
The Space Complexity of Unbounded

Timestamps

Faith Ellen1, Panagiota Fatourou2, and Eric Ruppert3

1 University of Toronto, Canada
2 University of Ioannina, Greece

3 York University, Canada

Abstract. The timestamp problem captures a fundamental aspect of
asynchronous distributed computing. It allows processes to label events
throughout the system with timestamps that provide information about
the real-time ordering of those events. We consider the space complex-
ity of wait-free implementations of timestamps from shared read-write
registers in a system of n processes.
We prove an Ω(

√
n) lower bound on the number of registers required.

If the timestamps are elements of a nowhere dense set, for example the
integers, we prove a stronger, and tight, lower bound of n. However, if
timestamps are not from a nowhere dense set, this bound can be beaten;
we give an algorithm that uses n− 1 (single-writer) registers.
We also consider the special case of anonymous algorithms, where pro-
cesses do not have unique identifiers. We prove anonymous timestamp
algorithms require n registers. We give an algorithm to prove that this
lower bound is tight. This is the first anonymous algorithm that uses a
finite number of registers. Although this algorithm is wait-free, its step
complexity is not bounded. We also present an algorithm that uses O(n2)
registers and has bounded step complexity.
Keywords: timestamps, shared memory, anonymous, lower bounds.

1 Introduction

In asynchronous systems, it is the unpredictability of the scheduler that gives
rise to the principle challenges of designing distributed algorithms. One approach
to overcoming these challenges is for processes to determine the temporal order-
ing of certain events that take place at different locations within the system.
Examples of tasks where such temporal information is essential include imple-
menting first-come first-served processing of jobs that arrive at different locations
in the system and knowing whether a locally cached copy of data is up-to-date.
Temporal information about the scheduling of events can also be used to break
symmetry, e.g., the first process to perform some step can be elected as a leader.

If processes communicate via messages or shared read-write registers, it is
impossible for them to determine the exact temporal ordering of all events. How-
ever, timestamps provide partial information about this ordering in such sys-
tems. A timestamp algorithm allows processes to ask for labels, or timestamps,

which can then be compared with other timestamps. Timestamps have been
used to solve several of the most fundamental problems in distributed comput-
ing. Examples include mutual exclusion [17] (and the more general k-exclusion
problem [2]), randomized consensus [1], and constructing multi-writer registers
from single-writer registers [13, 19, 22]. Timestamps have also been employed in
anonymous systems as building blocks for implementations of wait-free atomic
snapshots and other data structures [12].

Despite the central importance of the timestamp problem, its complexity is
not well-understood. In this paper, we present the first study on the number of
registers required for wait-free implementations of timestamps.

The history of timestamps begins with Lamport [18], who defined a partial
ordering on events in a message-passing system; one event “happens before”
another if the first could influence the second (because they are by the same
process or because of messages sent between processes). He defined a logical
clock, which assigns integer timestamps to events such that, if one event happens
before another, it is assigned a smaller timestamp. There is no constraint on the
relationship between timestamps assigned to other pairs of events.

Fidge and Mattern [11, 20] introduced the notion of vector clocks, where
timestamps are vectors of integers rather than integers. Two vectors are com-
pared component-wise: one vector is smaller than or equal to another when each
component of the first is smaller than or equal to the corresponding component
of the second. Their vector clock algorithms satisfy the property that one event
gets a smaller vector than another if and only if it happens before the other
event. This property is not possible to ensure using integer timestamps, because
concurrent events may need to be assigned incomparable vectors. Charron-Bost
[5] proved that the number of components required by a vector clock is at least
the number of processes, n.

In message-passing algorithms, the timestamps reflect the partial order rep-
resenting (potential) causal relationships. In shared-memory systems, we are
concerned, instead, with the real-time ordering of events.

The simplest shared-memory timestamp algorithm uses single-writer registers
[17]. To get a new timestamp, a process collects the values in all the single-writer
registers and writes one plus the maximum value it read into its single-writer
register. This value is its new timestamp.

Dwork and Waarts [8] described a vector timestamp algorithm that uses
n single-writer registers. To obtain a new timestamp, a process increments its
register and collects the values in the registers of all other processes. It returns
the vector of these n values as its timestamp. These timestamps can be compared
either lexicographically or in the same way as in the vector clock algorithm.

Attiya and Fouren [3] gave a vector timestamp algorithm that is considerably
more complicated. It uses an unbounded number of registers but has the advan-
tage that the number of components in the timestamp (and the time required
to obtain it) is a function of the number of processes running concurrently.

Guerraoui and Ruppert [12] described an anonymous wait-free timestamp
algorithm, but the number of registers used and the time-complexity of getting

a timestamp increases without bound as the number of labelled events increases.
Thus, their algorithm is not bounded wait-free.

