{1}{T_x} & rac{(C_x-C_{x'})}{T_x} \end{bmatrix}$$

- C_x and C_y optical center
- f_{x} focal length
- $T_x = \text{baseline } \cdot f_x$
- Primed from left Camera, unprimed from right Camera

3D Transformation

Image Registration

Visual EKF-SLAM 000 00 000000 Results

Conclusion

$calc3DPoints(F_{I}, F_{r})$

- From 2D to 3D
- Applied for each stereo Matching

$$\begin{bmatrix} X \\ Y \\ Z \\ W \end{bmatrix} = Q \cdot 1 \begin{bmatrix} x_l \\ y_l \\ d \\ 1 \end{bmatrix}$$

• $d = x_l - x_r$ (disparity)

3D Transformation 0000 000 Image Registration

Visual EKF-SLAM 000 00 000000 Results

Conclusion

$solvePnPRansac(F_t, P_{3D})$

- Solves the Perspective N-Point Problem (PnP)
- Estimates a pose transformation
- Minimizes the Reprojection Error between
 - 3D Feature
 - corresponding 2D Feature
- Result: 3D transformation [R, t]

Introduction	
000000	
0000	

Image Registration

Visual EKF-SLAM 000 000000 Results

Conclusion

$solvePnPRansac(F_t, P_{3D})$

- With respect to the Pseudocode
 - S_I is transformed into I_i (if overlap big enough)
 - Transformation is done in 3D

Figure: Left: S_I ; middle: loop closing image I_i . On the right: the transformation of the image registration applied to S_I . The purple color indicates the error of the transformation.

Introduction
000000
0000

Image Registration

Visual EKF-SLAM

Results

Conclusion

EKF-SLAM

Introduction	3D Transformation Image	Regist	ration	Visual EKF-SLAM	Results	Conclusio
000000	0000			000		
	000			000000		
				N.A		
	E	NF	-SLA	AIVI		
• EKF: E	Bavesian filter	Al	gorithm 2	: Visual EKF-SLAM		
		iı	$\mathbf{put} : X,$	C, O, C_o, S_l, S_r, C_m	I_n	
 State-I 	stimation of non-linea	r º	utput: Upo	lated state vector X_u ,	covariance C_u and	recorded
system		b	egin	$Iges I_u$		
, 	المحفي بالمتعالين والمعتمين والمتعا	1	;		/* Prediction s	tage */
• 09	sing normally distributed	2	$X_t \leftarrow g$	etLastState(X);		
Ga	aussian noise	3	$C_t \leftarrow g$	etLastCovariance	(C);	
Three	Ctagoo	4	$[X_t^+, C]$	$[t^+] \leftarrow \texttt{composition}($	$(X_t, C_t, O, C_o);$	
	Jlages	5	; v+.	/*	Augmentation s	tage */
1. Pi	rediction Stage	6	$A^+ \leftarrow A^+$	addState $(\Lambda, \Lambda_t);$	(1+).	
2 St	age Augmentation Stage	7	$\downarrow C' \leftarrow i$	addCovariance (C,)	(* Undate s	tage */
2. 50		9	$z \leftarrow im$	ageRegistration (S	S_l, S_r, I_n);	Juge .,
3. U	pdate Stage	10	if image	eRegistration ==)	alse then	
		11	retu	rn;		
			else			
		12	[h,]	$H] \leftarrow calcHkK (X^+,$	z);	
		13		- innovation (n, z) ,	H H C):	
		14		$-C^+ \cdot H^T \cdot S^{-1} \cdot$	$(\Pi, \mathbb{O}_m),$	
		16		$\leftarrow X^+ + K \cdot y_h$:		
		17	C_u	$\leftarrow (1 - K \cdot H) \cdot C^+$;	
		18	$I_u \leftarrow I$.	$\bigcup S_l;$		
		е	nd			

Introduction
000000
0000

Image Registration

Visual EKF-SLAM • 00 00 000000

Results

Conclusion

Prediction Stage

3D Transformation 0000 000 Image Registration

Visual EKF-SLAM

Results

Conclusion

getLastCovariance(C)

• Takes the last 7×7 Matrix of C

3D Transformation 0000 000 Image Registration

Visual EKF-SLAM

Results

Conclusion

 $composition(X_t, C_t, O, C_o)$

- Performs Composition \oplus
 - $X_+ = X_t \oplus O$
- Calculates Covariance Matrix

