Towards a Rational Agent Programming Language with Prioritized Goals

Shakil M. Khan & Yves Lespérance

Department of Computer Science & Engineering
York University
Toronto, ON, Canada

DALT 2010

May 10, 2010
Motivation

• Recently, much work on BDI APLs with *declarative goals* (e.g. [Hindriks et al. ‘00]); essential for:
 – monitoring goal achievement and performing plan failure recovery
 – modeling rational behavior
• But most of these APLs do not
 – *provide a formal semantics for declarative goals or specify their dynamics*
 – *handle temporally extended goals and prioritized goals*
 – *require consistency between adopted declarative goals and plans*
• One reason for these deficiencies
 – underlying agent theory not expressive enough
A Motivating Example

- Modified blocks world
- Only one action, \(stack(b,a) \)
 - preconditions: possible if both blocks are Clear and OnTable

- Initially
 - has 4 blocks: Blue, Yellow, Green, Red
 - all blocks are Clear and OnTable
A Motivating Example

- Initially has two declarative goals:
 \[\Diamond \text{Tower}^G_{\neg Y} \quad \Diamond \text{Tower}^B_{\neg R} \]

- Planning rule base with only one rule:
 \[\Diamond \text{Tower}^Q_{\neg P} : \exists b, b'. \text{OnTable}(b) \land \text{OnTable}(b') \land \text{Clear}(b) \land \text{Clear}(b') \land Q(b) \land \neg P(b') \leftrightarrow \text{stack}(b, b') \]

- If has goal and believes that then do
A Motivating Example

- One trace in the absence of consistency check
 - adopt plan $stack(G,B)$ w.r.t. goal $\Diamond \text{Tower}_{\neg Y}^G$
 - execute $stack(G,B)$

<table>
<thead>
<tr>
<th>Decl. Goals</th>
<th>Plans</th>
<th>World State</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\langle \neg Y, \neg R \rangle$</td>
<td>${ } { } { }$</td>
<td>$\langle \text{Blue}, \text{Yellow}, \text{Green}, \text{Red} \rangle$</td>
</tr>
<tr>
<td>$\langle \neg Y, \neg R \rangle$</td>
<td>${ \text{stack}(G,B) } \langle \text{Blue}, \text{Yellow}, \text{Green}, \text{Red} \rangle$</td>
<td></td>
</tr>
<tr>
<td>$\langle \neg R \rangle$</td>
<td>${ } \langle \text{Green}, \text{Yellow}, \text{Red} \rangle$</td>
<td></td>
</tr>
</tbody>
</table>

No Transitions Possible
A Motivating Example

- One trace with consistency check

<table>
<thead>
<tr>
<th>Decl. Goals</th>
<th>Plans</th>
<th>World State</th>
</tr>
</thead>
<tbody>
<tr>
<td>¬Y ¬R</td>
<td>{}</td>
<td></td>
</tr>
<tr>
<td>¬Y ¬R</td>
<td>stack(G,R)</td>
<td></td>
</tr>
<tr>
<td>¬R</td>
<td>{}</td>
<td></td>
</tr>
<tr>
<td>¬R</td>
<td>stack(B,Y)</td>
<td></td>
</tr>
<tr>
<td>{}</td>
<td>{}</td>
<td></td>
</tr>
</tbody>
</table>
Contributions

• Defined Simple Rational BDI APL (SR-APL)
 – combines elements from BDI APLs e.g. AgentSpeak [Rao ‘01] and the situation calculus-based ConGolog APL [De Giacomo et al. ‘00]
 – maintains consistency between chosen declarative goals and adopted plans

• Based on theory of prioritized goals and their dynamics adopted from [Khan&Lespérance AAMAS ‘10 – Session 5]
 – grounded on a formal action theory (i.e. the situation calculus)
 – handles temporally extended goals
 – formalizes prioritized goals, chosen goals, and their dynamics semantically
 – models the dependencies between subgoals and their parent goals
Contributions

• Proven that SR-APL satisfies some key rationality requirements
• Key issues
 – how to ensure consistency?
 – what does it mean to be committed to execute a plan next?
SR-APL : Components

- Theory specifying actions, knowledge, and goals
 - achievement and procedural goals only
- Planning Rule-Base Π with rules of the form $(\phi : \psi \leftarrow \sigma)$
- Plan language for σ
 - primitive actions a
 - wait / test actions Φ?
 - sequence of actions $(\delta_1; \delta_2)$
 - special action for adopting subgoal $\Diamond \Phi$ relative to program σ