In all the above algorithms, the size of timestamps grows without bound as
the number of labelled events increases. This is necessary to describe the ordering
among an unbounded number of non-concurrent events. For some applications,
one can restrict the events about which order queries can be made, for example,
only the most recent event by each process. This restriction allows timestamps to
be reused, so they can be of bounded size. This restricted version of timestamps
is called the bounded timestamp problem. In contrast, the general version of the
problem is sometimes called the unbounded timestamp problem. Israeli and Li [14]
gave a bounded timestamp algorithm, assuming timestamps are only generated
by one process at a time. Dolev and Shavit defined and solved the problem
allowing multiple processes to obtain timestamps concurrently [6]. This and other
known implementations of bounded concurrent timestamps [7, 8, 13, 15] are quite
complex, as compared to unbounded timestamps.

It is known that bounded timestamp algorithms must use Ω(n) bits per time-
stamp [14]. In contrast, unbounded timestamp algorithms can use timestamps
whose bit lengths are logarithmic in the number of events that must be labelled.
Thus, if the number of events requiring timestamps is reasonable (for example,
less than 264), timestamps will easily fit into one word of memory. The work
on the bounded timestamp problem is of great interest and technical depth.
However, since bounded timestamp algorithms are complicated and require long
timestamps, the unbounded version is often considered more practical. This pa-
per focusses exclusively on the unbounded timestamp problem.

1.1 Our Contributions

In this paper, we study the number of read-write registers needed to implement
timestamps. We present both upper and lower bounds. For our upper bounds, we
give wait-free algorithms. The lower bounds apply even if algorithms must only
satisfy the weaker progress property of obstruction-freedom. Our most general
lower bound shows that any timestamp algorithm must use Ω(

√
n) registers.

Previously known wait-free algorithms use n registers. We show how to modify
one of these algorithms to use n − 1 registers.

Some existing timestamp implementations use timestamps drawn from a
nowhere dense set. Intuitively, this means that between any two possible time-
stamps, there are a finite number of other timestamps. For this restricted case,
we show that any such implementation must use at least n registers, exactly
matching known implementations. Interestingly, our lower bound can be beaten
by using timestamps from a domain that is not nowhere dense, namely, pairs of
integers, ordered lexicographically.

We also prove matching upper and lower bounds for anonymous systems,
where processes do not have unique identifiers and are programmed identically.
We give a wait-free algorithm using n registers, whereas previous algorithms used
an unbounded number. We also provide another, faster anonymous algorithm.
It uses O(n2) registers and a process takes O(n3) steps to obtain a timestamp.

We prove a tight lower bound of n for the number of registers required for an
anonymous timestamp implementation. This establishes a small but interesting
space complexity separation between the anonymous and general versions of the
timestamp problem, since n − 1 registers suffice for our algorithm, which uses
identifiers. Lower bounds for anonymous systems are interesting, in part, because
they provide insight for lower bounds in more general systems [9, 10].

Guerraoui and Ruppert [12] used timestamps as a subroutine for their anony-
mous implementation of a snapshot object. Plugging in our space-optimal anony-
mous timestamp algorithm yields an anonymous wait-free implementation of an
m-component snapshot from m + n registers. This is the first such algorithm to
use a bounded number of registers. Similarly, if our second anonymous timestamp
algorithm is used, we obtain an anonymous wait-free snapshot implementation
from O(m + n2) registers where each Scan and Update takes O(n2(m + n))
steps. This is the first bounded wait-free anonymous snapshot implementation.

2 The Model of Computation

We use a standard model for asynchronous shared-memory systems, in which
a collection of n processes communicate using atomic read-write registers. We
consider only deterministic algorithms. If processes have identical programmes
and do not have unique identifiers, the algorithm is called anonymous; otherwise,
it is called eponymous [21]. An execution of an algorithm is a possibly infinite
sequence of steps, where each step is an access to a shared register by some
process, followed by local computation of that process. The subsequence of steps
taken by each process must conform to the algorithm of that process. Each read
of a register returns the value that was most recently written there (or the initial
value of the register if no write to it has occurred). If P is a set of processes,
a P-only execution is an execution in which only processes in P take steps. A
solo execution by a process p is a {p}-only execution. We use α · β to denote
the concatenation of the finite execution α and the (finite or infinite) execution
β. A configuration is a complete description of the system at some time. It is
comprised of the internal state of each process and the value stored in each
shared register. A configuration C is reachable if there is an execution from an
initial configuration that ends in C. In an execution, two operation instances are
called concurrent if neither one ends before the other begins.

We consider processes that may fail by halting. An algorithm is wait-free

if every non-faulty process completes its tasks within a finite number of its
own steps, no matter how processes are scheduled or which other processes fail.
A stronger version of the wait-freedom property, called bounded wait-freedom,
requires that the number of steps be bounded. A much weaker progress property
is obstruction-freedom, which requires that each process must complete its task
if it is given sufficiently many consecutive steps.

In our algorithms, each register need only be large enough to store one time-
stamp. For our lower bounds, we assume that each register can hold arbitrarily
large amounts of information. In our algorithms, we use the convention that

shared registers have names that begin with upper-case letters and local vari-
ables begin with lower-case letters. If R is a set or array of registers, we use
Collect(R) to denote a read of each register in R, in some unspecified order.

Our lower bounds use covering arguments, introduced by Burns and Lynch
[4]. We say a process p covers a register R in a configuration C if p will write to
R when it next takes a step. A set of processes P covers a set of registers R in
C if |P| = |R| and each register in R is covered by exactly one process in P . If
P covers R, a block write by P is an execution in which each process in P takes
exactly one step writing its value.