•
$$C_+ = J_{1\oplus} \cdot C^t \cdot J_{1\oplus}^T + J_{2\oplus} \cdot C^o \cdot J_{2\oplus}^T$$

Introduction
000000
0000

Image Registration

Visual EKF-SLAM 000 00 00000

Results

Conclusion

Augmentation Stage

Image Registration

Visual EKF-SLAM ○○ ○● ○○○○○○ Results

Conclusion

addCovariance(C, C_t^+)

• Not only adding (true for diagonal)

- Except for diagonal
- e.q. **B** and **E** are calculated

•
$$\mathbf{B} = \mathbf{A} \cdot J_{1\oplus}^T$$

•
$$\mathbf{E} = J_{1\oplus} \cdot \mathbf{C}$$

3D Transformation

Image Registration

Visual EKF-SLAM

Results

Conclusion

Update Stage

- Dependent on Image Registration
- Main part of EKF
- Executes Kalman Equations
- Corrects State Vector
- Key Features of this study:
 - Calculation of Observation Function h
 - Calculation of **Observation Matrix** H
 - Calculation of Innovation y

Introd	uction
0000	00
0000	

Image Registration

Visual EKF-SLAM

Results

Conclusion

 $calcHkK(X^+, z)$

- observation function h
 - Based on z relative motions from X are calculated
 - $h_k = \ominus X^k \oplus X^2$
 - Comparable h_k (State Vector) and z_k (Image Registration)

• Multiple Loop Closings $h = \begin{bmatrix} h_1 \\ h_2 \\ \vdots \\ h_1 \end{bmatrix}$

3D Transformation 0000 000 Image Registration

Visual EKF-SLAM

Results

Conclusion

$calcHkK(S_{l}, S_{r}, I_{n})$

- observation matrix H
 - As many rows as Loop Closings (times 7)
 - As many columns as many states are stored in X^+ (times 7)
 - Stores Jacobian Matrices
 - Partially derivatives of h with respect to X^+

$$H = \left. \frac{\partial h}{\partial X^+} \right|_{\hat{X}^-}$$

• Elements of H not referring to used states are 0

$$H = \begin{bmatrix} \mathbf{0} & \mathbf{0} & \frac{\partial h^1}{\partial X^2} & \mathbf{0} & \dots & \mathbf{0} & \frac{\partial h^1}{\partial X^k} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \frac{\partial h^2}{\partial X^3} & \dots & \mathbf{0} & \frac{\partial h^2}{\partial X^k} \end{bmatrix}$$

3D Transformation

Image Registration

Visual EKF-SLAM

Results

Conclusion

innovation(h, z)

- Innovation should be big if z and h are different
- Innovation should be 0 if z and h are similar
- In general: Difference between h and z

• y = z - h

- Translation: subtraction
- Due to quaternions special treatment necessary

3D Transformation 0000 000 Image Registration

Visual EKF-SLAM

Results

Conclusion

innovation(h, z)

- Different quaternions similar orientation
- $q_z = [0.996, -0.010, 0.014, 0.083] (1.55^{\circ}, -1.38^{\circ}, 9.50^{\circ})$
- $q_h = [-0.996, -0.018, 0.001, -0.083]$ (0.04°, 2.09°, 9.55°)
- $y_q = q_z q_h = [1.992, 0.007, 0.013, 0.166]$
- Solution: Absolute values
- $y_q = |q_z| |q_h|$
- $y_q = [0.0000, -0.0073, 0.0134, -0.0003]$

BD Transformation

Image Registration

Visual EKF-SLAM

Results

Conclusion

Pseudocode

Algorithm 2: Visual EKF-SLAM input : $X, C, O, C_o, S_l, S_r, C_m I_n$ **output**: Updated state vector X_n , covariance C_n and recorded Images I_u begin /* Prediction stage */ 1 $X_t \leftarrow \texttt{getLastState}(X)$; 2 $C_t \leftarrow \texttt{getLastCovariance}(C);$ 3 $[X_t^+, C_t^+] \leftarrow \text{composition} (X_t, C_t, O, C_o);$ 4 /* Augmentation stage */ 5 $X^+ \leftarrow \texttt{addState}(X, X_t^+);$ 6 $C^+ \leftarrow \texttt{addCovariance}(C, C_*^+);$ 7 8 /* Update stage */ $z \leftarrow imageRegistration (S_l, S_r, I_n);$ 9 if imageRegistration == false then 10 11 return; else $[h, H] \leftarrow \texttt{calcHkK}(X^+, z);$ 12 13 $y \leftarrow \text{innovation}(h, z)$: $S \leftarrow \texttt{innovationCov}(C^+, H, C_m);$ 14 $K \leftarrow C^+ \cdot H^T \cdot S^{-1}$: 15 $X_u \leftarrow X^+ + K \cdot y_k$; 16 $C_u \leftarrow (1 - K \cdot H) \cdot C^+;$ 17 $I_u \leftarrow I_n \bigcup S_l;$ 18 end