 $\textit{adopt}(\Diamond \Phi, \sigma)$
 - Procedural intention base Γ
SR-APL: Configurations & Semantics

- **Configurations**
 - program configuration $\langle \sigma, s \rangle$
 - agent configuration $\langle \Gamma, s \rangle$
 - theory + situation implicitly specify agent’s knowledge and goals
 - initial agent configuration $\langle \emptyset, S_0 \rangle$

- **Operational semantics provided using a two-tier transition system**
 - program-level transitions $\langle \sigma, s \rangle \to \langle \sigma', s' \rangle$ – as in ConGolog
 - agent-level transitions $\langle \Gamma, s \rangle \Rightarrow \langle \Gamma', s' \rangle$
Why Procedural Intention Base?

- Want to model commitment to execute a plan δ next
- First attempt: agent has goal that $\exists s. \text{Do}(\delta, now, s)$
 - but does not allow concurrency/interleaving – too strong
- Second attempt: goal $\exists s. \text{DoAtleast}(\delta, now, s)$ – execute δ possibly with any other actions
 - but this allows unnecessary actions – too weak
- Solution: define procedural intention base Γ – list of all plans the agent is committed to
 - require actions the agent performs only come from Γ
SR-APL: Operational Semantics

- Rule A_{sel} for selecting and adopting a plan using rule-base Π

$$\text{Member}(\Diamond \Phi : \Psi \leftarrow \sigma, \Pi), D \models \text{RPGoal}(\Diamond \Phi, n, s),$$

$$D \models \neg \text{Handled}(\Diamond \Phi, s) \land \text{Know}(\Psi', s), \text{mgu}(\Psi, \Psi') = \theta,$$

$$D \models \neg \text{CGoal}(\neg \exists s'. \text{Do}(\text{adopt}(\text{DoAtleast}(\sigma \theta), \Diamond \Phi), \text{now}, s'), s)$$

$$\langle \Gamma, s \rangle \Rightarrow \langle \text{Cons}(\sigma \theta, \Gamma), \text{do}(\text{adopt}(\text{DoAtleast}(\sigma \theta), \Diamond \Phi), s) \rangle$$

- if head of a rule $(\Diamond \Phi : \psi \leftarrow \sigma)$ in Π matches with an unhandled realistic p-goal $\Diamond \Phi$ and belief-condition ψ of that rule also follows from agent’s knowledge and agent does not intend not to adopt the plan $\text{DoAtleast}(\sigma \theta)$

- then can do transition by adopting $\text{DoAtleast}(\sigma \theta)$ as a subgoal of $\Diamond \Phi$ adding $\text{DoAtleast}(\sigma \theta)$ to Γ
Simple Rational APL

SR-APL : Operational Semantics

• Rule A_{step} for single stepping the agent program by executing action from Γ

\[
\text{Member}(\sigma, \Gamma), D \models \text{RPGoal}(\text{DoAtleast}(\sigma), n, s),
\]
\[
D \models \langle \sigma, s \rangle \rightarrow \langle \sigma', do(a, s) \rangle \land \neg \text{CGoal}(\exists s'.Do(a, \text{now}, s'), s)
\]
\[
\langle \Gamma, s \rangle \Rightarrow \langle \text{Replace}(\sigma, \sigma', \Gamma), do(a, s) \rangle
\]

– if σ is in Γ and
\[
\text{DoAtleast}(\sigma) \text{ is a realistic p-goal at some priority level and}
\]
\[
\sigma \text{ has a program level transition with action } a \text{ and}
\]
\[
\text{executing } a \text{ next is consistent with the agent's intentions}
\]

– then can do transition by executing action a
\[
\text{updating } \Gamma \text{ accordingly}
\]
Weak Notion of Consistency

- In A_{sel} and A_{step}, we only do partial consistency check; we require that:
 - e.g. agent does not intend not to adopt the plan
 \[\text{DoAtleast}(\sigma) \]
 - Why?
 - plans might be abstract, i.e. include unexpanded subgoals
 - thus currently non-executable without introducing additional actions
 - Consequences
 - more efficient
 - but agent could get stuck due to wrong choice of actions, and may need to repair the plan
 - however this does not imply that agent could perform some actions that make other goals impossible
SR-APL : Operational Semantics