3 The Timestamp Problem

A timestamp implementation provides two algorithms for each process: GetTS

and Compare. GetTS takes no arguments and outputs a value from a uni-
verse U . Elements of U are called timestamps. Compare takes two arguments
from U and outputs a Boolean value. If an instance of GetTS, which outputs
t1, finishes before another instance, which outputs t2, begins, then any subse-
quent instances of Compare(t1, t2) and Compare(t2, t1) must output true and
false, respectively. Thus, two non-concurrent GetTS operations cannot return
the same timestamp. Unlike the bounded timestamp problem, Compare can
compare any previously granted timestamps, so U must be infinite.

This definition of the timestamp problem is weak, which makes our lower
bounds stronger. It is sufficient for some applications [12], but it is too weak
for other applications. For example, consider the implementation of atomic
multi-writer registers from single-writer registers [13, 19, 22]. Suppose readers
determine which value to return by comparing timestamps attached to each
written value to find the most recently written value. If two writers write different
values concurrently, and two readers later read the register, the readers should
agree on which of the two values to return. To handle this kind of application,
we can define a stronger version of the timestamp problem which requires that,
for each pair t and t′, all Compare(t, t′) operations in the same execution must
return the same value. A static timestamp algorithm is one that satisfies a still
stronger property: for each pair, t and t′, the Compare(t, t′) always returns
the same result in all executions. Static timestamp algorithms have the nice
property that Compare queries need not access shared memory. The algorithms
we present in this paper are all static. The lower bounds in Sections 4.1 and 7
apply even for non-static implementations.

A natural way to design a static timestamp algorithm is to use timestamps
drawn from a partially ordered universe U , and answer Compare queries using
that order; Compare(t1, t2) returns true if and only if t1 < t2. A partially
ordered set U is called nowhere dense if, for every x, y ∈ U , there are only a
finite number of elements z ∈ U such that x < z < y. The integers, in their
natural order, and the set of all finite sets of integers, ordered by set inclusion,
are nowhere dense. Any set of fixed-length vectors of integers, where x ≤ y if and
only if each component of x is less than or equal to the corresponding component

of y is too. However, for k ≥ 2, the set of all length-k vectors of integers, ordered
lexicographically, is not nowhere dense.

Another desirable property is that all timestamps produced are distinct, even
for concurrent GetTS operations. In eponymous systems, this property is easy
to satisfy by incorporating the process’s identifier into the timestamp gener-
ated [17]. In anonymous systems, it is impossible, because symmetry cannot be
broken using registers.

4 Eponymous Lower Bounds

We prove lower bounds on the number of registers needed to implement time-
stamps eponymously. First, we give the most general result of the paper, proving
that Ω(

√
n) registers are needed. Then, we prove a tight lower bound of n if the

timestamps are chosen from a partially ordered set that is nowhere dense.

4.1 A General Space Lower Bound

We use a covering argument, showing that, starting from a configuration where
some registers are covered, we can reach another configuration where more regis-
ters are covered. The following lemma allows us to do this, provided the original
registers are covered by three processes each. The complement of a set of pro-
cesses S is denoted by S.

Lemma 1. Consider any timestamp algorithm. Suppose that, in a reachable

configuration C, there are three disjoint sets of processes, P1, P2, and Q that

each cover the set of registers R. Let Ci be the configuration obtained from C by

having the processes in Pi do a block write, βi, for i = 1, 2. Then for all disjoint

sets S1 ⊆ P2 ∪ Q and S2 ⊆ P1 ∪ Q, with some process not in S1 ∪ S2, there is

an i ∈ {1, 2} such that every Si-only execution starting from Ci that contains a

complete GetTS writes to a register not in R.

Proof. Suppose there exist disjoint sets S1 ⊆ P2 ∪ Q and S2 ⊆ P1 ∪ Q, an S1-
only execution α1 from C1 and an S2-only execution α2 from C2 that both write
only to registers in R, and q /∈ S1∪S2. Also suppose α1 and α2 contain complete
instances of GetTS, I1 and I2, that return t1 and t2, respectively. Let γ be an
execution starting from C that begins with a block write to R by Q, followed by
a solo execution in which q performs a complete instance of Compare(t1, t2).
Then, β1 ·α1 · β2 ·α2 · γ and β2 ·α2 · β1 ·α1 · γ are valid executions starting from
C that are indistinguishable to q. Hence, in both, q returns the same result for
Compare(t1, t2). This is incorrect, since I1 precedes I2 in β1 ·α1 ·β2 ·α2 · γ, but
I2 precedes I1 in β2 · α2 · β1 · α1 · γ. ⊓⊔

Theorem 2. Every obstruction-free timestamp algorithm for n processes uses

more than 1

2

√
n − 1 registers.