Introduction 000000 0000	3D Transformation 0000 000 000	Image Registration	Visual EKF-SLAM 000 000 000000	Results	Conclusion
		Results	5		

ntroduction	3D Transformation	Image Registration	Visual EKF-SLAM	Results	Conclusion
00000	0000		000		
	000		000000		

- System Used
 - Laptop (Intel core i7 (2 2.9Ghz), 8GB RAM and SSD)
 - Ubuntu 12.04
 - MATLAB R2013a (single CPU core used)
 - The mission was recorded with ROS (Robot Operation System)
 - rosbag provided offline playback (recorded with Fugu-C)
- Set-Up
 - Fugu-C (Bumblebee 2 1032 \times 776 pixel)
 - Watertank inside the UIB (7m imes 4m imes 1.5m)
 - Visual Odometry calculated with LIBVISO2
- Ground Truth: Seabed printed on a Poster

Introduction	30
000000	00
0000	00
	00

Image Registration

Visual EKF-SLAN 000 00 000000 Results

Conclusion

Results

- Test
 - 23.42m sweeping task
 - Different noise levels
 - System-Response to less accurate Odometry

Noise Level	1	2	3	4	5	6
Covariance	0	3e-9	9e-9	3e-8	5e-7	3e-6

• Error Definition:

- Difference between Ground Truth
 - odometry
 - EKF-SLAM
- Divided by the length of the Trajectory
- Error units are meters per travelled meter

troduction 00000 000	3D Transformation 0000 000 000	Image Registration	Visual EKF-SLAM 000 00 000000	Results	Conclusi

• Quantitative Results

Noise Level	1	2	3	4	5	6
Covariance	0	3e-9	9e-9	3e-8	5e-7	3e-6
Odom. error ∅	0.038	0.417	0.494	0.806	2.614	6.898
EKF error \varnothing	0.027	0.282	0.285	0.309	0.590	0.953
Improv. (%)	28.9	32.3	42.3	61.6	77.4	86.1

Figure: Comparison between visual odometry and EKF-SLAM trajectory mean error (\varnothing) with respect to the ground truth. Error is measured in meters per traveled meter.

Introduction	3D Transformation	Image Registration	Visual EKF-SLAM	Results	Conclusion
000000	0000		000		
0000	000		000000		

• Quantitative Results

Figure: Comparison between state mean errors using raw odometry and EKF pose estimates. The standard deviation is set to 0.1σ .

Introduction	3D Transformation	Image Registration	Visual EKF-SLAM	Results	Conclusion
000000	0000		000		
0000	000		000000		

• Quantitative Results

Separation between frames	2	4	8
Run-Time (min)	8.4	4.3	2.3
error (m)	0.28	0.32	0.39

Figure: Comparison run time of different key-frame separations and error. Used noise level 2.

• Separation of 4 already faster than Mission-Time

Introduction 3D Transformation Image Registration Visual EKF-SLAM 00000 0000 000 <t< th=""><th>F</th></t<>	F
--	---

Conclusion

Results

• Qualitative Results Blue: Ground Truth, Black: Odometry, Red: EKF-SLAM

Figure: Example result with a noise level of two. Additionally the eight loop closings are plotted (magenta lines).

Introduction 000000 0000	3D Transformation 0000 000 000	Image Registration	Visual EKF-SLAM 000 00 000000
--------------------------------	---	--------------------	--

Conclusion

Results

• Qualitative Results Blue: Ground Truth, Black: Odometry, Red: EKF-SLAM

Figure: Example result with a noise level of four.

