ECASL: A Model of Rational Agency for Communicating Agents

Shakil M. Khan and Yves Lespérance
Dept. of Computer Science & Engineering
York University
Toronto, ON, Canada
Motivation

• Agent theories (e.g. Cohen & Levesque ‘90, Rao & Georgeff ‘91) model
 – the different mental attitudes of the agents
 – the relation between these different mental attitudes of the agents and physical state of the world

• But most of them do not account for
 – when agents are able to achieve their goals
 – how they plan to achieve their goals and commit to plans

• Success Theorem – does not deal with ability
Motivation

- Others (e.g. CASL - Shapiro & Lesperance ‘02) introduce a procedural component
 - supports modeling of complex multi-agent systems
- However an agent’s actions need not be consistent with her intentions, or do anything to achieve them: problematic since it makes it impossible to predict behavior
- An agent’s future directed intentions (goals) should lead to present directed intentions (actions)
Motivation

• We present
 – a mechanism for relating future and present directed intentions –
 a formal model of means-end reasoning suitable for a multi-agent context
 – a simple model of cooperative ability
 – a simple model of rational plan selection

• We show how to get a Success Theorem of the form:
 – if an agent intends to achieve a goal, and is able to do so, she will eventually achieve it provided that she behaves rationally, i.e., commits to a rational plan, and executes it
Outline

- CASL
- Ability in multiagent context
- Communicative acts
- Rational Plans and commitment to rational plans
- Rational behavior
- Success Theorem
- Related work, extensions, conclusion and future work
The Cognitive Agent Specification Language (CASL)

- A framework for specifying and verifying complex communicating multi-agent systems
- Combines:
 - a declarative action theory (Reiter ’01) defined in the Situation Calculus
 - a rich programming/process language, ConGolog (De Giacomo, Lesperance & Levesque ‘00), which has a transition semantics
 - a model of various mental states, such as, knowledge (Scherl & Levesque ‘03) and goals (Shapiro et al. ‘05), and their dynamics
CASL

• Knowledge
 – S5 logic
 – knowledge expansion

• Communicative Acts
 – $\text{inform}(inf,agt,\varphi) : inf$ informs agt that φ holds
 – $\text{inform_Whether}(inf,agt,\psi) : inf$ informs agt whether ψ holds
 – $\text{inform_Ref}(inf,agt,\theta) : inf$ informs agt the value of θ

• No revision of beliefs – all actions are considered to be public to avoid revision
CASL

• Goals/Intentions
 – KD logic
 – goal expansion (as a result of a request)
 – limited form of goal contraction (as a result of a cancelRequest)

• Communicative Acts
 – request(req,agt,φ) : req requests agt that φ
 – cancelRequest(req,agt,φ) : req cancels the request that φ
Single-Agent Ability

- An agent is able to achieve a goal if she knows of a plan whose execution brings about her goal.
- The agent is able to execute the plan:
 - she can *physically* execute all the actions in the plan.
 - she *has enough knowledge* to execute the plan.
 - e.g.: to open a safe, she needs to know the correct combination.
Epistemically Feasible Deterministic Programs (EFDPs)

• A program is an EFDP (De Giacomo et al ‘02) if
 – at every stage of execution, the executing agent always knows what step to take next, or knows that the program has terminated
• The agent never gets stuck due to lack of knowledge
• An agent can achieve a goal if she
 – knows of a physically executable EFDP, and
 – knows that this plan achieves the goal
Epistemically and Intentionally Feasible Deterministic Programs (EIFDPs)

- If the planning agent wants to get help from other agents, she should also take their knowledge and intentions into account.
- We extend EFDPs to be suitable for *limited* multi-agent domains: we call these *EIFDPs*.
- Limitations
 - the planning agent does all the deliberation, she must know the whole plan in advance.
 - all other agents are simple executors and do not plan.
 - program delegation is possible, but not sub-goal delegation.
EIFDPs

• At every stage of execution of the program –
 – if it is the planning agent’s turn to act, then same as EFDP
 – if it is some other agent’s turn to act, then the planning agent knows
 • that the other agent *knows what step to take* next
 • that the other agent *intends to execute it* next
 • what the remaining program is, so she knows how to continue
• The executor of the plan never gets stuck due to lack of knowledge, or other agents’ lack of intention/knowledge to perform the next action
The Safe Example

- Safe with a combination lock
- Dialing the correct combination will open the safe
- Dialing an incorrect combination will cause the safe to explode
- In the initial situation S_0
 - Agt_1 intends to open the safe, but does not know the correct combination
 - Agt_1 knows that Agt_2 knows the combination
The Safe Example : EIFDP

- δ_{safe}:
 - Agt_1 requests Agt_2 to inform her of the combination;
 - Agt_2 informs Agt_1 of the combination;
 - Agt_1 dials the combination.