Proof. First, we show that at least one register is required. To derive a contra-
diction, suppose there is an implementation that uses no shared registers. Let
α and β be solo executions of GetTS by different processes, p and q, starting
from the initial configuration. Suppose they return timestamps t and t′. Let
γ be a solo execution of Compare(t, t′) by p immediately following α. Since
α · β · γ is indistinguishable from β · α · γ to p, it must return the same result
for Compare(t, t′) in both. However, it must return true in α · β · γ and false in
β · α · γ. This is a contradiction. This suffices to prove the claim for n ≤ 4.

For the remainder of the proof, we assume that n ≥ 5. Consider any time-
stamp algorithm that uses r > 0 registers. To derive a contradiction, assume
r ≤ 1

2

√
n − 1. We show, by repeated applications of Lemma 1 that it is possi-

ble to reach a configuration where all r registers are covered by three processes
each. One further application of Lemma 1 will then show that some process must
write to some other register, to produce the desired contradiction. We prove the
following claim by induction on k.

Claim: For k = 1, . . . , r, there is a reachable configuration with k registers each
covered by r − k + 3 processes.

Base case (k = 1): Let p1, p2 and q be any three processes. Applying Lemma 1
with initial configuration C, R = ∅, P1 = P2 = Q = ∅, S1 = {p1}, and S2 = {p2}
proves that the solo execution of GetTS by either p1 or p2 must write to some
register. Thus, all except possibly one process must write to a register during
a solo execution of GetTS starting from C. Consider an execution consisting
of the concatenation of the longest write-free prefixes of n − 1 of these solo
executions. In the resulting configuration, there are n − 1 processes covering
registers. Since there are r registers and n− 1 ≥ (2r)2 > r(r + 1), there is some
register that is covered by at least r + 2 = r − k + 3 processes.

Induction Step: Let 1 ≤ k ≤ r − 1 and suppose the claim is true for k. Let C be
a reachable configuration in which there is a set R of k registers that are each
covered by r−k +3 ≥ 3 processes. Let P1, . . . ,Pr−k+3 be disjoint sets that each
cover R with |Pi| = k for all i.

Divide the n − (r − k + 3)k processes not in P1 ∪ · · · ∪ Pr−k+3 into two
sets, U1 and U2, each containing at least ⌊(n − (r − k + 3)k)/2⌋ processes. Let
S1 = P1∪U1 and S2 = P2∪U2. Then S1 ⊆ P2 ∪ P3 and S2 ⊆ P1 ∪ P3 are disjoint.
Since |P3| = k ≥ 1, there is a process q ∈ P3 − (S1 ∪ S2). For i = 1, 2, let Ci

be the configuration obtained from C by having the processes in Pi do a block
write. By Lemma 1, there exists i ∈ {1, 2} such that every Si-only execution
starting from Ci that contains a complete GetTS writes to a register not in R.

Let m = |Si|. We inductively define a sequence of solo executions α1, α2, . . . ,
αm by each of the processes of Si such that α1 · α2 · · ·αm is a legal execution
from Ci that does not write to any registers outside R and each process covers
a register not in R. Let 1 ≤ j ≤ m. Assume that α1, . . . , αj−1 have already been
defined and satisfy the claim. Consider the Si-only execution δ = α1 ·α2 · · ·αj−1 ·
α from Ci, where α is a solo execution by another process pj ∈ Si that contains
a complete GetTS operation. Then δ must include a write by pj to a register

outside R during α. Let αj be the prefix of α up to, but not including, pj ’s first
write outside of R. This has the desired properties.

Let C′ be the configuration reached from Ci by performing the execution
α1 ·α2 · · ·αm. Then at C′, each process in Si covers one of the r−k registers not in
R and |Si| ≥ k+⌊(n−(r−k+3)k)/2⌋ ≥ ((2r)2−(r−k+1)k)/2 > (r−k)(r−k+1),
since 2r > 2r−k, r−k+1 > 0. Thus, by the pigeonhole principle, some register
R not in R is covered by at least r − k + 2 processes. Let R′ = R ∪ {R}. Each
register in R is covered by one process from each of P3, . . . ,Pr−k+3 and P3−i.
Thus, each of the k + 1 registers in R′ is covered by r − k + 2 processes in the
configuration C′, proving the claim for k + 1.

By induction, there is a reachable configuration in which all r registers are
covered by three processes each. By Lemma 1, there is an execution in which a
process writes to some other register. This is impossible. ⊓⊔

The first paragraph of the proof also shows that, if a timestamp algorithm
uses only single-writer registers, then at most one process never writes and,
hence, at least n − 1 single-writer registers are necessary.

4.2 A Tight Space Lower Bound for Static Algorithms using
Nowhere Dense Universes

We now turn to the special case where timestamps come from a nowhere dense
partial order, and Compare operations can be resolved using that order, without
accessing shared memory. The following theorem provides a tight lower bound,
since it matches a standard timestamp algorithm [17].

Theorem 3. Any static obstruction-free timestamp algorithm that uses a nowhere

dense partially ordered universe of timestamps requires at least n registers.

Proof. We prove by induction that, for 0 ≤ i ≤ n, there is a reachable configu-
ration Ci in which a set Pi of i processes covers a set Ri of i different registers.
Then, in configuration Cn, there are processes poised at n different registers.
Base Case (i = 0): Let C0 be the initial configuration and let P0 = R0 = ∅.
Inductive Step: Let 1 ≤ i ≤ n. Assume Ci−1,Ri−1 and Pi−1 satisfy the claim.

