SR-APL: A Model for a Programming Language for Rational BDI Agents with Prioritized Goals
Shakil M. Khan and Yves Lespérance
Department of Computer Science & Engineering
York University, Toronto, ON, Canada

1. Introduction
- Recently, much work on BDI APLs with declarative goals
 e.g. (Dastani '08, Sarhadi & Padgham '16)
- Essential for:
 - monitoring goal achievement
 - performing plan failure recovery
 - modeling rational behavior
- However, to provide efficiency none
 - ensure consistency of adopted declarative goals & plans
- Also, few deal with:
 - prioritized goals
 - temporally extended goals
- Most use syntactic accounts of:
 - goal-subgoal dependency
 - goal dynamics

2. Need for Consistency Checking: A Motivating Example

3. Our Approach
- Develop model for a Simple Rational APL (SR-APL):
 - maintains consistency of chosen declarative goals & plans
 - bridges gap between rational agent theories and BDI APLs
- Combines elements from:
 - BDI APLs (e.g. AgentSpeak [Res '01])
 - the situation calculus-based ConGoleap APL [De Giacomo et al. '97]
- Based on theory of prioritized goals [KAL '10]:
 - grounded on a formal action theory (i.e. the situation calculus)
 - handles temporally extended goals & prioritized goals
 - formalizes goals and goal dynamics semantically
 - models dependencies between subgoals and their parent goals

4. Components of SR-APL
- Theory B specifying:
 - actions (preconditions & effects)
 - knowledge
 - both declarative (achievement) and procedural goals
- Planning Rule-Base T with rules of the form (\(\Phi : \Psi \rightarrow \alpha\)):
 - Plan language for:
 - primitive actions, wait/test actions, sequence of actions
 - special action for adopting subgoal \(\Phi\) relative to program \(\alpha\), adoptRT(\(\Phi, \alpha\))
 - Procedural intention base \(\Gamma\)

5. Operational Semantics
- Two-tier transition system:
 - program-level transitions \((T, D) \rightarrow (T', D')\) — as in ConGoleap
 - agent-level transitions \((\Gamma, \sigma) \Rightarrow (\Gamma', \sigma')\)

6. Why Procedural Goal-Base?
- How to model commitment to execute a plan \(\alpha\) next in theory \(D\)?
 - First attempt: agent has goal that \(\exists s. (\text{DoAL}(o, \text{now}, s))\)
 - too strong: does not allow concurrency/interleaving
 - Second attempt: has goal \(\exists s. (\text{DoAL}(o, \text{now}, s)) \rightarrow \sigma\)
 - execute \(\sigma\) possibly with any other actions
 - too weak: allows unnecessary actions/procrastination
- Our approach: use DoAL, but also define procedural intention base \(\Gamma\) — list of all plans agent is committed to
 - require actions the agent performs to come from \(\Gamma\)

7. Agent Transition Rules
- Rule \(\text{DoAL}\) for selecting and adopting a plan from \(\Gamma\):
 - if head of rule \(\Phi : \Psi \rightarrow \alpha\) matches with an unhandled intention
 - belief-condition \(\Psi\) of that rule also follows from agent’s knowledge
 - agent does not intend not to adopt the plan \(\text{DoAL}(o)\)
 - then can do transition by adopting \(\text{DoAL}(o)\) as a subgoal of \(\Phi\)

8. Weak Notion of Consistency
- In \(\text{AAW}\) and \(\text{aaw}\), only do partial consistency check:
 - require that agent does not intend not to adopt the plan \(\text{DoAL}(o)\)
 - but not that agent does not intend to adopt the plan \(\text{DoAL}(o)\)
- Plans might be abstract (include unexpanded subgoals)
 - Thus, currently non-executable without introducing additional actions
- Agent could get stuck due to wrong choice of plan interleaving, and may need to add actions to the plan
 - however agent will never perform actions that make other goals impossible

9. Rationality Properties
- Blocks World Eq. – in the absence of exogenous actions
 - \(\text{Do}\) is a complete trace relative to \(\text{Do}_{\text{aaw}}\)
 - \(\forall\) all complete traces \(\sigma_1 \vdash \cdots \vdash \sigma_n\) relative to \(\text{Do}_{\text{aaw}}\)
 - \(\text{Do}\) has no infinite traces relative to \(\text{Do}_{\text{aaw}}\)
- Consistency of knowledge & intentions:
 - holds for all configurations
 - \(D_{\text{al}} \vdash \langle \text{Know}(a, \Theta), \sigma \rangle \overrightarrow{\text{int}} \langle \text{Know}(a, \Theta), \sigma \rangle\)
- Consistency of declarative and procedural goals:
 - given complete trace \(\sigma_1 \vdash \cdots \vdash \sigma_n\) relative to theory \(B\) without exogenous actions
 - for all configurations \(\langle \text{Eg}(a, \Theta), \sigma \rangle\) in \(T, D\) if \(\sigma_n\) then
 - either \(D_{\text{al}} \vdash \text{DoAL}(a, \Theta, \sigma)\)
 - or there is a future configuration along the trace where consistency is restored
- Rationality of actions in a trace:
 - Given trace \(\sigma_1 \vdash \cdots \vdash \sigma_n\) relative to theory \(D\) without exogenous actions
 - for all \(i \leq \sigma_n\) and \(a, \Theta, \Theta', \Theta''\):
 - \(\text{Do}_{\text{al}} \vdash \langle \text{Know}(a, \Theta), \sigma_{i-1} \rangle \overrightarrow{\text{int}} \langle \text{Know}(a, \Theta), \sigma_i \rangle\)
 - \(D_{\text{al}} \vdash \langle \text{Know}(a, \Theta), \sigma_i \rangle \\overrightarrow{\text{int}} \langle \text{Know}(a, \Theta), \sigma_{i+1} \rangle\)
 - \(D_{\text{al}} \vdash \langle \text{Know}(a, \Theta), \sigma_{i+1} \rangle\)

10. Conclusion
- Proposed simple rational APL with declarative goals
- Proved some strong rationality principles
- Future work: investigate practical versions of SR-APL