- Theorem
 - $\text{EIFDP}(Agt_1, \delta_{safe}, S_0)$, provided that Agt_1 knows that Agt_2 does not intend in S_0 not to inform her the combination of the safe
The Safe Example: EIFDP

S_0 → A_1 requests A_2 to inform Comb → A_2 informs A_1 of Comb → A_1 dials Comb

- A_2 does not intend to inform Comb
- A_2 intends to inform Comb
- A_1 knows Comb
Cooperative Ability

• An agent *can achieve* a goal φ in situation s iff she knows of a plan δ, such that:
 – δ is *EIFDP* in s
 – δ is physically executable starting in s
 – any execution of δ starting in s achieves φ

• Theorem
 – $\text{Can}(\text{Agt}_1, \neg \text{Locked}, S_0)$
Communicative Acts

- *inform, informWhether, informRef*: primitive
- Requests defined in terms of inform
 - \(\text{request}(\text{req}, \text{agt}, \varphi)\): \(\text{req}\) informs \(\text{agt}\) that \(\text{req}\) intends that \(\varphi\)
 - \(\text{requestAct}(\text{req}, \text{agt}, \delta)\): \(\text{req}\) informs \(\text{agt}\) that \(\text{req}\) intends that \(\text{agt}\) executes \(\delta\) starting from the next situation
- The requested goal is adopted via cooperation principles
- Canceling Requests also defined
 - \(\text{cancelRequest}(\text{req}, \text{agt}, \varphi)\): \(\text{req}\) informs \(\text{agt}\) that she no longer intends that \(\varphi\)
 - \(\text{cancelRequestAct}(\text{req}, \text{agt}, \delta)\): \(\text{req}\) informs \(\text{agt}\) that \(\text{req}\) no longer intends that \(\text{agt}\) executes \(\delta\)
Rational Plans

- \((\text{agt}, \delta_1, \delta_2, s)\) : weak domination
 - a plan \(\delta_1\) is \textit{as good as} another plan \(\delta_2\) for an agent \(\text{agt}\) in situation \(s\), if it achieves \(\text{agt}'s\) goals in all epistemic alternatives where \(\delta_2\) does.

\[
\begin{align*}
\delta_1 &> \delta_3 \\
\delta_2 &> \delta_3 \\
\delta_1 &\not> \delta_2 \\
\delta_2 &\not> \delta_1
\end{align*}
\]
Rational Plans

• A plan δ is *rational* for an agent agt in situation s iff
 – δ is dominant, i.e. δ is *as-good-as* any other plan that is *as-good-as* δ in s,
 – δ is an *EIFDP* for agt in s, and

• Theorem
 – $\text{Rational}(Agt1,\delta_{safe},S0)$
The *commit* Action

- A bridge between future directed intentions and present directed ones
- The execution of $\text{commit}(\text{agt}, \delta)$ updates agt’s intentions such that she intends to execute δ starting in the next situation
- An agent can commit to a plan δ iff she does not intend not to execute δ next
Generic Meta-Controller for Rational Agent Behavior

- $\text{BehaveRationallyUntil}(agt, \psi)$ is defined as
 pick a plan δ that is \textit{rational} for agt in the current situation;
 \textit{commit} agt to δ;
 While ψ is not achieved and agt intends to execute some act next
 If agt intends to perform some action next
 perform that action;
 Else
 (agt intends that agt' performs some action next)?
 The action happens;
 endWhile.
From Commitment and Ability to Eventuality (Success Theorem)

• Theorem:
 – if
 • \textit{agt} has the \textit{intention} in situation \textit{s} to achieve \(\psi\)
 • \textit{agt} \textit{can achieve} all her intentions in situation \textit{s}
 – then
 • if \textit{agt} behaves rationally until \(\psi\), she will successfully achieve it (no matter what rational plan she picks)

• Assumption: no unintended (exogenous) actions

• Corollary:
 – \texttt{AllDo(BehaveRationallyUntil(\textit{Agt1,\neg Locked}),S_0)}
Related Work

- (Cohen & Levesque ‘90), (Rao & Georgeff ‘91)
 - all intentions eventually get dropped (AKA no infinite deferral)
 - success not related to ability
- (Sadek ‘94)
 - backward chaining planning mechanism
 - uses per-locutionary / rational effects of actions, rather than actual effects
- The KARO Framework (van Linder, van der Hoek, Meyer ‘96)
 - commit action
 - does not model rationality or provide a success theorem
Additional Results in (Khan 05)

- How to handle unintended (exogenous) actions and intention revision due to these actions
- Developed a notion of Conditional Commitment/Intention and additional communicative acts to handle conditional requests
- Modeled some simple interaction protocols (including protocols to handle conditional requests)
Conclusion & Future Work

• Main contributions
 – formalized a simple notion of cooperative ability
 – defined rational plans
 – established a link between future directed intentions and present directed ones

• Future work
 – allow sub-goal delegation
 – model interaction protocols with multiple planning agents
 – develop implementation and tools