If i = 1, let p be any process. Otherwise, let p ∈ Pi−1. Consider an execution α
that starts from Ci−1 with a block write by the processes in Pi−1 to the registers
of Ri−1, followed by a solo execution by p in which p completes its pending
operation, if any, and then performs GetTS, returning some timestamp t. Let
q be a process not in Pi−1 ∪ {p}. We show that a solo execution by q, starting
from Ci−1, in which it performs an infinite sequence of GetTS operations must
eventually write to a register not in Ri−1. Let tj be the timestamp returned by
the j’th instance of GetTS by q in this solo execution. Then tj < tj+1 for all
j ≥ 1. Since {j ∈ N | t1 < tj < t} is finite, there exists j ∈ N such that tj 6< t.

Suppose that q does not write to any register outside Ri−1 during the solo
execution, β, of j instances of GetTS, starting from Ci−1. Then β · α is in-
distinguishable from α to p, so p returns t as the result of its last GetTS in

Code for process pi (for 1 ≤ i ≤ n− 1):
GetTS

t← max(Collect(R)) + 1
R[i]← t

return (t, 0)

Code for process pn:
GetTS

t← max(Collect(R))
if t > oldt then c← 0
c← c + 1
oldt← t

return (t, c)

Fig. 1. An eponymous algorithm using n− 1 registers.

β · α. Therefore, tj < t. This contradicts the definition of j, so q must write
outside Ri−1. Consider the solo execution of q starting from Ci−1 until it first
covers some register R outside Ri−1. Let Ci be the resulting configuration. Then
Pi = Pi−1 ∪ {q} and Ri = Ri−1 ∪ {R} satisfy the claim for i. ⊓⊔

Jayanti, Tan and Toueg proved that linearizable implementations of per-
turbable objects require at least n−1 registers [16]. Roughly speaking, an object
is perturbable if some sequence of operations on the object by one process must
be visible to another process that starts executing later. General timestamps
do not have this property. However, the proof technique of [16] can be applied
to the special case considered in Theorem 3 (even though timestamps are not
linearizable). The proof technique used in Theorem 3 is similar to theirs, but is
considerably simpler, and gives a slightly stronger lower bound. Although our
improvement to the bound is small, it is important, since it proves a complexity
separation, showing that using nowhere dense sets of timestamps requires more
registers than used by the algorithm of the next section.

5 An Eponymous Algorithm

In this section, we show that there is a simple wait-free eponymous algorithm
that uses only n − 1 single-writer registers, which is optimal. The timestamps
generated will be ordered pairs of non-negative integers, ordered lexicographi-
cally. This shows that the lower bound in Sect. 4.2 is not true for all domains.

The algorithm uses an array R[1..n − 1] of single-writer registers, each ini-
tially 0. Processes p1, . . . , pn−1 use this array to collaboratively create the first
component of the timestamps by the simple method [17] discussed in Sect. 1.
The second component of any timestamp they generate is 0. The last process, pn,
reads the registers of the other processes to determine the first component of its
timestamp, and produces the values for the second component of its timestamp
on its own. Process pn does not write into shared memory.

The implementation of GetTS is presented in Figure 1. In the code for pn,
oldt and c are persistent variables, initially 0. Compare((t1, c1), (t2, c2)) returns
true if and only if either t1 = t2 and c1 < c2 or t1 < t2. The value stored in
each component of R does not decrease over time. So, if two non-concurrent
Collects are performed on R, the maximum value seen by the later Collect

will be at least as big as the maximum value seen by the earlier Collect.

Theorem 4. Figure 1 gives a timestamp algorithm using n − 1 registers with

step complexity O(n).

Proof. Suppose an instance, I1, of GetTS returns (t1, c1) before the invocation
of another instance I2 of GetTS, returns (t2, c2). We show that Compare((t1, c1),
(t2, c2)) returns true. We consider several cases.
Case 1: I1 and I2 are both performed by pn. It follows from the code that pn

generates an increasing sequence of timestamps (in lexicographic order): each
time pn produces a new timestamp, it either increases the first component or
leaves the first component unchanged and increases the second component.
Case 2: pn performs I2 but some process pi 6= pn performs I1. During I2, the value
pn sees when it reads R[i] is at least t1, so t2 ≥ t1. Furthermore, c2 ≥ 1 > 0 = c1.
Case 3: I2 is not performed by pn. Then t1 was the value of some component of R
some time before the end of I1 (because it was either read by pn while performing
I1, or was written by another process while performing I1). The value of this
component of R is at least t1 when I2 reads it, so t2 ≥ t1 + 1.

In all three cases, a Compare((t1, c1), (t2, c2)) will return true, as required.
Since R has n − 1 components, the step complexity of GetTS is O(n). ⊓⊔

6 Anonymous Algorithms

We present two new anonymous timestamp algorithms. The first uses n registers
and, as we shall see in Sect. 7, it is space-optimal. However, this algorithm, like
Guerraoui and Ruppert’s algorithm [12], is not bounded wait-free. The second
algorithm uses O(n2) registers, but it is bounded wait-free. It is an open question
whether there is a bounded wait-free algorithm that uses O(n) registers.