000000 0000 000 0000 000 00 0000 0000	Introduction 000000 0000	3D Transformation 0000 000 000	Image Registration	Visual EKF-SLAM 000 00 000000	Results
---	--------------------------------	---	--------------------	--	---------

• Qualitative Results Blue: Ground Truth, Black: Odometry, Red: EKF-SLAM

Figure: Example result with a noise level of six.

Introduction 000000 0000	3D Transformation 0000 000 000	Image Registration	Visual EKF-SLAM 000 00 000000	Results	Conclusion

- Video
 - Separation of 2
 - Noise Level of 3
 - Playback 4x

Introduction 3D Transformation Image Registration Visual EKF-SLAM Res 000000 0000 <	1 troduction 100000 1000	3D Transformation 0000 000 000	Image Registration	Visual EKF-SLAM 000 00 000000	Results
---	---------------------------------------	---	--------------------	--	---------

Conclusion

Conclusion

3D Transformation 0000

Image Registration

Visual EKF-SLAN

Results

Conclusion

Conclusion

- Summary
 - Pose based visual EKF-SLAM approach
 - Underwater localization
 - Only Stereo Camera Data
 - Pure 6 Degrees of Freedom
 - Orientation is represented as quaternions
 - Improvement up to 86.1%
 - With Separation of 4 already Execution-Time under Mission-Time
- Future Work
 - Fine-Tuning: Measurement and Observation Covariance Matrices
 - Further test in the sea
 - ROS implementation

Introduction	
000000	
0000	

Image Registration

Visual EKF-SLAM

Results

Conclusion

Literature I

Burguera, A., Bonin-font, F., and Oliver, G. (2014). Towards Robust Image Registration for Underwater Visual SLAM.

In International Conference on Computer Vision, Theory and Applications (VISSAP), Lisboa.

Eustice, R. M., Pizarro, O., and Singh, H. (2008). Visually Augmented Navigation for Autonomous Underwater Vehicles.

leee Journal Oceanic Engineering, 33:103–122.

Schattschneider, R., Maurino, G., and Wang, W. (2011). Towards stereo vision SLAM based pose estimation for ship hull inspection.

Oceans 2011, pages 1-8.

3D Transformation 0000 000 Image Registration

Visual EKF-SLAM

Results

Conclusion

Autonomous Underwater Vehicles (AUVs)

- Remotely Operated Vehicles (ROVs)
 - Tethered
 - Support Vessels
 - Limited operative range
- Autonomous Underwater Vehicles
 - (Try to) Overcome this limitations
 - Highly repetitive, long or hazardous missions
 - Self-Powered
 - Independent (support ships and weather)
 - Reduction of
 - missions costs
 - human resources
 - execution time

Introduction
000000
0000

Image Registration

Visual EKF-SLAM 000 00 000000 Results

Conclusion

Applications

- Maintenance
- Rescue Operations
- Surveying
- Infrastructure Inspections
- Sampling

Introduction	3D Transformation	Image Registration	Visual EKF-SLAM	Results	Conclusion
000000	0000		000		
0000	000		00		
	000		000000		

Introduction 000000 0000	3D Transformation 0000 000	Image Registration	Visual Ek
	000		000000

getLastState(X)

• Takes the last 7 Elements of X

$$X = \begin{bmatrix} \underbrace{x^1 \ y^1 \ z^1 \ q_w^1 \ q_1^1 \ q_2^1 \ q_3^1}_{\text{vehicle pose at 1^{st iteration}}} & \cdots & \underbrace{x^n \ y^n \ z^n \ q_w^n \ q_1^n \ q_2^n \ q_3^n}_{\text{vehicle pose at n^{th iteration}}} \end{bmatrix}^T$$

Co

Conclusion

Introduction
000000
0000

Image Registration

Visual EKF-SLAM 000 000000 Results

Conclusion

innovation(h, z)

- $y_q = q_z q_h = [1.99274, 0.007344, 0.013427, 0.166257]$
- Pure subtraction: Big innovation (not right!)
- Solution: Absolute values
- $y_q = |q_z| |q_h|$
- $y_q = [0.0000, -0.0073, 0.0134, -0.0003]$

3D Transformation 0000 000 Visual EKF-SLAM 000 00 000000 Results

Conclusion

innovationCov
$$(C^+, H C_m)$$

- $S = H \cdot C \cdot H^T + R$
- Measurement Matrix R
- Size of R depends on number of detected Loop Closings

$$R = \begin{bmatrix} C_m & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & C_m & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & C_m \end{bmatrix}$$
(1)