A Logical Framework for Prioritized Goal Change

Shakil M. Khan and Yves Lespérance

Department of Computer Science & Engineering
York University
Toronto, ON, Canada

AAMAS 2010

May 12, 2010
Motivation

- BDI agent theories (e.g. [Cohen & Levesque ‘90], [Rao & Georgeff ‘91] model
 - the different mental attitudes of the agents (beliefs, goals, …) and the relationship between them
 - the relation between these and action

- Belief change
- But most agent theories do not account for
 - goals with different priorities
 - dynamics of goals
 - temporally extended goals
 - dependencies between goals and subgoals

- Modeling goals and preferences useful in many applications, e.g. e-commerce, etc.

- Important for work on BDI Agent Programming Languages (APLs)
Contributions

• Define *prioritized goals* or desires – can be inconsistent with each other and the agent’s knowledge

• Show how to compute a consistent set of *chosen goals* or intentions from this set of prioritized goals

• Specify the *dynamics* of prioritized goals – chosen goals automatically updated
Foundations

- The Situation Calculus – basic action theories [Reiter ‘01]

- Knowledge [Scherl & Levesque ‘01]
 - knowledge expansion due to sensing and communication acts

- We add a new sort of *infinite paths*
 - can evaluate goals over these infinite paths and handle arbitrary temporally extended goals
Prioritized Goals: Semantics

- Prioritized Goals (p-goals) or Desires
 - not required to be consistent with agent’s knowledge or with each other
 - specified using a possible worlds account; “world = infinite path”
 - totally ordered – one p-goal per level
 - $G(p, n, s)$: path p is G-accessible at priority level n in situation s

- Number of p-goals need not be finite

- Realistic P-Goals
 - p-goals that are compatible with what the agent knows
 - path p is G_R-accessible if
 - p is G-accessible and
 - p starts with a knowledge-accessible situation
Example: P-Goals and Realistic P-Goals

Prioritized Goals

<table>
<thead>
<tr>
<th>level</th>
<th>poss?</th>
<th>Goal</th>
<th>Realistic Goal</th>
</tr>
</thead>
<tbody>
<tr>
<td>n>2</td>
<td>✓</td>
<td>True</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>✓</td>
<td>BeHappy</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>✓</td>
<td>GetPhD</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>✓</td>
<td>BeRich: highest priority</td>
<td></td>
</tr>
</tbody>
</table>

Levels of prioritization:
- $G(0)$: BeRich (highest priority)
- $G(1)$: GetPhD
- $G(2)$: BeHappy
- $G(n)$: True for $n>2$
Chosen Goals

• Chosen Goals (c-goals) or Intentions
 – defined in terms of realistic p-goal hierarchy
 – maximal set of highest priority goals that are consistent with each-other and with agent’s knowledge

• p-goals can be \textit{active} (i.e. chosen) or \textit{inactive}

• Inactive p-goals can later become active if world changes
Example: Chosen Goals

<table>
<thead>
<tr>
<th>level</th>
<th>poss?</th>
<th>active?</th>
<th>consistent?</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>✓</td>
<td>✓</td>
<td>✗</td>
</tr>
<tr>
<td>1</td>
<td>✓</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>0</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Goals:
- BeHappy
- GetPhD
- BeRich

Consistency:
- $G_C(2)$
- $G_C(1)$
- $G_C(0)$
- $G_R(2)$
- $G_R(1)$
- $G_R(0)$
- K
Goal Change Actions

- **p-goals** change when
 - actions/event occurs and the agent’s knowledge changes
 - a new goal is adopted: $\text{adopt} (\varphi,n)$
 - an existing goal is dropped: $\text{drop} (\varphi)$

- **c-goals** automatically updated when p-goals change
Prioritized Goals: Dynamics

- Specified by providing a Successor State Axiom (SSA) for p-goals/G-accessibility relation
 - **regular action**: progress all G-accessible paths at all levels to reflect the fact that this action has just happened
 - **adoption of a p-goal \(\phi \) at level \(n \)**: insert \(\phi \) at \(n \) to the agent’s goal hierarchy & push each goal that has lower priority one level down in the hierarchy
 - **dropping a p-goal \(\phi \)**: replace the propositions that imply the dropped goal in the agent’s goal hierarchy by “true”
Example: Goal Dynamics

Consistent?

- **BeHappy**: Yes
- **GetPhD**: No
- **BeRich**: No

Possible? Active?

- **BeHappy**: Yes, Yes
- **GetPhD**: Yes, Yes
- **BeRich**: Yes, No
- **goBankrupt**: Yes, Yes

Poss? Active?

- **BeHappy**: Yes, Yes
- **GetPhD**: Yes, Yes
- **BeRich**: Yes, No
- **goBankrupt**: Yes, Yes
Optimizing Agents

• Bratman’s (1987) intentions
 – limits the agent’s practical reasoning
 – but could be given up for another intention if utility of doing so is high

• Our c-goals = intention with an automatic filter override mechanism [Bratman ‘87]
 – will drop an intended goal if an opportunity to commit to a higher priority but inconsistent goal arises (i.e. when an inactive goal becomes active)
 – idealized agent – always maximizes her utility
Properties

- Proven that has many intuitively justified properties
 - consistency of c-goals, realism
 - introspection of goals
 - adopt/drop has desired effects
 - adopting/dropping equivalent goals has the same result
 - persistence of achievement realistic p-goals and achievement c-goals
Persistence of Achievement C-Goals

- If agent has c-goal that Φ at level n in situation s, then she will retain this after some non goal-drop action a has been performed in s, provided that:

 - she knows in s that Φ has not yet been achieved, and
 - Φ is consistent with higher priority c-goals after a has been performed in s
Related Work

- [Shapiro et al. – JLC ‘07]
 - handles goal change (but not prioritized goals)
 - a goal is retained even if the agent learns that it has become impossible
- [Shapiro & Brewka – IJCAI ‘07]
 - similar to our framework
 - deals with restricted types of temporally extended goals
 - has some unintuitive properties: the agent’s goals may be unstable due to partial ordering over goals
- BDI APLs w/declarative goals (e.g. [Hindriks et al. – AAMAS ‘09])
 - most only handle achievement goals
 - none provides formal semantics for goal dynamics
 - none maintains the consistency of (chosen) goals
- Goal change postulates [da Costa Pereira et al. – ECAI ‘06]
Conclusion

• Main contributions

 – model of prioritized goals and intentions

 – handles temporally extended goals

 – account of goal dynamics

 – proven model has intuitive properties
Future Work

• Provide control over intention reconsideration

• Identify complete set of postulates for goal update/revision

• Develop account of subgoals and their dynamics (see DALT 2009)

• Formalize rational APL with declarative goals using this theory (see DALT 2010)
Appendix: Suffix and Progression

- p' is the suffix of p after action a has been performed in situation s
Appendix: Why Not Partially Ordered Goals

<table>
<thead>
<tr>
<th>level</th>
<th>poss?</th>
<th>p-goal</th>
<th>consistent?</th>
</tr>
</thead>
<tbody>
<tr>
<td>n>2</td>
<td>✓</td>
<td>True</td>
<td>c-goals: either $\varphi_0 & \varphi_{2a} & \varphi_{2b}$ or $\varphi_0 & \varphi_{2b} & \varphi_{2c}$</td>
</tr>
<tr>
<td>2</td>
<td>✓</td>
<td>φ_2</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>✓</td>
<td>φ_1</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>✓</td>
<td>φ_0: highest priority</td>
<td></td>
</tr>
</tbody>
</table>