6.1 A Wait-Free Algorithm Using n Registers

The first algorithm uses an array A[1..n] of registers, each initially 0. The
timestamps are non-negative integers. Before a process returns a timestamp,
it records it in A so that subsequent GetTS operations will see the value and
return a larger one. We ensure this by having a process choose its timestamp
by reading all timestamps in A and choosing a larger one. The anonymity of
the algorithm presents a challenge, however. In a system with only registers,
two processes running in lockstep, performing the same sequence of steps, have
the same effect as a single process: there is no way to tell these two executions
apart. Even the two processes themselves cannot detect the presence of the other.
Consider an execution where some process p takes no steps. We can construct
another execution where p runs as a clone of any other process q, and p stops
taking steps at any time, covering any register that q wrote to. Thus, at any
time, a clone can overwrite any value written in a register (except the first such
value) with an older value. In the timestamp algorithm, if the value t chosen by
one process and recorded in A is overwritten by values smaller than t, another
process that begins performing GetTS after the value t has been chosen could
again choose t as a timestamp, which would be incorrect.

GetTS

t← max(Collect(A)) + 1
for i← 1..M(t)

for j ← 1..n

if A[j] < t then A[j]← t

end for
end for
return(t)

Fig. 2. A wait-free anonymous timestamp algorithm using n registers.

To avoid this problem, we ensure that the evidence of a timestamp cannot be
entirely overwritten after GetTS returns it. We say that a value v is established

in configuration C if there exists a shared register that, in every configuration
reachable from C, contains a value larger than or equal to v. (Note that, if a
value larger than v is established, then v is also established.) Once a value v
is established, any subsequent GetTS can perform a Collect of the registers
and see that it should return a value greater than v. Thus, our goal is to ensure
that values are established before they are returned by GetTS operations.

The algorithm, shown in Fig. 2, uses several measures to do this. The first is
having processes read a location before writing it and never knowingly overwrite
a value with a smaller value. This implies a value in a register is established
whenever there are no processes covering it, poised to write smaller values. This
measure alone is insufficient: if p writes to a register between q’s read and write
of that register, q may overwrite a larger value with a smaller one. However,
it limits the damage that a process can do. Another measure is for GetTS to
record its output in many locations before terminating. It also writes to each
of those locations repeatedly, using a larger number of repetitions as the value
of the timestamp gets larger. The number of repetitions, M(t), that GetTS

uses to record the timestamp t, is defined recursively by M(1) = 1 and M(t) =

n(n − 1)
∑t−1

i=1
M(i) for t > 1. Solving this recurrence yields M(t) = n(n −

1)(n2−n+1)t−2 for t > 1. The Compare(t1, t2) algorithm simply checks whether
t1 < t2. Correctness follows easily from the following lemma.

Lemma 5. Whenever GetTS returns a value t, the value t is established.

Theorem 6. Figure 2 gives a wait-free anonymous timestamp algorithm using

n registers.

When GetTS returns t, it performs Θ(n2t−1) steps. Thus, the algorithm is
wait-free, but not bounded wait-free. In an execution with k GetTS operations,
all timestamps are at most k, since GetTS can choose timestamp t only if
another (possibly incomplete) GetTS has chosen t − 1 and written it into A.
Each of the n registers must contain enough bits to represent one timestamp.

6.2 A Bounded Wait-Free Algorithm Using O(n2) Registers

The preceding algorithm is impractical because of its time complexity. Here,
we give an algorithm that runs in polynomial time and space. As in the pre-

GetTS

t← max(max(Collect(A), t) + 1
row ← t mod (2n− 1)
for i← 1..n

A[row, i]← t

if max(Collect(A)) ≥ t + n− 1 then return(t)
end for
return(t)

Fig. 3. A bounded wait-free anonymous timestamp algorithm using O(n2) registers.

ceding algorithm, timestamps are non-negative integers and a process chooses
a timestamp that is larger than any value recorded in the array A. However,
now, A[0..2n − 2, 1..n] is a two-dimensional array of registers and the method
for recording a chosen value in A is quite different. Before a process p returns
a timestamp t, it writes t into the entries of one row of the array, chosen as
a function of t. A careful balance must be maintained: p should not write too
many copies of t, because doing so could overwrite information written by other,
more advanced processes, but p must write enough copies to ensure that t is not
expunged by other, less advanced processes.

Process p attempts to write t into all entries of one row, but stops writing
if it sees value t + n − 1 or larger anywhere in the array. We show that, if this
occurs, then another process q has already returned a timestamp larger than t.
(In that case, q will have already ensured that no future GetTS will ever return
a value smaller than its own timestamp, so p can safely terminate and return t.)
This avoids the problem of p writing too many copies of t.

To avoid the problem of p writing too few copies of t, the rows are chosen in
a way that ensures that one value cannot be overwritten by another value unless
those two values are sufficiently far apart. This ensures that other processes will
terminate before obliterating all evidence of the largest timestamp written in A.