- Rule A_{exo} for accommodating exogenous actions
 - only if the action performed is possible

- Rule A_{clean} for synchronizing procedural goal-base and declarative counter-part; our theory of goals automatically drop
 - impossible goals
 - goals that has become inconsistent with other higher priority goals

- Rule A_{repair} for repairing plans when agent gets stuck due to
 - occurrence of exogenous events
 - partial consistency check
Traces

• **Labeled execution trace**: possibly infinite sequence of configurations

\[l_0 \quad l_1 \quad l_2 \quad l_3 \]

\[\langle \Gamma_0, s_0 \rangle \Rightarrow \langle \Gamma_1, s_1 \rangle \Rightarrow \langle \Gamma_2, s_2 \rangle \Rightarrow \langle \Gamma_3, s_3 \rangle \Rightarrow \ldots \]

such that \(\Gamma_0 = \{ \} \) and \(s_0 = S_0 \)

and for all \(\langle \Gamma_i, s_i \rangle \) the agent level transition rule \(l_i \) can be used to obtain

\[\langle \Gamma_{i+1}, s_{i+1} \rangle \]

• **Complete trace**: a finite labeled execution trace such that \(\langle \Gamma_i, s_i \rangle \neq > \)

or \(\langle \Gamma_i, s_i \rangle \) is final
Blocks World Revisited

• Proposition – in the absence of exogenous actions

for all complete traces $\langle \Gamma_0, s_0 \rangle \Rightarrow \ldots \Rightarrow \langle \Gamma_n, s_n \rangle$ without exo. actions

we have: $D_{BW} \models \text{Tower}_{nY}^G(s_n) \land \text{Tower}_{nR}^B(s_n)$

and $\langle \Gamma_n, s_n \rangle$ is final
Rationality of SR-APL Agents

• Consistency of knowledge & intentions
 - holds for all configurations
 \[D \models \forall s. \neg \text{Know}(false, s) \land \neg \text{CGoal}(false, s) \]

• Consistency of declarative and procedural goals

 Given trace \[T = \langle \Gamma_0, s_0 \rangle \Rightarrow \cdots \Rightarrow \langle \Gamma_n, s_n \rangle \] without exogenous actions for all \(i \) s.t. \(0 < i \leq n \)
 if \(\langle \Gamma_i, s_i \rangle \) is a configuration in a trace, then for all \(\sigma \in \Gamma_i \)
 we have: \[D \models \text{CGoal}(\text{DoAtleast}(\sigma), s_i) \]
Rationality of SR-APL Agents

- **Rationality of actions in a trace**

 Given trace $T = \langle \Gamma_0, s_0 \rangle \Rightarrow \ldots \Rightarrow \langle \Gamma_n, s_n \rangle$ without exogenous actions

 for all i s.t. $0 < i \leq n$ and $s_i = do(a, s_{i-1})$

 1. $D \models \neg CGoal(\neg Do(a), s_{i-1})$
 2. if $l_i = A_{step}$ then $D \models CGoal(DoAtleast(a), s_{i-1})$
 3. if $a = adopt(\psi, \phi)$ then $D \models \neg CGoal(\neg O\psi, s_{i-1})$
Related Work and Future Work

• Related work
 – most APL with declarative goals only handle achievement goals
 – most assume all goals have same priority
 – [Hindriks et al. ‘09] – temporally extended goals
 – to the best of our knowledge, none maintains consistency

• Future work
 – investigate restricted versions of SR-APL to improve efficiency/tractability
 – incorporate other types of temporally extended goals
 – incorporate full look-ahead (hierarchical decomposition) over plans for consistency check before adopting/executing them
Appendix: Weak Consistency Check

- Domain with 3 actions
 - a, b, and r
 - execution of a makes the preconditions of b false
 - execution of r restores the preconditions of b
- Only possible execution of $\{a || b\}$ is $(b; a)$

- Agent has
 - declarative intentions $\text{DoAtleast}(a)$ and $\text{DoAtleast}(b)$
 - procedural intention base $= \{a, b\}$

- Rule A_{step} allows agent to execute action p if it is consistent with its (declarative) intentions, i.e. with $[\text{DoAtleast}(a) || \text{DoAtleast}(b)]$
 - p can be action a, since the execution $(a; r; b)$ is a possible execution of the above