The algorithm is presented in Fig. 3. In addition to the shared array A, each
process has a persistent local variable t, initialized to 0. Again, Compare(t1, t2)
is performed by simply checking whether t1 < t2.

We remark that, if a value v > 0 is written into A, then v − 1 appeared in A
earlier. The correctness of the algorithm follows easily from the lemma below.

Lemma 7. Whenever GetTS returns a value t, the value t is established.

Proof. We prove the lemma by induction on the number of return events.

Base case: If no return events have occurred, the lemma is vacuously satisfied.

Induction step: Let k > 0. Assume that, at each of the first k − 1 return events,
the returned value is established.

Consider the configuration C just after the kth return event, in which process
p returns t. We show t is established in C by considering two cases, depending
on the termination condition that p satisfies.

Case 1: Suppose p returns t because it saw some value m ≥ t + n − 1 in A.

Some process wrote m before p read it. It follows that each of the values
t, t+1, t+2, . . . , t+n−1, . . . , m appeared in A at some time during the execution
before C. For 1 ≤ i ≤ n− 1, let pi be the process that first wrote the value t + i
into A. These processes do not include p, since p returns t at configuration C. If
all of these n − 1 processes are distinct, then no process will ever write a value
smaller than t after C, so t is established. Otherwise, by the pigeonhole principle,
pi = pj for some i < j. Process pi must have completed the instance of GetTS

that first wrote t + i before it began the instance of GetTS that first wrote
t+ j. The former instance returns t+ i, so the value t+ i is established when it is
returned, by the induction hypothesis. Thus, in C, the value t + i is established
and, hence, so is the value t.

Case 2: Suppose p terminates after it has completed all n iterations of the loop.

If t < 2n−1, in the first loop iteration of the GetTS that returns t, p writes t
into A[t, 1]. No value smaller than t can ever be written there, so t is established.

Now assume t ≥ 2n − 1. The values t − 1, t − 2, . . . , t − n were written into
A prior to the completion of p’s first Collect. For 0 ≤ i < n, let pi be the
process that first wrote the value t − n + i into A. If pi = p for some i, then p
returned t − n + i before starting the instance of GetTS that returned t, and
the value t − n + i is established, by the induction hypothesis. Otherwise, by
the pigeonhole principle, we must have pi = pj for some 0 ≤ i < j < n. When
process pi first wrote t − n + i, it returns t − n + i, that value is established,
by the induction hypothesis. In either case, some value greater than or equal to
t−n is established by the time that p completes its first Collect. Hence, t−n
is also established.

We show no process writes values smaller than t in row t mod (2n− 1) more
than once after p’s first write of t. Suppose not. Let q be the process that first
does a second such write. Suppose the first such write by q writes the value
t1 < t and the second writes the value t2 < t. Then t1 ≤ t − (2n − 1), since
t1 mod (2n− 1) = t mod (2n− 1) and t1 < t. Similarly, t2 ≤ t− (2n− 1). When
q performs Collect just after it writes t1, it sees a value t − n or larger in A,
since t − n is established. Furthermore, t − n ≥ (t1 + 2n − 1) − n = t1 + n − 1
and the loop terminates. So, when q writes t2, that write is part of a different
instance of GetTS. Again, when q performs Collect in the first line of that
instance of GetTS, it must see a value t−n or larger, since t−n is established.
Thus, t2 ≥ t − n + 1, contradicting the fact that t2 ≤ t − 2n.

Thus, when p returns t, it has written the value t into all n entries of row
t mod (2n−1) of A and at most n−1 of those copies are subsequently overwritten
by smaller values. So, t is established. ⊓⊔

The worst-case running time of GetTS is O(n3), since each Collect takes
Θ(n2) steps. Timestamps are bounded by the number of GetTS operations
invoked, and each register must be large enough to contain one timestamp.

Theorem 8. Figure 3 gives a wait-free anonymous timestamp algorithm using

O(n2) registers with step complexity O(n3).

7 A Tight Space Lower Bound for Anonymous

Algorithms

The anonymous timestamp algorithm given in Sect. 6.1 uses n registers. In it, a
process may write its timestamp value to each of the n registers. Intuitively, this
is done to ensure that other processes, which could potentially cover n − 1 of
the registers, cannot overwrite all evidence of the timestamp. Here, we sharpen
this intuition into a proof that at least n registers are required for anonymous
timestamp algorithms. This applies to obstruction-free implementations of time-
stamps (and therefore to wait-free implementations).

Lemma 9. Let n ≥ 2. In any anonymous obstruction-free timestamp implemen-

tation for n processes, a solo execution of k ≤ n instances of GetTS, starting

from an initial configuration, writes to at least k different registers.

Proof. Suppose not. Consider the smallest k such that there is a solo execution of
k ≤ n instances of GetTS by a process p, starting from an initial configuration,
which writes to a set R of fewer than k different registers. Let α be the prefix
of this execution consisting of the first k − 1 instances of GetTS. By definition
of k, it writes to at least k − 1 different registers. Thus, |R| = k − 1 and R is
the set of registers written to during α. Let C be the configuration immediately
after the last write in α (or the initial configuration, if there are no writes in α).

We define another execution β. First, add clones of p to execution α, such
that one clone continues until just before p last writes to each register in R. Let
q be the last of these clones to take a step. (If R is empty, then let q be any
process other than p.) Then p performs one more instance of GetTS after those
it performed in α. Let t be the value returned by this operation. Note that p
only writes to registers in R. Next, let the clones do a block write to R. Let C′

be the configuration immediately after the block write. Finally, q runs solo to
complete its operation, if necessary, and then does one more GetTS.

Each register has the same value in configurations C and C′ and p’s state
in C is the same as q’s state in C′. Thus, q’s steps after C′ will be identical to
p’s steps after C, and q’s last GetTS will also return t. This is a contradiction,
since that operation begins after p’s last GetTS, which also returned t, ended.

Theorem 10. Any n-process anonymous obstruction-free timestamp algorithm

uses at least n registers.

Acknowledgements We thank Rachid Guerraoui for helpful discussions. Fund-
ing was provided by the Natural Sciences and Engineering Research Council of
Canada and by the Scalable Synchronization Group at Sun Microsystems.

References

[1] Karl Abrahamson. On achieving consensus using a shared memory. In Proc. 7th

ACM Symposium on Principles of Distributed Computing, pages 291–302, 1988.

[2] Yehuda Afek, Danny Dolev, Eli Gafni, Michael Merritt, and Nir Shavit. A
bounded first-in, first-enabled solution to the l-exclusion problem. ACM Trans-

actions on Programming Languages and Systems, 16(3):939–953, May 1994.
[3] Hagit Attiya and Arie Fouren. Algorithms adapting to point contention. Journal

of the ACM, 50(4):444–468, July 2003.
[4] James Burns and Nancy Lynch. Bounds on shared memory for mutual exclusion.

Information and Computation, 107(2):171–184, December 1993.
[5] Bernadette Charron-Bost. Concerning the size of logical clocks in distributed

systems. Information Processing Letters, 39(1):11–16, July 1991.
[6] Danny Dolev and Nir Shavit. Bounded concurrent time-stamping. SIAM Journal

on Computing, 26(2):418–455, April 1997.
[7] Cynthia Dwork, Maurice Herlihy, Serge Plotkin, and Orli Waarts. Time-lapse

snapshots. SIAM Journal on Computing, 28(5):1848–1874, 1999.
[8] Cynthia Dwork and Orli Waarts. Simple and efficient bounded concurrent times-

tamping and the traceable use abstraction. Journal of the ACM, 46(5):633–666,
September 1999.

[9] Panagiota Fatourou, Faith Ellen Fich, and Eric Ruppert. Time-space tradeoffs
for implementations of snapshots. In Proc. 38th ACM Symposium on Theory of

Computing, pages 169–178, 2006.
[10] Faith Fich, Maurice Herlihy, and Nir Shavit. On the space complexity of random-

ized synchronization. Journal of the ACM, 45(5):843–862, September 1998.
[11] Colin Fidge. Logical time in distributed computing systems. Computer, 24(8):28–

33, August 1991.
[12] Rachid Guerraoui and Eric Ruppert. Anonymous and fault-tolerant shared-

memory computing. Distributed Computing. To appear. A preliminary version
appeared in Distributed Computing, 19th International Conference, pages 244–
259, 2006.

[13] Sibsankar Haldar and Paul Vitányi. Bounded concurrent timestamp systems using
vector clocks. Journal of the ACM, 49(1):101–126, January 2002.

[14] Amos Israeli and Ming Li. Bounded time-stamps. Distributed Computing,
6(4):205–209, 1993.

[15] Amos Israeli and Meir Pinhasov. A concurrent time-stamp scheme which is linear
in time and space. In Proc. 6th Int. Workshop on Distributed Algorithms, pages
95–109, 1992.

[16] Prasad Jayanti, King Tan, and Sam Toueg. Time and space lower bounds for
nonblocking implementations. SIAM Journal on Computing, 30(2):438–456, 2000.

[17] Leslie Lamport. A new solution of Dijkstra’s concurrent programming problem.
Communications of the ACM, 17(8):453–455, August 1974.

[18] Leslie Lamport. Time, clocks and the ordering of events in a distributed system.
Communications of the ACM, 21(7):558–565, July 1978.

[19] Ming Li, John Tromp, and Paul M. B. Vitányi. How to share concurrent wait-free
variables. Journal of the ACM, 43(4):723–746, July 1996.

[20] Friedemann Mattern. Virtual time and global states of distributed systems. In
Proc. Workshop on Parallel and Distributed Algorithms, pages 215–226, 1989.

[21] Marios Mavronicolas, Loizos Michael, and Paul Spirakis. Computing on a par-
tially eponymous ring. In Proc. 10th International Conference on Principles of

Distributed Systems, pages 380–394, 2006.
[22] Paul M. B. Vitányi and Baruch Awerbuch. Atomic shared register access by asyn-

chronous hardware. In Proc. 27th IEEE Symposium on Foundations of Computer

Science, pages 233–243, 1986.

